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Rotational predissociation resonances in anharmonic potentials
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We calculate the resonant energies for finite range. anharmonic, potentials. We exemplify our method with the well known Morse potential
and with a potential given by Deng [1] both of them with a centrifugal barrier. In this work we calculate the resonant energies using Siegert
boundary conditions [2]. Starting with a complex wavenumber k., we integrate numerically from the origin up to a matching point using
Numerov's method. The inward integration is performed using the corresponding Riccati equation. The complex eigenvalues are found by
matching the two logarithmic derivatives. We find narrow shape resonances within the well, above the dissociation limit, as well as broad
resonances above the centrifugal barrier and anti-bound states.
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Calculamos las energias de resonancias para potenciales anarménicos de alcance finito. Ejemplificamos nuestro método con el bien conocido
potencial de Morse y con un potencial propuesto por Deng, ambos con barrera centrifuga. Para calcular las energias de la resonancias,
partimos de un mimero de onda complejo k e integramos de forma numérica desde el origen hasta un punto de traslape utilizando el método
de Numerov. La integracion hacia adentro se hace usando la ecuacién de Riceati correspondiente. Los valores propios, complejos, son

encontrados al empatar las dos derivadas logaritmicas. Encontramos resonancias delgadas en el pozo por encima del limite de disociacién y
resoncias anchas por encima de la barrera centrifuga, asi como estados anti-ligados.
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1. Introduction

The Morse potential has been used frequently to describe
chemical bonds since. in contrast with the harmonic oscilla-
tor model, it has a finite number of bound states allowing the
posibility of dissociation at high enough excitation energies,
and also because it takes into account the quasi-harmonic be-
havior of the bond in the vicinity of the potential minimum.
The analytical solution of the Schrédinger equation with a
Morse potential has been known for a long time [3, 4]. How-
ever, in these solutions it was necessary (o extend the domain
of the radial coordinate to the non-physical region of negative
values. This is a result of the fact that the Morse potential at-
tains a finite value when the radial coordinate goes to zero.
Recently, a study of the relevance of this approximation for
the evaluation of Frank Condon factors was done showing
that the effects are indeed small [5]. The potential proposed
by Deng also has analytical solution for the case of zero an-
gular momentum and has as an advantage over the Morse
potential the fact that it does go to infinity as the radial coor-
dinate approaches zero. Thus, the domain of the radial coor-
dinate does not need to be extended to the unphysical region.
In this work we make a comparaison between the bound, res-
onant and anti-bound states of a Morse potential and a Deng

potential for several values of the potential’s depth and of the
angular momentum.

The addition of a rotational term to a diatomic molecule
potential produces a barrier allowing for tunneling and the
subsequent predissociation of the molecule. The energies at
which the tunneling is enhanced are the resonant energies.
Resonant or quasibound states are defined as the solutions of
Schrodinger’s equation for the corresponding potential with
purely outgoing wave boundary conditions asymptotically,
and regular at the origin [6-8].

The associated eigenvalues of the nonhermitian problem
correspond to the complex poles of the S-matrix, with the
real part representing the position of the resonance, and the
imaginary part giving the inverse lifetime. The resonant states
are associated to the residues of the Green function at those
poles [9]. Contrary (o the case of bound states, resonant states
diverge exponentially for large distances making approxima-
tion methods awkward to apply.

In the present paper, we apply a method based upon the
combination of the usual radial equation and Riccati’s equa-
tion [2]. We start by choosing a malching radius r,,, dividing
the space into two parts. Integrating the radial equation in the
inner region presents no problem since we are far away from
the region where the solution diverges. In the outer region, on
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the other hand, we transform the radial equation to the Riccati
form and integrate it as a nonlinear first order equation. We
do not continue the integration into the inner region due to
the presence of nodes of the wave function [10, 11]. Match-
ing logarithmic derivatives at 1, gives the resonant energies.
We present the complex energies corresponding to shape res-
onances for the two potentials mentioned above.

In the next Section we present the use of the Riccati
equation to calculate the resonant energies, then, a descrip-
tion of the numerical integration methods used and finally we
present our numerical results and a brief discussion.

2. Resonances

An important phenomenon in scattering is the occurrence of
resonances in the scattering cross section. In the neighbor-
hood of a resonance, the cross sections for all allowed reac-
tions and for elastic scattering show pronounced peaks as the
incident energy is varied. All these peaks have nearly identi-
cal shapes. and the angular distributions for these processes
eenerally have simple shapes characteristic of the angular
momentum associated with the resonance.
These observations can be interpreted as arising from
long-lived virtual states of the compound system that are
formed when the projectile and the target coalesce. The en-
hanced cross section is a result of the greater probability of
interacting when such long lived states can be formed, and the
widths of the peaks are associated with the finite lifetimes of
these states, via the uncertainty relation AEAt = Ti.
A resonant state is defined as a solution of Schrodinger’s
equation fulfilling Siegert’s boundary condition [1-4]. For the
case of spherically symmetric potentials V(r) with a finite
range. this corresponds to the asymptotic condition for the
radial wave function (1) as r — oo:
At
!—-Q — ik, ()
P(r)

where k is the (complex) wave number.

These states include bound states as well as proper reso-
nant states, representing purely outgoing waves, with no in-
coming component. Although, strictly speaking, these con-
ditions are nonphysical, the complex energies associated to
these states give a very good description of the resonant en-
ergics and their lifetimes.

The radial equation for an effective potential V;;(r) with
angular momentum .J is given as

Y (r) + [ = Va(r)]w(r) =0, (2)

in natural units, i = 2m = 1. Its numerical integration for
proper resonant states, however, becomes unstable asymp-
totically. This is due to the fact that the boundary condition
Eq. (1) implies an exponentially growing behavior with 7.
The correct solution becomes contaminated with the expo-
nentially small component asymptotically.

In the case of bound states, & in Eq. (1) is imaginary
positive [8], the wave function decays exponentially with r,

and the integration can be started from the asymptotic re-
gion inwards. In practice, we also integrate outwards from
the origin and find the correct eigenvalue by matching loga-
rithmic derivatives of the wave functions at an intermediate
point [11]. )

An alternative to the use of Eq. (2) is to transtorm this
radial equation into a first order nonlinear form, namely
Riccati’s equation. Defining

W (1)

I e 3
9= T 3)

Eq. (2) becomes
g'(r) + g () + E=V;(r) =0, (4)

where E2 = k2 is the complex energy eigenvalue. The purely
outgoing wave boundary condition for g(r) is simply:

g 0r) =ik (5)

Eq. (4) can now be integrated inwards starting from the con-
stant 7k. A new problem arises now from the fact that g(r)
diverges at the nodal points of 4(r).

In the present work we integrate Eq. (2) from the origin
up to a matching point r,,, , and Eq. (4) from the asymptotic
region inwards, down to the same point 1. The matching
point is chosen in such a way that we do not find any nodes
of 1(r) during the integration of Riccati’s equation. The com-
plex eigenvalues corresponding to the resonant states are de-
termined matching the logarithmic derivative of the internal
solution with the external solution of the Riccati equation:

'{."J("'m )

W) AT o

3. Numerical integration

The potentials we considered in this work had well depth A
and minimum at » = ry. For the Morse case, the effective
potential is given by:

2r—r g —_— J(T+1
Vilr) = A [e72r0) - 2= + it
o
while for the Deng case:
b2 2b JCd +1)
7(r) = A _ 1 "
1,](’) I:(FP_]-)? F"'—I:| ot 2 (8)

with b = ¢ — 1, and we have included the centrifugal poten-
tial corresponding to a molecular rotation with angular mo-
mentum .J. The centrifugal term creates a hump in the ef-
fective potential, allowing for resonant states with positive
energy, besides the ordinary bound states corresponding to
negative energies. Using the procedure described above, we
integrate Egs. (2) and (4) numerically and determine the en-
ergy eigenvalues.

The outward integration of the Schrodinger equation is
performed using Numerov’s method on a discrete mesh from
» = 0 to the matching point r = r,,. For Riccati’s equation,
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TABLE 1. Energy eigenvalues for the first two states of a Morse and a Deng

angular momentum .J.

potential with fixed depth A = 4 and several values of the

=1
J Morse Deng AE
0 —2.25000 —=2.22216 —0.02784
1 —2.14404 —2.11672 —0.02732
2 —1.93403 —1.90769 —0.02634
3 —1.62393 —1.59894 —0.02499
B —1.22009 —1.19671 —0.02338
5 —0.73196 —0.71033 —0.02163
=1
L Morse Deng AE
0 (—=0.25000, 0.00000) (=0.23192,  0.00000) (- 0.01808, 0.00000)
1 ( 0.03318, —0.51687) ( 0.03812, —0.52314) (—0.00494, 0.00627)
2 ( 0.09353, —0.53729) ( 0.09819, —0.54312) (—0.00466, 0.00583)
3 ( 0.18415, —0.56717) ( 0.18820, —0.57234) (—0.00405, 0.00517)
4 ( 0.30150, —0.60546) (030472, —0.60959) (—=0.00322, 0.00413)
5 ( 0.43857, —0.64690) ( 0.44128, —0.64960) (—0.00271, 0.00270)

on the other hand, we use a fourth order Runge-Kutta method.
Al the starting point for this integration, r = R, we choose
the initial value g;(R) as:

', (kR)

g1(R) =k = :
Y= R oR)

9)

where /1, represents the Riccati-Hankel function (+) of order
J, and the ' denotes the derivative with respect to the argu-
ment. This is the asymptotic form for the solution with purely
outgoing wave character in the case of an asymptotically van-
ishing potential.

We determine the complex wave number using a
Newton-Raphson procedure for Eq. (6). The resonance en-
ergy is given as £ = k2. The matching point is chosen to
the right of the classical turning point for bound states. In the
case of proper resonant states, 1, is to the left of the effective
potential maximum, both for resonances below and above the
potential barrier.

In order to validate our integration procedure, we solved
the case of a square potential well of depth U7 and step at
r =l for{ = 0,1, and 2, and compared with the solutions
of the trascendental equation:

i '{I(H) :A:M- (10)
() hy (k)
where
= VITTT (n

and j; is the Riccati-Bessel function of order [.

The numerical values for the resonant energies were ob-
tained matching at r,, = 1 in this case. Using Mathematica
we solved Eq. (10) for several values of I/ and found that
with our integration procedure we have an a ccuracy of one
part in 107,

4. Numerical results and discussion

In order to model the rotational predissociation of a molecule,
we choose a Morse and a Deng potentials with different val-
ues of A, and with their minimum located at ry = 4. The
initial point in the numerical integration of Eq. (4) is taken as
R =16, in the present units.

For .J = 0 there are no resonances. The bound state ener-
gies corresponding to the one-dimensional Morse oscillator
are given by [12]:

E,=—(VA-n-1/2) (12)

Our numerical integration gives excellent results in this case.
For the case of the Deng potential we used the same parame-
ters as in the Morse case.

In Table T we show the energies for the first and second
poles for 0 < .J < 5, with well depth 4 = 4 fixed. For this
value of the potential’s depth there are not only bound but
also resonant states. For the first pole we see that the Morse
potential binds more strongly than the Deng potential, the
difference between the two is a decreasing function of the
angular momentum .J. The differences are small, less than
1% for this pole. For the second pole we found a bound state
with ./ = 0 which is again more tightly bound for the Morse
case, and resonant states for all other values of the angular
momentum. As for the case of bound states, the differences
in the energies of the resonances between the two model po-
tentials are a decreasing function of the angular momentum,
the relative magnitude of these differences is larger than in
the bound state case being of the order of up to 10%.

In Table I we present the energies of the first three poles
for the two model potentials considered with 0 < JLH
and well depth 4 = 9 fixed. For .J = | we notice that the
first three states are bound, higher states are resonant states.
As we increase the rotational quantum number .J. the ener-
gies of the bound states become less negative and approach
positive values. For instance, the third state, which is bound
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TABLE 1. Energy eigenvalues £, n=0, 1, 2,3 for a Morse and a Deng potential with fixed depth A =9, and several values of the angular

momentum .J.

n=>0 =
Morse Deng Morse Deng
o =) (—6.25000, 0.00000) (—6.20351, 0.00000) (—2.25000. 0.00000) (—2.18573, 0.00000)
J= 1 (—6.13732, 0.00000) (—6.09118. 0.00000) (—2.16498, 0.00000) (—2.10157, 0.00000)
J=12 (—5.91273, 0.00000) (—5.86726, 0.00000) (—1.99615. 0.00000) (—1.93445, 0.00000)
J=3 (—5.57777, 0.00000) (—5.53325. 0.00000) (—1.74599. 0.00000) (—1.68682, 0.00000)
J=4 (—5.13479. 0.00000) (—5.09143. 0.00000) (—1.41845. 0.00000) (—1.36259, 0.00000)
J=8 (—4.54495, 0.00000) (—4.58702, 0.00000) (—0.96753. 0.00000) (—1.01929, 0.00000)
= 2 =
Morse Deng Morse Deng
Jo=1) (—0.25000,  0.00000) (—0.22319,  0.00000) == S
Fi=1 (—0.20292,  0.00000) (—0.17760,  0.00000) (0.07690, —0.55843) (0.08630, —0.56794)
di= g (—0.11257, 0.00000) (—0.09046,  0.00000) (0.13026, —0.57547) (0.13940, —0.58458)
J=3 ( 0.00999. —0.00003) ( 0.02518, —0.00068) (0.21091. —0.60039) (0.21963. —0.60894)
I=4 ( 0.14506, —0.02380) ( 0.15539, —0.03045) (0.31788. —0.63263) (0.32589, —0.64034)
J=75 ( 0.30804. —0.08925) ( 0.31487, —0.10009) (0.44838, —0.67066) (0.45568, —0.67714)

for J = 0. 1. and 2 becomes a resonant state for J = 3.
Its real part in the complex energy plane is nearly zero and
it takes larger values as we increase the angular momentum
J. With respect to the imaginary part of the pole, we see that
for J = 3 it is of the order of 1 x 10~* which is the nu-
merical accuracy of this calculation, for larger values of .J
it becomes more negative indicating a wider resonance and
correspondingly a shorter lived state. All resonant states con-
sidered in this table behave in a similar form, the real part
of their energies increasing with the angular momentum and
their imaginary parts going towards —oo as the rotational bar-
rier increases. These general features apply to both model po-
tentials. The behavior of the poles as a function of the well
depth is not so simple. In Fig. | we show the trajectory of
the first poles (n = +1) in the complex k-plane for a fixed
value of the angular momentum J = 3 and several values
of A for the Deng potential. Since both poles are symmetri-
cal about the imaginary axis we discuss the evolution of only
one of them. We notice that for small values of A there are
no bound states (corresponding to a positive imaginary k),
and the pole has a large negative imaginary part, as the well’s
depth is increased the imaginary part of the pole diminishes,
its width becomes smaller and the state has a larger lifetime,
this kind of behavior is similar to the one observed in the case
of a square well potential and for the Morse potential [2]. No-
lice however that the behavior of the real part of the pole is
more complicated. First it decreases with increasing A, then
it turns back and finally, for large enough values of A, it de-
creases again going towards the imaginary axis. We believe
that this behavior is due to the asymmetry of the potential.

In Fig. 2 we show the behavior of the pole (n = 1) for
angular momentum J = 5 and different values of the well’s
depth. As in the previous case, for small values of A there arc
only resonant states with a large imaginary part indicating a
short lived state. As the well depth is increased, the imaginary
part of the pole diminishes until it attains the real axis. We
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FIGURE 1. Complex second pole trajectory in the k-plane for a
Deng potential with angular momentum J = 3 varying the depth
A. Selected values of A are shown.
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FIGURE 2. Complex second pole trajectory in the k-plane for a
Deng potential with angular momentum .J = 5 varying the depth
A. Selected values of A are shown.

notice that the value of the well’s depth for which this hap-
pens is larger for J = 5 than its value for J = 3. Continuing
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the increase in the values of A, we get to a point where the
two poles coalesce at the origin, giving rise to a double pole.
For even larger values of A this double pole splits into a pair
of poles moving in opposite directions along the imaginary
axis, i.e. a bound state and an anti bound state (ABS).

5. Antibound states

Antibound states have an exponentially growing behavior
asymptotically along the radial direction. The corresponding
energy cigenvalue is real and negative, but it is located in
the second Riemann sheet of the complex E-plane [7]. These
states show up experimentally as an anomalously large value
of the cross section for low energies. The classical example of
this kind of behavior appears in the low energy end of proton-
neutron scattering. The singlet “deuteron” state turns out to
be unbounded and appears only as an ABS.

For the present case of a Deng potential, we have not
found true resonances for J = 0. Apparently the hump in the
effective potential for J # 0 is necessary in order to obtain
a constructive interference within the well, even in the case
of very sharp resonances with energies above the potential
barrier (see Table I). On the other hand, for the Morse case

with J = 0 (pure Morse potential with no hump) there are no
resonances, but only bound and antibound states. The pole
trajectory in this case is a straight line along the imaginary k-
axis moving from positive to negative values as we decrease
the value of A. We can easily understand this behavior [13]
from the exact solution of the |-d Morse potential, Eq. (12).
The complex momentum of Siegert states is given as:

k =i(VA - n=1/2). (13)

Values of A < (n + 1/2)? present a negative imaginary part,
corresponding to ABS. Indeed, for shallow wells, there are
no bound states for 0 < A < 1/4. Instead, the “zero-point”
vibration manifests itself as an antibound state for J = 0.
The corresponding cross section is anomalously large at the
threshold in this case.
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