INVESTIGACION REVISTA MEXICANA DE FISICA 44 (4) 344-352 AGOSTO 1998

On the dynamical symmetry of the quantum Kepler problem

G.F. Torres del Castillo
Departamento de Fisica Matemdtica, Instituto de Ciencias, Universidad Autdnoma de Puebla
72570 Puebla, Pue., México

J.L. Calvario Acdcal
Instituto de Fisica, Universidad Autonoma de Puebla
Apartado postal J48, 72570 Puebla, Pue., México

Recibido el 15 de enero de 1998; aceptado el | de junio de 1998

Using the fact that the Schridinger equation for the two-dimensional Kepler problem with negative energy is equivalent to an integral equation
on the unit sphere in the three-dimensional space, the eigenfunctions and the generators of a dynamical symmetry group for this problem are
obtained from the usual spherical harmonics and the angular momentum operators on the sphere. It is shown that if the spherical harmonics
are eigenfunctions of L, instead of L., the corresponding eigenfunctions of the Schrdinger equation are separable in parabolic coordinates.
It is also shown that in the case of zero energy, the Schrodinger equation for the Kepler problem in two or three dimensions is equivalent to
an integral equation on the two- or three-dimensional Euclidean space, respectively.

Keywaords: Kepler problem; dynamical symmetry group

Usando el hecho de que la ecuacién de Schrodinger para el problema de Kepler en dos dimensiones con energfa negativa equivale a una
ccuacion integral sobre la esfera de radio 1 en el espacio tridimensional, se obtienen las eigenfunciones y los generadores de un grupo de
simetria dindmica para este problema a partir de los arménicos esféricos usuales y los operadores de momento angular sobre la esfera. Se
muestra que si los arménicos esféricos son eigenfunciones de Ly, en lugar de L., las eigenfunciones correspondientes de la ecuacion de
Schradinger son separables en coordenadas parabdlicas. Se muestra también que en el caso de energia cero, la ecuacion de Schrodinger
para el problema de Kepler en dos o tres dimensiones equivale a una ecuacion integral sobre el espacio Euclideano de dimension dos o tres,

respectivamente.

Descriptores: Problema de Kepler; grupo de simetria dinamica

PACS: 03.65.-w: 02.20.-a; 02.30.Gp

1. Introduccion

It is a well known fact that in the Kepler problem (in clas-
sical or quantum mechanics), besides the angular momen-
tum, there exists another conserved vector, known as the
Hermann-Bernoulli-Laplace-Runge-Lenz (HBLRL) vector;
whereas the conservation of the angular momentum follows
from the invariance of the potential under rotations, the con-
servation of the HBLRL vector is associated with a “hidden
svmmetry”, that is, with transformations that mix the position
and momentum variables, leaving the Hamiltonian invariant
(see, e.g., Refs. 1-5).

In the case where the energy is negative, the commuta-
tion relations (or the Poisson brackets) between the compo-
nents of the angular momentum and of the HBLRL vector
coincide with those of a basis for the generators of rotations
in the four-dimensional Euclidean space (or of the rotations
in three dimensions, if one considers the Kepler problem in
two dimensions) (see, e.g., Refs. 3-10). Fock [1] showed that
the corresponding Schridinger equation possesses, in effect,
a symmetry group isomorphic to the group of rotations in
four dimensions by transforming this equation info an equa-

tion on the unit sphere in the four-dimensional space, where
the symmetry becomes obvious. This transformation allows
1o find the energy levels and to express the eigenfunctions in
terms of hyperspherical surface harmonics [1, 3, 4].

When the energy is positive, the commutation relations
between the components of the angular momentum and of
the HBLRL vector correspond to those of a set of generators
of the Lorentz group and the Schridinger equation can be
transformed into an equation on a two-sheeted hyperboloid
in Minkowski space where the global action of the Lorentz
group can be seen explicitly [1,4]. Finally, when the energy
is equal to zero, the commutation relations of the angular mo-
mentum and the HBLRL vector coincide with those of a set
of generators of the Euclidean group in three dimensions and
in Ref. 4 it is shown that the Schrodinger equation can be
transformed into an equation on a paraboloid. However, since
the rotations in four dimensions are the isometries of the unit
sphere and the Lorentz transformations are the isometries of
an hyperboloid in Minkowski space, one would expect that
in the case of zero energy the Schrodinger equation could be
transformed into an equation on the Euclidean space, where
the symmetry of the Schrodinger equation would be manifest.
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In this paper we use the fact that the Schrodinger equa-
tion for the two-dimensional Kepler problem with negative
energy can be transformed into an equation on the unit sphere
in three-dimensional space to find the energy levels and the
eigenfunctions explicitly, obtaining a relationship between
the generating functions of the associated Legendre functions
and of the associated Laguerre polynomials. We show that
the HBLRL vector (in two dimensions) can be derived from
the expressions for the usual angular momentum operators
and that the eigenfunctions of one of the components of the
HBLRL vector are the separable solutions of the Schrodinger
equation for the 1/r potential in parabolic coordinates. The
analogue of this result in classical mechanics is given in the
Appendix. We also consider the Schradinger equation for
the Kepler problem in two and three dimensions with zero
energy, showing that this equation can be transformed into
one on the two- or three-dimensional Euclidean space, re-
spectively, whose solutions can be easily obtained.

2. The Schrodinger equation for the bound
states of the two-dimensional Kepler prob-
lem

In this section we give a treatment of the Schrodinger equa-
tion for the Kepler problem with negative energy in two di-
mensions parallel to that given in Refs. 3 and 4 for the three-
dimensional case, following a simpler procedure.

2.1. Invariance of the Schridinger equation under the
three-dimensional rotation group

By expressing the solution of the Schrodinger equation for
the two-dimensional Kepler problem,
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where p = |p|. Throughout this section, we shall consider
bound states only, for which £ < 0. Then, by means of the
stereographic projection, the vector p can be replaced by a
unit vector n = (n,, n,, n.) according to [1, 3]
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Under the correspondence between p and n given by Eqgs. (4)
and (6), the plane is mapped onto the unit sphere and making
use of the spherical coordinates 4, ¢, of n, from Eq. (4) we
find that
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where n' is the unit vector corresponding to p’ according to
Eq. (6). Substituting Egs. (5), (8) and (9) into Eq. (3) one gets
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hence, by defining
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one arrives at the integral equation
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The constant factors included in the definition (10) are cho-
sen in such a way that ® is dimensionless and & is normal-
ized over the sphere if and only if ¢/ is normalized over the
plane [3]. Since the distance between points on the sphere
and the solid angle element df) are invariant under rotations
of the sphere, Eq. (11) is explicitly invariant under these
transformations, thus showing that the rotation group SO(3)
is a symmetry group of the original Eq. (1), for £ < 0. Sub-
stituting Eqgs. (7), (8) and (10) into Eq. (2) one obtains the
wave function ¢(r) in terms of the solution of the integral
equation (11)
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The integral equation (11) can be easily solved using the
fact that the spherical harmonics form a complete set for the
functions defined on the sphere, therefore the function & can
be expanded in the form
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Substituting Eq. (13) into Eq. (11), making use of the expan-
sion
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where #, ¢ and #', ¢' are the spherical coordinates of n and
n'. respectively, and of the orthonormality of the spherical
harmonics one obtains
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which implies that, in order to have a nontrivial solution,
2MFE = Iipo(20 + 1), for some [; hence, according to Eq. (5),
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degeneracy of the energy level (14) is 2{ + 1 all the spherical
harmonics of degree [ are solutions of Eq. (11), correspond-
ing to the energy (14) and the solutions of the homogeneous
integral equation (11) are precisely the eigenfunctions of L?,
the square angular momentum operator.

2.2. Explicit form of the eigenfunctions

According to the preceding results, the solutions of the
Schradinger equation (1), for E < 0, are given by Eq. (12),

Po (8
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x exp {ipo cot(B/2)(rcos ¢ + ysing)/h} df dp, (15)
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where ® (¢, é) is an eigenfunction of L?. The rotational sym-
metry of the Hamiltonian (1) suggests the use of polar coor-
dinates, in terms of which Eq. (15) takes the form
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where we have made use of the expansion e'*sn? =
Z,’:__x mb 1 (r) (see, e.g., Ref. 11, Sect. 4). Taking
<I)(9.o) as a spherical harmonic, Y,,(#, @), which are the
normalized separable eigenfunctions of L? in spherical co-
ordinates, from Eq. (16) we obtain
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which shows that the separable eigenfunctions of L* in spherical coordinates correspond to separable cigenfunctions of the
Hamiltonian in polar coordinates. Denoting by I, the integral between braces in Eq. (17), and introducing an auxiliary

parameter £ we have
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therefore, making use of the recurrence relation (2/ + 1) sin 8P (cos ) =

function of the associated Legendre functions,
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(see, e.g., Ref. 12), form > 0, we find
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The last integral can be evaluated by first differentiating
with respect to s the equation
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where L% denote the associated Laguerre polynomials (see
e.g., Ref. 13), it follows that
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and the normalized eigenfunctions of the Hamiltonian, for
m. > 0, are given by
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Using the relations P, = (—1)’”&14“—"13! % oatid J oy =
(—=1)™.J,,, from Eq. (17) it follows that
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-3. The generators of the symmetry

As we have shown, Eq. (15) gives a correspondence between
the solutions of the integral equation (11) and those of the
Schrodinger equation (1). As remarked above, Eq. (11) is
explicitly invariant under the rotations of the sphere and, as
is well known, a set of generators of these rotations are the
angular momentum operators

Lis

. ( sin g dJ 5 Gl d
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where the ~ indicates that these operators act on functions de-
fined on the sphere. Then, by means of the correspondence
(12) we can find the operators on the wave functions that cor-
respond to the generators of rotations (21).

From Eqs. (2), (7) and (10) it follows that the function &

on the sphere corresponding to a given wave function 1 is

Po 1

4\/27h sin®(0/2)

5 /t“(r)(;—nﬁp‘.uut{ﬁ/'l)(.rrosd+ysmr,-‘)jfh ([‘.Zr. (22)

(f'(n) =

By applying, for example, L, to both sides of the last equa-
tion one obtains
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where we have integrated by parts. Now, assuming that ¢ satisfies Eq. (1), the last term can be replaced according to pip =
hAV2¢ + (2Mk/r)i, hence,
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restricted to the solutions of Eq. (1) for a fixed
value of B, L, corresponds to the operator  where A is a separation constant. Each of these separated
1 {nﬁ (1 _ i) Iy (T 8 _ 8 )_ M] equations, for £ < 0, has the form of the Schrddinger
po | 2 dy o) 92 T2 a"’ o " equation for a harmonic oscillator (¢f. Refs. 6, 7 and 15);
which, apart from the constant factor (1/po), coincides with  making use of the dimensionless variables & = \/po/Tiu and

A, one of the cartesian components of the HBLRL vector 1= v/po/hv, from Egs. (25) we get
1 Mk 277 IV (I
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In a similar manner, one finds that the operators L, and an B T NtV = TL”.

L. correspond to —(1/po) A, and L., respectively. Thus, one
concludes that the components of the HBLRL vector (23)are  therefore, in order to have well-behaved solutions of
associated with the SO(3) symmetry of Eq. (1) and that the ~ Eqs. (25),

operators (1/po) Ay, —(1/po) Az and L obey the same com- M(k+A) M(k—A)

mutation relations as L., LJ and L.. =n; +1, =ny+ 1, (26
hupo 2 fipo 4
2.4. Separation of variables in parabolic coordinates where 1, and n» are non-negative integers, and
The Schr()'_dinger §quation (1) is also ‘known to be_ separablg = 06752:"2]{”1 (5)@""’2/25’"2 (n)
in parabolic coordinates (see, e.g., Ref. 6). In fact, in terms of L .
the parabolic coordinates u and v defined by z = 1(u® —v?), = Ce MW/ g (/Do /hu)e Py /2R
y = uv, Eq. (1) takes the form _
X Hy, (v po/liv), (27)
h2 1 % 9%y ok . where the H,, are Hermite polynomials and €' is a normal-
TOM Wl + 02 (i)u? g (91,2) T B e v =Ed. (24)  ization constant [6].

Since H,(—x) = (=1)"Hp(z) and the couples (u,v)
Substituting 1» = U(u)V (v) into Eq. (24), one obtains the  and (—u, —v) correspond to the same point (x,y), in order
separated equations to have a single-valued wave function it is necessary that n,
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and ny be both odd or even; hence, n; + ns must always be
an even number, 2/, say, and, for a fixed value of /,

my = (n) —na)/2, (28)

can take the (2{ + 1) integral values —[, —{+ 1, ... .[l. Then,
adding Egs. (26) and recalling Eq. (5) we obtain again E =
—2Mk?/[h* (21 + 1)?] and subtracting Egs. (26) we find that
the separation constant A must be quantized according to

hpao

A= M

—— 1Tty (29)
(Note that the existence of 2/ 4 1 different values of 1, for
a given value of [ means that the degeneracy of the energy
levelsis 21 + 1.)

The meaning of the separation constant A (and, hence, of
1ty ) can be found by multiplying the first equation in (25) by
vV, the second one by u*U and subtracting, which leads to

h* 1 5 O g 05 X "
—— |V — —u=— | ¥
2M u? + 2 ' du? dv? "

or, equivalently,

_L n? o .c') _, i
M )dz/ ! dy J('):z‘

(oo a\ @ Mkz
—?(.r@—ya) %f = :’t = A, (30)

which is just the condition (—1/M) A, v = M [cf Eq. (23)].
Hence, the separable solutions of Eq. (1) in parabolic coordi-
nates are eigenfunctions of (—1/pg)A, (which is the opera-
tor on the wave functions corresponding to Ji.y), with eigen-
value M A/py = myh. Thus, whereas the functions on the
sphere, P, corresponding [by means of Eq. (22)] to the sep-
arable solutions (19) of Eq. (1) in polar coordinates are the
eigenfunctions of L. and L2, those corresponding to the sep-
arable solutions (27) of Eq. (1) in parabolic coordinates are
the eigenfunctions of L, and L2,

It should be remarked that, as we have seen in the pre-
ceding paragraph, the conservation of the HBLRL vector fol-
lows from the separability of the Schrodinger equation (1) in
parabolic coordinates. (As shown in the Appendix, in a sim-
ilar manner, the conservation of the classical HBLRL vector
follows from the separability of the Hamilton-Jacobi equa-
tion for the two-dimensional Kepler problem.) In this con-
text, the HBLRL vector arises in a very natural way (compare
with the derivation of the classical HBLRL vector given, e.g.,
in Ref. 16).

We close this section pointing out that from the com-
mumt]on relations of the angular momentum operators (21),
[L L 4] = ihe ijk Ly, it follows, in the usual way, that the
action of L, 4 L, on an eigenfunction of L? and L, yields
another eigenfunction of L? and L,, with the same eigenvalue
of L* and the eigenvalue of L, shifted by £7i. Therefore,

L)
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owing to the results of the preceding subsection, the opera-
tors L. & (i/py) A, (which correspond to L. +ilL,)raise or
lower the uguwalm ny, of the wave functions

s pou” /2R H,’+m!,(\/]T/h“')e_por:/!h
X Hifml,(vpf)/h?') (3]}

[see Eqgs. (27) and (28)] by one unit. In fact, a straightfor-
ward computation, using again the relation pg¢» = v T
(20K /r)y), gives the simple expression

i I Pn
L ---4,_i W= 1!—
= o ( f} )po ()“)
o h @
vty — — 1. 3
. (\/ o \/ 2pg av) (32)

The operators in the right-hand side of the last equation can
be recognized as raising or lowering operators corresponding
to the linear harmonic oscillators described by Egs. (25). Let-

ting ay = /po/2hu + \/1/2po 8/ 0u, a}‘ = po/2hu —
\/Jr.'/?,[)n t)/()f.' (1o \,"‘]_J{_]/Qﬁ v+ \/?L?./2p0 C)/C)I' (I.z =

VPo/2hv — \//2po 3/ v, we have

vy ny, — (

'
L;+—A, = —iﬁaiag.

Po
L.— —l—:l,, = iha;al, (33)
Po -
1 h
-—A, = l—i(r.'.[(rl - (L.t('lg).
o 2 =

These equations correspond to the well-known Schwinger’s
realization of the Lie algebra of the rotation group in terms
ol creation and annihilation operators.

3. The quantum-mechanical Kepler problem
with zero energy

3.1. Explicit SE(2) invariance of the two-dimensional Ke-
pler problem with zero energy

When -E = 0, Eq. (3) gives

. ME [ ®(p')
p*d(p) = = / (—p), d*p’. (34)
wh J |p—p|
Making now the change of variable
2MEk
p=—"-1 (35)
ho g2
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where q is a dimensionless vector in the plane and ¢ = |q,
we get

o 2ME
B hq
: 4M2E?
[l‘-;J S d 5
P= e
2Mk g —dq'|
p-p= G

and from Eq. (34) it follows that

$iq) = / (36)
la—q |
where
. 2Mk npt
elq)= W‘I’(Q) = W‘I’(p)- (37)

Equation (36) is explicitly invariant under SE(2), the group of
rigid transformations of the Euclidean plane onto itself that
do not change the orientation.
The homogeneous integral equation (36) can be easily
solved. Substituting ®(q) = [ f(s)e™ 9 d*s into Eq. (36)
is-q’ j2g d‘lq!

we get
1 f] f(s)e
W lq—q

B /f'(s)gefs'q iR

hence, f(s) # 0 only if |s| = 1; thus, d(q) = e®%isa
solution of Eq. (36) for any (constant) unit vector s. These
solutions are separable in cartesian coordinates: €'®'9 =
(#,y) and 8 = (8z;8y)-
eisd = % jme—imagimd [ (), where (p,8) are the

/‘ f(s)e=d%s

ESil SR

ettt ¥ with q = Since

polar coordinates of g and s = (cos a, sin a), it follows that
$(p, ) = Jm(p)e'™ is a separable solution in polar coor-
dinates of Eq. (36), for any integral value of m. Hence, the
degeneracy of the energy level E = 0 is infinite. It may be
noticed that the solutions to Eq. (36) coincide with those of
the Helmholtz equation V? $ = —&. A somewhat similar
result holds in the case of the integral equation (11), WhiLh
is equnalull to the eigenvalue equation L26= I{I4 DK 2,
since —i >L? is the Laplace operator of the sphere; how-
ever, in the latter case, all non-negative integral values of /
are allowed, while in the case of the Laplace operator of the
plane, only one of its eigenvalues is relevant, which is related
to the fact that E only takes the value zero.

From Egs. (2), (35) and (37) it follows that the solutions
of the Schriddinger equation (1) with E' = 0 are related with
the functions & through

2 ME [
®(p,0) = —5— /'f;"(-'UZU)

mhp?
x exp {—2iM k(x cosé + y sin 9)/hjp} d*r, (38)

where, again, p, ¢ are the polar coordinates of q. On the other
hand, the generators of the rigid motions of the plane can be

chosen as
- d sinf d
P, =—ih|cosf— — — .
| #J(( 0SS a{) . 09)

J cosfl J
Py = —ih | s T A o
ih (smﬁop + P 99) ‘

(39)

L. = —fﬁ—

P, and P, generate translations in the = and y directions, re-
spectively, and L. generates rotations about the origin. The
commutation relations of the operators (39) are

[P, Ps] = 0,
[L.,P] =ihPs, (40)
[L., Py] = —ihP.

The operators on the wave functions corresponding to the
generators of the symmetry transformations (39) can be ob-
tained following the same steps as in Sect. 2.3, making use of
Eq. (38). One finds, for instance,

ME T 3
]51 d = A!-”V / gipafh —h
mh? p3 2Mk

a a? a% a 9 3
e — . e . =t 2 o s j‘ a t 3 “ [*
8 [ O AE (0}/3 ('):3"—’) ¥ dx ay] Pz y)dr

hence, recalling that in the present case vy +
(2Mk/r)y» = 0, the operator corresponding to the genera-
tor of translations P is

13 B A +2'_ﬁ+2ﬂ-ﬂ:_ 9 a d
oMk | "z T Cor T 13 ¢ “Yazoy

A A
ME | 2 'ili)y Yor dy

4 9, 1%, 19, n Mkax h A
| S = Ag
Ay dy Yor r Mk

[see Eq. (23)]. In a similar way, onc finds that the opera-
tors corresponding to P and L. are (=h/Mk)A g and L.,
respectively. Thus, A,, A, and L: generate symmetry trans-
formations of the Schrédinger equation (1), as in the case
where E is negative.

The fact that L. is the operator corresponding to L. un-
der the couespondenw (38) implies that, under this rela-
tionship, the separable solutions in polar coordinates of the
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Schrodinger equation with E' = () correspond to the separa-
ble solutions in polar coordinates of Eq. (36) [which are of the
form J,,,(p)e"™#]. On the other hand, since Eq. (30) holds for
any value of E, the separable solutions in parabolic coordi-
nates of the Schrodinger equation with £ = 0 are eigenfunc-
tions of A, and, therefore, they correspond to eigenfunctions
of P, which are the separable solutions in cartesian coordi-
nates of Eq. (36).

3.2. Symmetry of the Schrédinger equation for the three-
dimensional Kepler problem with zero energy

Considering now the Schrodinger equation (1) in three di-
mensions, writing

1

(2rn)3rz / ®(p)e™ /" d’p,

Pfr) =

one obtains the integral equation

Mk [ S
Lt ‘N_P)_)d\.pg
m=h | |p-p'|?

which takes the place of Eq. (3). Making £ = 0 and
p = 2Mkq/(hq®), where q is a dimensionless vector in
three dimensions, one finds that Eq. (41) is equivalent to

(q) = — / B(g Py, (42)
212 | lq-q'? ql2

IMEN? B(q)
h q!

)

h h/2 i
- (211&) PR

Equation (42) is manifestly invariant under the rigid (rans-
formations of the three-dimensional Euclidean space, which
means that this group of transformations constitute a symme-
try group of the three-dimensional Kepler problem with zero
energy.

It can be easily seen that the functions & = ™9 where

(> —2ME)®(p) = (41)

where

®(q)

$ 1s a constant vector with [s| = 1, and & = J(p) Y (8, 0)

are separable solutions of Eq. (42) in cartesian coordinates
and spherical coordinates, respectively, and these functions
are also solutions of the Helmholtz equation V2 = —&: he
existence of these sets of separable solutions corresponds to
the separability of the Schrédinger equation (1) in parabolic
and spherical coordinates.

4. Concluding remarks

The cases considered in this paper, as well as those treated in
Rels. 3 and 4, show the usefulness of exhibiting the underly-
ing symmetry of the quantum Kepler problem, which allows
to change the Schrodinger equation by a simpler condition.

The results of Sect. 2 show, among other things, that
the usual spherical harmonics are related with the associated
Laguerre polynomials and the Hermite polynomials, which
form bases for representations of the rotation group; these
results also show one of the many connections between the
Kepler problem with negative energy and the isotropic oscil-
lator (¢f. also Ref. 9 and the references cited therein).
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Appendix

The separability of the Schridinger equation and of the
Hamilton-Jacobi equation for the two-dimensional Kepler
problem in polar coordinates is a consequence of the invari-
ance of the Hamiltonian under rotations about the center of
force (as in the case of any central potential) which, in turn,
is equivalent to the conservation of the angular momentum
L-. The 1/r potential is distinguished by the existence of
another conserved vector—the HBLRL vector—which turns
outto be related with the separability of the above-mentioned
equations in parabolic coordinates.

The Hamilton-Jacobi equation for the two-dimensional
Kepler problem written in the parabolic coordinates 1. v. de-

fined by r = %t_u — u?), 1= W8
1 1 ‘D8N (95 b
2M w2 + 02 (r’_)u o
2k a8
= dhe——=if]. A
u? 4 p? ot

Even though both coordinates are non-ignorable, Eq. (A.1)
admits separable solutions of the form

S(u,v.t) = =Bt 4 f(u) + g(v). (A2)

In fact, substituting Eq. (A.2) into Eq. (A.1) one obtains the
separated equations

LofdfN
m(ﬂ) —1.*1'2”

1 dg 8 5
() kB g
2N (,/:') & h

where A is a separation constant. Multipiymg the first equa-
tion in (A.3) by ©2 and the second one by w* and subtracting

Il
=2

(A.3)
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one finds that

therefore, since u? + v? =

P

o

[#1]

-1

oo

[ (Y e (Y
2M { du “ dv

+ k(u? - v?) = Au? +v%), (Ad)

2r, df /du = 3S/0u = py =
(8z/0u) + py(Oy/Ou) = wup, + vp, and dg/dv =

G.F. TORRES DEL CASTILLO AND J L. CALVARIO ACOCAL

AS/dv = p, = —up, + upy, from Eq. (A.4) it follows that

1 Mkx Az
A= ~r (Tpy — YPe )Py — =5 = 3
where A = p x L — Mkr/r now denotes the classical

HBLRL vector [¢f Eq. (30)]. From Eqgs. (A.3) it follows that,
if £ <0, then —k < A < k [¢f Egs. (26)].

In a similar way one finds that A, corresponds to a sepa-

ration constant using the coordinate system y = L(v? —u?),
&r = uv.
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