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In this work. we consider matroid theory. After presenting three different (but equivalent) definitions of matroids, we mention some of the

most important theorems of such theory. In particular, we note that every matroid has a dual matroid and that a matroid is regular if and only

if it is binary and includes no Fano matroid or its dual. We show a connection between this last theorem and octonions which at the same
time. as it is known, are related to the Englert’s solution of D = 11 supergravity. Specifically. we find a relation between the dual of Fano
matroid and D = 11 supergravity. Possible applications to M-theory are speculated upon.
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En este trabajo. consideramos la teorfa de matroides. Después de presentar tres formas diferentes (pero equivalentes) de definir los matroides,
mencionamos algunos de los teoremas mds importantes de tal teorfa. En particular, hacemos notar que todo matroide tiene un matroide dual
v que un matroide es regular si y s6lo si es binario y no incluye al matroide de Fano o su dual. Mostramos cAmo este ultimo teorema esti
ligado a los octoniones, los cuales al mismo tiempo, como se sabe. estin relacionados con la solucién de Englert de supergravedad D = 11
Especificamente, mostramos una relacion entre el matroide dual de Fano y supergravedad D = 11. Posibles aplicaciones a la teoria-M son

especuladas.

Descriptores: Teoria de matroides; matroide de Fano
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Al present, the concept of duality is widely recognized
by its central role in non-perturbative dynamics of super-
strings [1] and supersymmetric Yang-Mills [2]. In particular,
the five known superstring theories (called Type I, Type TIA,
Type HB. Heterotic SO(32) and Heterotic Eg x Eg) may now
he thought, thanks to duality, as different vacua of an under-
lying unique theory called M-theory [3-9]. This feature of
duality in superstring theories is so relevant that lead us to
believe that there must be a duality principle supporting M-
theory.

M-theory is a non-pertubative theory and in addition to
the five superstring theories describes supermembranes [10],
S-branes [11] and D = 11 supergravity [12]. Although the
complete M-theory is unknown there are two main proposed
routes to construct it. One is the N = (2.1) superstring the-
ory [13] and the other is M(atrix)-theory [14]. Recently, Mar-
tinec | 15] has suggested that these two scenarios may in fact
he closely related.

In this work we propose an alternative formalism to con-
struct M-theory. We propose that the mathematical formal-
ism necessary to support the duality principle in M-theory
is matroid theory [16]. As it is known, matroid theory can
he understood as a generalization of matrix and graph the-
ory and among its remarkable features is that every matroid
has its dual. Since M(atrix)-theory and N = (2, 1) superstrings
have had an important success in describing some essential
aspects of M-theory a natural question is to see whether ma-

troid theory is related to these two approaches. As a first step
to answer this question we may attempt to investigate if ma-
troid theory is connected somehow to D = 11 supergravity,
which is a common feature of hoth approaches. In this work,
we find that the Fano matroid and its dual are related to En-
alert’s compactification [17] of D = 11 supergravity. This re-
lation is physically interesting for at least two reasons. First,
since in matroid theory the Fano matroid plays a fundamen-
tal role [18] we should expect that matroids may be helpful
to describe some important properties of D = 11 supergrav-
ity. Second, it turns out that such a relation allows to connect
the Fano matroid with octonions (one of the division alge-
bras [19]) which are possible related with the four forces of
nature. In fact, some time ago, Blencowe and Duff [20] raised
the question whether the four forces of nature correspond to
the four division algebras. If this conjecture turns out to be
true then, according to our results, matroids must be deeply
connected with the four forces of nature.

Let us start with a brief historical review ol matroid the-
ory. It seems that the theory began in 1935 with Whitney's
paper [16]. In the same year, Birkhoft [21] established the
conneclion between simple matroids (also known as com-
binatorial geometries [22]) and geometric lattices. In 1936,
Mac Lane [23] gave an interpretation of matroids in terms
of projective geometry. And important progress was made in
1958, with two Tutte’s papers | 18]. At present, there is a large
hody of information about matroid theory and the closely re-
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lated combinatorial geometries. Concrete applications may
be found in circuit theory, network-flow theory, linear and
integer programming and the theory (01)-matrices, for ex-
ample. For further details about the history of matroid the-
ory and related topics see, for example, the excellent books
by Welsh [24], Lawler [25] and Tutte [26]; and also by Wil-
son [27], Kung [28] and Ribnikov [29].

An interesting feature of matroid theory is that there are
many different but equivalent ways of defining a matroid. In
this respect, it turns out interesting to briefly review Whit-
ney’s [16] original discovery of the matroid concept. While
working with linear graphs, Whitney noticed that, for cer-
tain matrices, duality had a simple geometrical interpretation
quite different that in the case of graphs. He also observed
that any subset of columns of a matrix is either linearly in-
dependent or linearly dependent and that the following two
statements must hold:

(a) any subset of an independent set is independent.

(b) it N;, and N,,4 are independent sets of p and p + 1

columns respectively, then N, together with some column of

N,.+1 forms an independent set of p + 1 columns.

Moreover, Whitney discovered that if these two state-
ments are taken as axioms then there are examples of sys-
tems satisfying these axioms but not representing any matrix
or graph. Thus, he concluded that a system obeying (a) and
(b) should be a new one and therefore deserved a new name:
matroid.

The definition of a matroid (o pregecometry) in terms of
independent sets has been refined and it is now expressed as
follows: A matroid M is a pair (E,Z), where E is a non-empty
finite set, and 7 is a non-empty collection of subsets of E
(called independent sets) satisfying the following properties:

(Z i) any subset of an independent sct is independent;

(L i1} if I and J are independent sets with T C J, then there
15 an clement ¢ contained in J but not in I, such that I U{e} is
independent.

A base is defined to be any maximal independent set. By
repeatedly using the property (7 ii) is straightforward to show
that any two bases have the same number of elements. A
subset of E is said to be dependent if it is not independent.
A minimal dependent set is called a circuit. Contrary to the

bases not all circuits of a matroid have the same number of

clements.

An alternative definition of a matroid in terms of bases is
as follows:

A matroid M is a pair (E, B), where E is a non-empty fi-
nite set and B is a non-empty collection of subsets of E (called
bases) satisfying the following properties:

(55 i) no base properly contains another base;

(B i) it By and B, are bases and if /i is any element of
B. then there is an element g of B, with the property that
(B — {h})U {g} is also a base.

It is worth point out that if E is finite set of vectors in a
vector space V, then we can define a matroid on E by taking
as bases all linearly independent subsets of E which span the

same subspace as E; a matroid obtained in this way is called
vector matroid.

A matroid can also be defined in terms of circuits:

A matroid M is a pair (E, (). where E is a non-empty
finite set, and ' is a collection of a non-empty subsets of E
(called circuits) satisfying the following properties.

(C i) no circuit properly contains another circuit;

(C ) if C and Cy are two distinct circuits each containing
an element ¢, then there exists a circuit in C; U C» which does
not contain c.

Il we start with any of the three definitions (Z), (53) and
(C) the other two follow as theorems. For instance, it is possi-
ble to prove that (Z) implies (£3) and (C). In other words, these
three definitions are equivalent. There are other definitions of
a matroid also equivalent to these three, but for the purpose
ol this work it is not necessary to consider all of them.

Notice that even from the initial structure of a matroid
theory we find relations such as independent-dependent and
hase-circuit which suggest duality. The dual of M, denoted
by M*. is defined as a pair (E, B*), where B* is a non-empty
collection of subsets of E formed with the complements of
the bases of M. An immediate consequence of this definition
is that every matroid has a dual and this dual is a unique ma-
troid. It also follows that the double-dual M** is equal to M.
Moreover, if A is a subset of E, then the size of the largest
independent set contained in A is called the rank of A and is
denoted by p(A). If M = M, + My and p(M) = p(M;) +p(M.)
we shall say that M is separable. Any maximal non-separable
part of M is a component of M. An important theorem due
o Whitney [16] is that it My, ... ] \f,, and ;\[1’, : i ._‘.[J', are
the components of the matroids M and M’ respectively, and if
M isadual of M, (i=1,... p), then M is a dual of M. Con-
versely, let M and M’ be dual matroids, and let M, ... | M,
be components of M. Let .-U{, S .-‘U;, be the corresponding
submatroids of M". Then M, . .. ;‘-[;, are the components of
M*, and ;‘U; is a dual of M.

Among the most important matroids we find the binary
and regular matroids. A matroid is binary if it is representable
over the integers modulo two. Let us clarify this definition.
An important problem in matroid theory is to see which ma-
troids can be mapped into some set of vectors in a vector
space over a given field. When such a map exists we speak
ol a coordinatization (or representation) of the matroid over
the field. This is equivalent to represent a matroid by a ma-
trix over a given ficld. (An example of a matroid that can-
not be represented as a matrix is a matroid of rank 3, which
has 9 elements {1,2,3.4.5.6,7.8.9}and the following 20 cir-
cuits: {7,1,2}, {8,1.4}, {9.2.3}, {7,3.4}, {8.3,6}, {9.4.5],
{7.3.6}. {8,2.5}; {1.6}, {1.9}, {6.9}; {13}, {1.5}. {24},
12.6}, {3,5}. {4.6}. {7.8}. {7.9}, {8.9}.) Let GF(q) denote
a finite field of order ¢. Thus, we can express the definition
ol a binary matroid as follows: A matroid which has a coor-
dinatization over GF(2) is called binary. Furthermore, a ma-
troid which has a coordinatization over every field is called
regular. Tt turns out that regular matroids play an important

Rev. Mex. Fis. 44 (4) (1998) 358-361



360 1A, NIETO

role in matroid theory, among other things, because they play
a similar role as planar graphs do in graph theory [27]. It
is known that a graph is planar if and only if it contains no
subgraph homeomorphic to K5 or Ky 3. (Recall that K, is a
simple graph in which every pair of distinct vertices are ad-
jacent, while K, ;, where r and s are the number of vertices
in two disjoint sets V; and Vs, is a complete bipartite graph
in which every vertex of Vy is joined to every vertex of V.)
The analogue of this theorem for matroids was provided by
Tutte [18)]. In effect, Tutte showed that a matroid is regular
if and only if it is binary and it includes no Fano matroid or
its dual. In order to understand this theorem it is necessary to
define the Fano matroid which is some times referred to as
PG(2.2), the projective plane over FG(2). We shall see that
the dual of the Fano matroid is linked with octonions which,
at the same time, are connected to the Englert’s compactifi-
cation of D = 11 supergravity.

A Fano matroid F is the matroid defined on the sect E
= {1.2.3.4.5.6,7} whose bases are all those subsets of E
with three elements except f1 = {1,2,4}, fo = {2,3.5},
and fr = {7,1.3}. The circuits of the Fano matroid are pre-
cisely these subsets and their complements. It follows that
these circuits define the dual F* of the Fano matroid.

Let us write the set E in the form & =
le1, 09,03 04, 05,¢6,e7}. Thus, the subsets used to de-
fine the Fano matroid now become f; = {ej,ea,eq}.
fa = {es,es,e5}, f3 = {es,eq,ec}, fa = {es €567},
_ff, = {i—, Eg,' 1 }, fg = {E’ﬁ,f"‘,’. r‘-_g} and f7 = {67. €15E3 }
The central idea is to identify the quantities e;, where
/ = 1.2.3.4.5.6 and 7, with the octonionic imaginary
units.  Specifically, we write an octonion ¢ in the form
q = qoco + qre1 + gaes + q3ez + qaeq + gses + gees + grer.
Here. ¢ denotes the identity. The product of any two octo-
nions is determined by the formula

eie; = —di; + Vijk€r (1

Here, 4;; is the Kronecker delta and ¢;;;. are fully antisym-
metric structure constants, By taking the tensor 15, equals
| for each one of the seven combinations f; we get all the
values of ;1.

The octonion (Cayley) algebra is not associative, but it is
alternative. This means that the basic associator of any three
imaginary units is

(¢iej,ex) = (eiej)er — eilejen) = Qijkmem,  (2)
where ¢, 4/ 1s a fully antisymmetric tensor. It turns out that
o1k and ;). are related by the expression

Pijki = (1/3!)F1jl\-hnnr {-'l"mnr- (3)

where €, j41mn, is the completely antisymmetric Levi-Civita
tensor. 1t is interesting to note that associating the numerical
values (elements) of the subsets f; to the indices of 1),,,,,, and
using (3) we get the other seven subsets of E (with four ele-
ments) of the dual Fano matroid F*. For instance, if we take

f1. then we have ¢'1»4 and (3) gives 3547 which leads to the
circuit subset {3.5.6.7}.

Now, we shall relate the above mathematical structure to
the Englert’s octonionic solution [17] of eleven dimensional
supergravity. First, let us introduce the metric

GJab = (S,:_f' h.:.' J'J',‘f'z._ (4}

where il = hl (2#) is a sieben-bein. Here, 2* are coordinates
in a patch of the geometrical seven sphere S*. The quantities
t; ;& can now be related to the S* torsion in the form

Tase = Ry ' rijuhi bk, (5)

where Ry is the S™ radius. The quantities ;4 can be identi-
fied with the four-indexed gauge field strength Fip.q through
the formula

_ p-l I pkpl
F‘ﬂ,(?(‘d = l’?n "r'jﬂ,.llk'fhr,lhhhf'hlf' (6)

Moreover, it is possible to prove that Englert’s 7-dimensional
covariant equations can be solved with the identification
Faved = Aljape-q) - where A is a constant. Therefore, A pe =
Aupe is the fully antisymmetric gauge field which is a funda-
mental object in 2-brane theory [6].

Itis important to mention that in Englert’s solution to D =
| | supergravity the torsion 7, satisfies the Cartan-Schouten
cquations

Tz:udﬂ:n! = GR(TE."J'M:- (7)
TeadTasi Tree = BRG " Tane: (8)

But, as Gursey and Tze [30] noted, these equations are mere
septad-dressed, i.e. covariant forms of the algebraic identities

Wit Wikl = Gﬁ_.', 5 (9)
rim L""‘m.;n Pkt = "-J”p"‘l'z_}k ( [O)

respectively. It is worth it to mention that Englert’s solution
realize the riemannian curvature-less but torsion-full Cartan
ceometries of absolute parallelism on s,

Let us conclude by making some final comments. In this
work, we have shown that the dual of the Fano matroid is
closely related to octonions which at the same time are essen-
tial part of the Englert’s solution of absolute parallelism on
S7 of D = 11 supergravity. The Fano matroid and its dual are
the only minimal binary irregular matroids. We know from
Hurwitz theorem (see reference [19]) that octonions is one
of the alternative division algebras (the others are the reals,
complex numbers and Juaternions). While among the only
parallelizable spheres we find S” (the others are the spheres
S! and §? [31]). This distinctive and fundamental role played
by the Fano matroid, octonions and S” in such a different ar-
eas in mathematics as combinatorial geometry, algebra and
topology respectively lead us to believe that the relation be-
tween these three concepts must have a deep significate in
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nature. Of course, it is known that the parallelizability of S',
S* and S7 has to do with the existence of the complex num-
bers, quaternions and octonions respectively (see Ref. 32).
It is also known that using an algebraic topology called K-
theory [33] we find that the only dimensions for division al-
gebras structures on Euclidean spaces are 1, 2, 4, and 8. We
may now add to these remarkable results another fundamen-
tal concept in matroid theory; the Fano matroid. But besides
the importance of the Fano matroid in D = 11 supergravity
the matroid theory offer us the possibility to provide the ha-
sis for a duality principle in M-theory. This is because among
other reasons every matroid has its unique dual matroid. It is
interesting to mention that in matroid theory there is a dual-
ity principle [34], which establishes that if A is a statement
in the theory of matroids that has been proved true, then also
its dual A* is true. Perhaps a duality principles such as “cv-
crything in the physical world is dual for an observer’ or “the

fundamental laws of physics must be dual” may constitute
the fundamental principles in M-theory.

For further research, it will be interesting to find the exact
relation between D = 11 supergravity and the Fano matroid. It
may be also interesting to see if local supersymmetry is con-
nected with matroids and if matroid theory may be helpful to
find other solutions of D = 11 supergravity [35]. Moreover,
it may be of interest to find the connection between M(atrix)-
theory and M(atroid)-theory. At present, we are working in
these problems and we hope to report our results elsewhere.
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