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Endoreversible heat engine models are irreversible thermal cycles where the whole entropy production is only ascribed to the couplings
between the working fluid and its heat reservoirs. This kind of thermodinamic systems have been extensively studied under diverse criteria
of merit. In this work we recover the so-called semisum property for an endoreversible engine working in a regime that represents a good
compromise between high power output and low entropy production (the ecological regime) by means of a varjational approach. We apply
variational calculus over functionals corresponding to thermodynamic processes.
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Los modelos de maquinas de calor endorreversibles son ciclos térmicos irreversibles donde la produccién total de entropia se asigna al
acoplamiento entre el fluido de trabajo y sus reservorios de calor. Esta clase de sistemas termodindmicos ha sido estudiada en forma extensiva
bajo diversos criterios de mérito. En este trabajo recuperamos la llamada propiedad de la semisuma para una maquina endorreversible traba-
Jjando en un régimen que representa un buen compromiso entre alta potencia saliente y baja produccién de entropia (el régimen ecoldgico),
utilizando para ello un criterio variacional. Aplicamos el cilculo variacional a funcionales correspondientes a procesos termodindmicos.

Descriptores: Méquina térmica; endorreversibilidad; calculo variacional
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1. Introduction

In 1975, Curzon and Ahlborn (CA) [1] found that a finite-
time Carnot-like thermal engine with a working fluid ex-
changing heat with its heat reservoirs by means of a linear
heat transfer law and working in the regime of maximum
power output has an efficiency given by

iy
Nea=1-—4/—, |
lcA T (1)

where 77, and Ty are the absolute temperatures of the cold
and hot reservoirs respectively (see Fig. 1). Equation (1) has
been obtained by means of different approaches [2-6]. It has
been also demonstrated that the result given by Eq. (1) is
highly sensitive to the transfer law used for describing the
irreversible heat fluxes between the working substance and
the thermal reservoirs [5, 7-10], that is, Eq. (1) is an exclu-
sive result for a CA-engine with a Newton law of cooling.
For another heat transfer laws, different results from Eq. (1)
are obtained. Thus, the CA-formula for the efficiency has not
the same class of universality than the Carnot efficiency. A
very important ingredient in the CA-thermal engine model is
the so-called endoreversibility hypothesis, which consists in
assuming that the working fluid undergoes reversible trans-
formations [4] and the whole entropy production of the irre-
versible engine is only ascribed to the couplings between the
working fluid and its surroundings, that is, the thermal resis-
tances (see Fig. 1). The concept of endoreversible cycle was
coined by Rubin [4] based in the idea that for many cases the
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FIGURA 1. Diagram of a CA endoreversible thermal cycle.

internal relaxation times of the working substance are very
short compared with the evolution time of the whole process.

Many criteria of merit have been proposed for the study of
aCA-engine. Among others, for example minimization of en-
tropy generation [11, 12], maximization of power output [1],
minimization of cost [12], and maximization of a kind of eco-
logical function [14]. This last criterion consists of the maxi-
mization of a function £ that represents a good compromise
between high power output and low entropy production. This
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function is given by
E=P-T,o, (2)

where P is the power output of the cycle, o is the total en-
tropy production (system plus surroundings) per cycle, and
T}, is the temperature of the cold reservoir. When function
E is maximized, the CA-cycle reaches a configuration which
produces around 80% of the maximum power, while entropy
production is reduced down to around the 30% of the entropy
produced in the maximum power regime [14]. The ecological
function has also the property that when the CA-cycle works
at maximum £, the thermal efficiency g 1s given by

ne = = (e +npm), (3)

| =

where 1. is the Carnot efficiency and 1y p is the efficiency at
the maximum power regime. It has been recently showed [15]
that the semisum property expressed by Eq. (3) is indepen-
dent of the heat transfer law used for describing the heat
fluxes at the couplings of the engine. As far as we know, this
is the first universal property found for endoreversible heat
engine models.

In the CA-paper [1], Eq. (1) was found by the maxi-
mization of the power output as a two-variable-function 7 =
Pz, ;,l) withae = Ty —Ty, andy = Te—T}, (see Fig. 1). Later
De Vos [2, 3] also found Eq. (1) by means of an one-variable
formalism, namely P = P(n), that is, the power depending
on the engine efficiency. It is usual in finite-time thermody-
namics to state problems in the context of optimization crite-
ria. Generally, the quantities to optimize are funtionals such
as the work, the power and the entropy production which can
be expressed as integrals over certain trajectories (the ther-
modinamic processes). Thus, it results natural to use the vari-
ational calculus to treat the optimization problems previously
mentioned. In fact, the alternative deduction of Eq. (1) made
by Rubin [4] was by maximizing a Langrangian with the
power output as the objective funtion and the endoreversibil-
ity condition as the integral restriction. The semisum property
[Eq. (3)] has been obtained by both procedures, the CA-zy-
formalism [14] and the De Vos® 5j-formalism [10,15]. In this
paper we now calculate the semisum property by means of
variational calculus for the case of a CA-engine with a lincar
heat transfer law for describing the heat exchanges between
the working fluid and its thermal baths.

2. CA-engine’s properties and the variational
calculus

2.1. The Rubin’s approach

In his 1979 paper, Rubin recovered Eq. (1) by means of the
application of the variational calculus to certain thermody-
namic functionals. In fact, he treated a CA-engine with the
operational goals of maximizing both the power output and
the efficiency. For the case of the maximum power regime,

equivalently he maximized the work w since he took the cy-
cling period 7 as fixed, thus, the work produced in a cycle is
given by

T

W= /p'i': dt, (4)
i
where p and v are the pressure and volume of the working
fluid and © means the time derivative of v. By using a local
equilibrium condition, the first law of thermodynamics is

q = u+ po, (%)

where q is the heat flux and « is the rate of change of the in-
ternal energy of the working fluid. Since the process is cyclic
Eq. (4) may be rewritten using Eq. (5) as

T

W= /rj(ﬁf. (6)

0
The endoreversibility hypothesis means that the internal
entropy change of the fluid in one period is zero, that is

Aty = / Lai=o, ™
0

where 7" is the working fluid temperature. Thus, to maximize
w subject to the endoreversible constraint, Rubin [4] wrote
the following Lagrangian:

L =w— AAs, (8)

where A is Lagrange multiplyer. For the case where the heat
exchanges through the thermal couplings, pr and pg (see
Fig. 1) are linear, ¢ is given by

Gg=p(Tr—-T), 9)

where p is a thermal conductance and T’z is the heat reser-

voir temperature. Equation (9) provides both the heats en-

tering and leaving the working fluid by means of the use

of the Heaviside step function, for example (), in Fig. 1 is
T

Q1 = [0 (Tr — T)dt. Thus, by using Egs. (6), (7) and (9)

0
in Eq. (8), one obtains

(Tr - T)

T dt. (10)

= / {;}(TR—T)—/\,G

In the present paper we only will take into account the
parts of the Rubin’s method necessary to obtain Eq. (1) by
means of one variational approach and we will not discuss
his reasonings about the general optimal configuration of a
class of irreversible heat engines [4]. Thus, for solving the
variations of Eq. (10), we take the same variable change of
Rubin, that is

| =

1
Tr=

=(Ty +T1) + 5 (Tu — T1) tanhyp, (11)

o)
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where Ty and T, are the temperatures of the hot and cold
reservoirs and ¢ is an unconstrained variational parameter.
Taking the first variation of L [Eq. (10)] Rubin gets

n

' ‘ A . oy
()L = / l.’fp [(51“1? (1 — T) +d’?' (_1+AT—};)] ) (]2)

0
where
Ty =Ty,

e A—
f 2cosh2ay

(13)

When 6L = 0. Rubin found that for p # 0, there are two
possibilities:

T=X (14a)
or
W =k (14b)
and in both cases,
T = (ATgr)"2. (15)

The case given by Eq. (14a) is discarded, because if T = )\,
then from Eq. (15), T = Ty and consequently ¢ = 0 [see
Eq. (9)]. Furthermore, for this case the second variation of
L corresponds to a saddle point [4]. Since Tx necessarily is
in the interval T;, < TR < Ty this is an unilateral con-
straint [16]. thus it is normal that Eq. (14a) will not corre-
spond to a physical situation since §Tk = 0, i.e., T is fixed
for the hot and cold reservoirs (T and T1). In the following
subsection we will not take into account this variation and we
will analize just the variation of the fluid temperature 7. On
the other hand, by using Eq. (14b) one obtains Ty = T}
or Ty, that is, the temperatures of the hot and cold reservoirs
respectively. Thus one has two solutions:

Tk =Ty and T =T, = ('/\TH)I/2 (16a)

and

Tp=Ty and T=T,= (\)"?, (16h)

where T}, and T} are depicted in Fig. 1.

Since the internal cycle of the working fluid operating be-
tween Ty and T}, is reversible (endoreversible) (see Fig. 1),
then its thermal efficiency is given by

T,
-r;:l—T—f, (17)

By substitution of Egs. (16a) and (16b) in Eq. (17), one

immediately obtains
[T
v = 1 — _“
e A T

that is, Eq. (1), the so-called CA-efficiency.

2.2. The ecological function

Now, we will obtain the semisum property of the maximum-
E regime given by Eq. (3) by means a variational approach
based in the Rubin method previously explained. The so-
called ecological function is defined by Eq. (2). Our objec-
tive is the maximization of the function E = P — Ty 0. fora
fixed cycling period 7. Thus we can replace the power output
by the work per cycle w, and rewrite the ecological function
as

E=w-Tro. (18)

We first propose a Lagrangian function L given by

L=w-Tyo - AAS,,, (19)
where o is the universe entropy production, \ is a Lagrange
multiplier and AS,, = 0 is again the endoreversibility con-
straint.

The entropy production rate can be written as

T —Tg
Tp

ag=p (20)
By means of Eq. (20), the universe entropy change can be cal-
culated using again the Heaviside step function. Then, substi-
tuting Egs. (6), (7) and (20), into Eq. (19) yields

rel

L = / [[J(TH == T) = __—/\f)(T;ﬁ T)

0
(T'—Tgr)

-T
Lp Tr

j'd.t. (21)

Reorganizing terms, we obtain

n

N Ty Pl
L_/[(TH T)(1+TR) ,\( = )]dt. (22)

0

Taking the first variation of L, we get

T

) - Ty A Tr.
f) 4 = : _ = — i =
y8 / P{(Y-’H. [(1 i Tr T) Tf{ (Tr T):l

0
+6T [1 " ’\T"” dt. (23)

Tr T2
That is

L= /.{J[{ETRQ(T.TH.TL./\)

0

+= (in (T, TR,TL,/\)] dt, (24)
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where
X T
T Tr T, AN)=1—-= =
g(T,Tr,Tp,A) =1 Tt T2 (25)
and
Ty Tr
T.Tr,Ti,A) ==1— = =ct
[T TR TN =-1-Z+Am. @)

As in the Rubin’s paper we obtain two solutions. The first
one is obtained by setting g = 0 [Eq. (25)], because this is an
unilateral constraint [16], which leads to a nonphysical solu-
tion and it is discarded. Thus,we keep our attention over the
second solution which gives us

14 1=

. AT R :
T =Ty and T = T = (—-R——> @27
Tei

and

i
. . o AT )T
TR = TL and T= Ty = (1 T %) S (28)

As in the previous case (maximum power) the internal cycle
is an endoreversible one, and then

o 2%
nmp =1— —.
|E T,
By substitution of Egs. (27) and (28) into g, we immediately
obtain
np=1—|—= 1+ ; (29)
& [QTH g

which is the same result obtained for the efficiency in the
regime of maximum ecological function in Refs. 10, 14 and
15 by means of other kind of approaches.

In Fig. 2, we see that Eq. (29) leads practically to the same
values than

ne = (nc +nca) /2 (30)

where ¢ = 1 — TIfT and nga = 1— 1/%. Thus, we have
obtained the so-called semisum property by means of a vari-
ational approach.
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FIGURA 2. Comparison between ng (Eq. 29) and the semisum
property % (1. + near) (Eq. 3). The horizontal axis is Ty /T

3. Conclusions

The so-called ecological function defined in the context of
finite-time thermodynamics has showed to have some inter-
esting properties. Among them the semisum property givenin
an approximate manner by Eq. (3). In other articles this prop-
erty has been obtained by means of algebraic formalisms of
both two-variable (CA-case) and one-variable (De Vos-case)
treatments. In this paper, we have also obtained the semisum
property by means of a variational approach for the case of a
linear heat transfer law describing the exchanges of heat be-
tween the working fluid and its thermal reservoirs. Recently,
it has showed that the semisum property is independent of
any heat transfer law. We now are working in this general
demonstration by means of a variational approach.
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