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We present the analysis of an inhomogeneously broadened Méssbauer line-shape, from which we obtained a power series expansion, that
includes the absorber thickness (77,) and the interference effects (£5). At the same time. we give the area and depth dependency formulae

as function of the T, and & parameters. A new line-shape is built as a lineal combination of the traditional transmission integral (TI) with

the inhomogeneously broadened line-shape, which is useful for absorbers that have a partial or total inhomogeneous broadening. Finally, a

comparative analysis of the obtained results for the potassium ferrocyanide compound and the stainless steel foil is carried out using the new

line-shape with respect to the TI to show its reliability.
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Presentamos el andlisis de una forma de linea Mossbauer ensanchada inhomogéncamente, llegando a una expansién en serie de potencias
que incluye el grueso del absorbedor (T, ) y los efectos de interferencia (o). Asimismo, presentamos formulas de la dependencia del drea
y la profundidad como funcién de los pardmetros T, y &. Una nueva forma de linea es construida a partir de una combinacién lineal de la
integral de transmision (IT) tradicional con la forma de linea ensanchada inhomogéneamente, la cual es util para absorbedores que tienen un
ensanchamiento inhomogéneo parcial o total. Una comparacién de los resultados obtenidos para el compuesto de ferrocianuro de potasio y
una limina de acero inoxidable, usando la nueva forma de linea con respecto a IT, es llevada a cabo mostrando su confiabilidad.

Descriptores: Polinomios de Chebyshev; espectroccopia Mossbauer; forma de linea y pardmetro del grueso del absorbedor

PACS: 76.80

1. Introduction

A widely treated topic since the beginning of the Méssbauer
spectroscopy has been the line-shape of the observed spec-
trum [1-12]. The line-shape routinely analyzed has been rep-
resented by the so called transmission integral (TI), which as-
sumes a cross-section of Lorentzian line-shapes in the emis-
sion and absorption [1-3,5-9, 11, 13-26]. The model repre-
sented by the TI has been used successfully, since specific in-
formation about the dependence of the recoilless fraction on
temperature has been obtained for experimental spectra ana-
lyzed with the TI [13, 27]. However, the spectroscopists who
have used the TI have not been able to analyze some line-
shapes, such as those coming from substances that present
a broadening due to a distribution of its hyperfine parame-
ters [28-32]. Due to the anomalous line-shapes present in
alternative experimental spectra, models like the one repre-
sented by the TI have been proposed.

An alternative model for the line-shape has been sug-
aested by several authors [7, 33, 34]; this model contains the
TI as a particular case when there is no selfabsortion in the
source. This line-shape is obtained by the substitution of the
Lorentzians (emission and absorption cross-sections) from
the TI by Voigt line-shapes. In this model, that can be called

Voigt transmission integral (VTI), only its full width has been
analyzed numerically as a function of the thickness param-
eter 7, [34]. The Voigt line-shape contains the Lorentzian
and Gaussian line-shapes as limit cases [35], and experi-
mental evidence of this line-shapes has been reported in the
source [36] and in the absorber [32].

A particular case of the VTI model was used formerly by
Margulies e al. [6], for the stainless steel spectrum, which
is not adjustable by the TI. These authors obtained several
experimental spectra using a source and an absorber of stain-
less steel. The spectra were analyzed with the IT, and with
an alternative line-shape obtained from the substitution of
the Lorentzians by Gaussians, in the emission and absorption
cross-sections of the IT. For this latter line-shape, Margulies
et al. calculated an exact analytical expansion. They analyzed
the widths of the line-shape as functions of the thickness pa-
rameter 7, using the TI and its alternative line-shape, and at
last they found, for each one of the two methods, different
results. Therefore, they concluded that “when dealing with
broadened Massbauer lines, analysis based on simple spec-
tral shape must be applied with discrimination™ [6].

Another particular case of the VTI, analyzed by Lang [7]
and O’Connor and Skyrme [33], consists of a Lorentzian
emission and a Voigt absorption line-shapes. This model is
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more realistic than the one analyzed by Margulies et al., since
the emission line-shape for thin sources is represented by
the Lorentzian line-shape more ordinarily than by a Gaus-
sian one. This model has been scarcely used due to the lack
of a power series expansion that allows to evaluate its line-
shape. The analysis of this line-shape has been exiguous, its
area [T, 33] and width [7] parameters have only been numer-
ically calculated as functions of Tj,.

In the Sect. 2 of this paper a power series expansion for
a particular VTI case. which considers a Lorentzian emis-
sion and a Gaussian absorption, is presented. A Gaussian ab-
sorption is referred to an absorber with an inhomogeneous
completely broadened line-shape. Lang calculated analyli-
cally only the area [7] for this line-shape. In the present anal-
ysis the interference parameter (§p) [37] 1s also included, for
which experimental and theoretical values have been given
for different Mossbauer isotopes [38,39]. In the Sect. 3, a
new line-shape for Mossbauer spectroscopy is expressed as a
lineal combination of the former line-shape with the TIL This
new line-shape is useful in the analysis of absorbers with an
inhomogeneous broadening as it will be seen.

2. Analytical calculation of the completely in-
homogeneous case

Considering Lorentzian emission and Gaussian absorption
with an interference parameter &y, the transmission line-
shape for a single line in Misssbauer spectroscopy, is given by

(Ts/2)2 dE
(Ts/2)% + (E —v)?

9. 400
el Ty /
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X exp{ (F af2 — 26E )
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where E is the integration variable (mm/s), v the source ve-
locity, ng (v,T,) the number of counts observed at each ve-
locity v in the spectrum, T, = oq fatad the effective absorber
thickness, ¢, the number of Mdssbauer atoms per unit area in
the absorber, d the fraction of abundance of the Mossbauer
isotope, g the absorption cross-section, fs, fa the source and
absorption recoilless fractions, I'y, I, emission and absorp-

tion full widths at half maximum (fwhm), ny the number of

oamma rays of the Mossbauer transition, and 7,the number
of additional counts due to other transitions,

With the following substitutions in Eq. (1): N = n, +
no(l = fs)s M = ngfs, ws = /2 and we = I’y /2, this
expression can be rewritten as
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To calculate the above expression, first the exponential func-
tion in the integral is developed as a series of Chebyshev
polynomials [40]:
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n=
where T/ are the shifted Chebyshev polynomials, 1,, are the
modified Bessel functions, and
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Equation (3) is only valid when () < {Go(E) < 1.1tis easy
to demonstrate that when &y < 1, (lhc order of our approx-
imation) the inequality is fulfilled. Substituting Eg.(3) into
Eq. (1) and rearranging the result, the following equation is
obtained:

ng(v,T,) =M exp (-1, /2) (4)

[Dn ) + Z Dy (T,
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where the D,, and P, are defined by
i) DO{Tn/Z) = I()(Tu/- 2,1_—1 n [n/—)-) = €xp (Tﬂ/z)»
ity D,(T,/2) arc sums of binary products from shifted
Chebyshev polynomials coefficients (bpr) and from
2(=1)"1,,(T,/2). A general method for calculating the Dy,
is not feasible, since there is not any closed analytic relation
to calculate the coefficients by,j. Using the coefficients by,
given in Luke’s book [41], and the similar form employed
in Appendix A of Ref. 26, we calculate the first twelve 1D,
coefficients listed in Table 1.
iif) The P, (v) integrals in Eq. (4) are given by
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To calculate the P, (v), we transform Eq. (5) by substituting
up = Evnln2/w, into Eq. (5), obtaining
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TABLE I. Coefficients for expansion of the 12, polynomials D, LT 9N = 2Z;”:”(71)*"'1;.,,';‘.[,\.(Tt,_/‘z), where rm is the order of the
approximation, for example, if rn = 4 then: D; = 2(—2J, — 81y — 1813 —321,); Dy = 2(81x+ 4815 + 16014); Dy = 2(—3213 — 2561,);

Dy = 2(1281,).

n bn 1 bn.’ bﬂS brri bnﬁ bﬂf; bn 7 bnﬁ hn.ﬂ bn 10 bn 11 bn 12
| 2 8 18 32 50 2 98 128 162 200 242 288
2 8 48 160 400 840 1568 2688 4320 6600 9680 13728
3 32 256 1120 3584 9408 21504 44352 84480 151008 256256
4 128 1280 6912 26880 834480 228096 549120 1208064 2471040
5 512 6144 39420 180224 658944 2050040 5637632 14057472
6 2048 28672 212992 1118208 4659200 16400384 50692096
7 8192 131072 1105920 6553600 30638080 120324096
8 32768 589824 5570560 36765696 190513152
9 131072 2621440 27394048 199229440
10 524288 11534336 132120576
11 20927152 50331648
12 8388608

where @ = (wg/w,)vnin2, ¢ = §/vnln2and u =  are given by

vinln2/w,v (a, £ and u are successions of n and they i

should carry subindex 7, but n has been omitted in order to 1 n2(@ 1) = uP, (a,u) — ak (a,w), (1)

avoid making the notation confusing). Nevertheless, its de-
pendency should be kept in mind in the remaining calcula-
tions. Developing the numerator of the integral in Eq. (6) to
terms of order £2, we have

Bi(an) =Bila, u) — 2néPa(a,u)
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Equation (8) is the Voigt line-shape, which in our con-
text represents a Lorentzian line-shape source of half-width
wey/n and a Gaussian line-shape absorber of half-width Wy
The ratio “a” determines the proportionality between the
Lorentzian and the Gaussian characteristics of the line-shape,
so that if @ = 0, Eq. (8) is reduced to a pure Gaussian, but if
@ = 00 a pure Lorentzian is obtained, as it has been shown
by Elste [42]. If [y (= 2wg) and 'y (= 2w, ) are laken equal
to the natural width 'y, then the ratio “a” is reduced to

1w,
a=—vVnln2 =+vnn?2.
We

€3

The minimum value of “a” occurs when 7 — 1, which corre-
sponds to a = /In 2. Using the derivatives of the Voigt line-
shape [43] one can casily show that the integral (9) and (10)

Pl i) = Jiu'“’ —(12][),”((!. u)=2auk(a,u)+a/ /7, (12)

where A'(a, u) is defined by

1 e
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IF Pryy Pyay dnd Pis, given by Egs. (8), (11) and (12)
are substituted into Eq. (7), and if Py (a,v) thus obtained is
substituted into Eq. (4), then we obtain the following power
series:
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where a, u, and £ as defined in Eq. (6). The dependency on
“a” and w of P(a,u) and K (a,u) has been omitted. Equa-
tion (13) represents the Mésshauer line-shape of a Lorentzian
source without self absorption, with a Gaussian absorber and
the interference effect. Equation (13) can be used as a trial
function in a standard least squares fitting to an experimental
spectrum. For the case where € = 0, Eq. (13) becomes

ng(v, ) =;U[1 + exp (—T,/2)

5%
X2 DalTa/2)Pu(aw)] + N (4)
n=1
For the case when T < 1, Eq. (14) becomes
ng(v, T,) = f\'[[l =4 5P (0, T.')] + N, (15)

since I, (T,/2) =
(ws/wy)v1n 2,

(To/4)"/T(n + 1) [44], where
u = (VIn2/w,)v. Equation (15)

a =
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represents a Voigt line-shape which does not have the
same physical meaning as the Voigt line-shape presented by
Kobayashi and Fukumura [34] for T,, < L. In their case, the
Gaussian full width represents the source and absorber inho-
mogeneities, and the Lorentzian full width represents the sum
of the source and absorber widths. In our case, the Gaussian
width is the full width of the absorber, and the Lorentzian
width is the full width of the source.

2.1. Depth and area
2.1.1. Depth

The depth D for w, # w, defined by v = 0 in Eq. (13)
coincides with the maximum depth only for £ = 0. The
expression for D is as follows:

D =—-Mexp(— Z Dw(T:/2)

n=1

x [Pn1(a,0) + 2n€ + 2n(n — 1)¢

x (= a®Pni(a,0) + a//x)], (16)

since I (a.0) = 0[43], where Pp1(a,0) = exp (a®) erfc (a),
and erfe (a) is the error function complementary.

2.1.2. Area

The area A for w, # w, is obtained by direct integration of
the summation in Eq. (13) in the following form:

o0

~Ta/2) Y Dul(Ta/2)

n=1

A=—Mexp(

~+00
X / { Py ~ 2n€ (uPny — aK) (17)

- 00

+ 2n(n — 1]52[(112 —a®) Py — 2auK + a/\/?—r]}d.a'.

To calculate the above integral, it is first integrated with re-
spect to y,, and after with respectto v, obtaining the following
result:

[
A=-Mexp(—Ta/2)wa 3

a2 (_1)2
Z / [+ﬂTlln‘2 S

n=1

where £ has been substituted for its value £ = §/vnin 2.

2.2. Numerical calculation of ng (v, Ta)

Figure la shows Eq. (14) calculated to an order m = 12, and
T,.=15,M =w, =1, N=0,w, =2and & = 0. The
line-shape calculated with Eq. (14) is very similar to the one

102
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FIGURE 1. (a) Eq. (14) calculated to an order of mn = 12 and
T, =156, M =1 w, =1, N=0,6 = 0,and wa = 2. (b)
integral transmission calculated with the same parameters values
of (a) as given in Fig. 1 of Ref. 26. The area and depth parameters
of the line-shape with absorption Lorentzian are greater than those
corresponding to the absorption Gaussian.

)

ABSOLUTE ERROR (10
(=]
}

FIGURE 2. Absolute error (simple differences) between Egs. (1)
and (14) for the spectrum shown in Fig la

simulated with Eq. (1) as it can be seen in Fig. 2, where the
absolute error is shown. The absolute error of Eq. (14) with
respect to Eq. (1), in the cases of T,, < 15, is lower than that
shown in Fig. 2; for example, the case T,, = 4, w, = 2wz =
2 and &, = 0 presents a maximum error of less than 0.17 ppm
for the order of m = 10, as shown in Fig. 3¢. To analyze the
approximation of Eq. (13) to the interference term, the differ-
ence ng(Ta = 4, & = 0.01) — ng(To = 4, & = 0) was
calculated directly from Eq. (1) and was compared with the
terms that involve & in Eq. (13) with m = 12. The maximum
absolute error between both calculations was ol 0.7 ppm, as
shown in Fig. 4. From the comparison of Fig. 3¢ (m = 10)
and Fig. 4 (m = 12) it can be seen that the greater contri-
bution to the error of Eq. (13) is given by the corresponding
terms of the interference parameter. Thus, to reduce this er-
ror in Eq. (13) &-terms of higher order i with respect to the
order of the no £-terms should be taken. To calculate the well
known functions P(a, u) and K (a,u) involved in ng(v, Ty),
we used the approximation of Gautschi’s to the complex error
function W (u,ia) [45]. The relationships among W (u, ia),
Py (a,w) and K (a, u) are given in Ref. 46.
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FIGURE 3. Absolute error (simple differences) between Egs. (1)
and (14) with Ty = 4, we = 2ws = 2, & = 0, N = 0 and
M =1 for the order: (a) m = 8, (b) m = 9, (c) m = 10. Curve
(a) was multiplied by the amount of 0.05. This change is due for
convenience of displaying.
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FIGURE 4. Absolute error between ng (T, = 4, & = 0.01) —
na(Te = 4, & = 0) and Eq. (13) for only the terms containing
Eo(=0.01).

3. Lineal Combination

From the observation of the curves la and 1b in Fig. 1, it
is suggested that the line-shape of a spectrum that presents
a Lorentzian-Gaussian mixture in the absorber could be ap-
proximated through a lineal combination of the curves 1a and
I'b as follows:

nr(v, 7o) = kne(v, To) + (1 = k)ng(v, T,), (18)

where 1 (v, T, ) is defined by Eq. (14) and n.(v.T,) is the
transmission integral given by [26]

Nt Ty) = M’{l +exp (—T,/2)w),

00

% 3 2Un(Ta/2)Im([Zn(2)] } + N. (19)

n=1
where w/, is the Lorentzian half-width of the absorber, I,
are the modified Bessel functions, all the other parameters

(M, To,v,wg and N) are taken equal as in Eq. (14), and
Zin(z) are the generalized Lorentzian functions and are de-
fined in Ref. 26:

(—(n—1)/2 (n ) 2k )nkBJ.-fl

o [}
k=u 2k~ (“”n
(z + twt)n

if n is odd,
Lp(z) =2 (20)

SM=2)/2 ¢ N 9k41s ryn—2(k+1
2k=0 (2:.:;1)~ (B, JPAiArk)

(z + fwh)n

3

if n is even,

where = = v+ iw,. Equation (18) is similar to that employed
as an approximation for the Voigt line-shape (47, 48], where
the 2w/, (Lorentzian) and 2w, (Gaussian) widths are taken
equal, and in principle different from 2w,. Equation (18) is
only valid for the case of £ = 0, since Eq. (19) is only valid
for this case. The % parameter in Eq. (18) is the absorber
Lorentzian-Gaussian fraction, and its value is restricted be-
tween O and 1 it is obvious that when k = 1 or k& = 0 the TI
case or the completely inhomogeneous case are recovered.

3.1. Experimental applications

We now want to show Eq. (18) in two practical examples,
in which their spectra cannot be fitted by the TI, since a
strong inhomogeneous broadening is present. Equation (18)
will show its utility in the case where T, and w!, = w, pa-
rameters are unknown. Both spectra were accumulated with a
source of 20 mCi of Co®” diffused into Rodhium with a width
of 0.1 mm/s [49], and a maximum velocity of 3.0 + 0.008
mm/s determined by the laser interferometric method. The
gamma ray counts were stored in 256 channels. The back-
ground counts due to high energy gamma ray were measured
by the method described in Ref. 50. Experimental spectra of
potassium ferrocyanide compound and stainless steel foil at
room temperature were fitted with Eq. (18). The best fitting
is shown in Figs. 5 and 6 with a solid line (—) and experi-
mental data are shown with dots (- - ). As it can be seen, there
is a good agreement between the fitting curve and the experi-
mental points. The retrieved Massbauer parameters obtained
from the fittings with Egs. (14), (18) and (19) to the experi-
mental data, are listed in Table II. The source width ', was
fixed in all the fittings to the value 0.1 mm/s.

It we compare the T, parameters obtained by the lineal
combination Eq. (18) with that obtained by TI, it can be seen
that TI gives wrong fits with a larger \*. From our analysis
for the potassium fzrrocyanide, 7, = 0.83 and the absorber
M@ssbauer fraction f, is 0.292, for a value of the cross sec-
tion of oy = 2.35 x 107'® cm®. The obtained value of f,
is the arithmetic average of the values obtained by Ball and
Lyle [51] f, = 0.281, and Kobayashi and Fukumura [34]

Rev: Mex. Fis. 44 (4) (1998) 385-39]
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TABLE I1. Results of fitting procedures applied to two samples.

Parameter potassium ferrocyanide stainless steel

Eq. (14) Eq. (18) Eq. (19) Eq. (14) Eq. (18) Eq. (19)
k — 0.603 — — 0.367 —
Ta 0.706 0.830 0.779 1.55 1.790 2.71
2wy (mmys) 0.121 0.0976 01" 0.186 0.167 0.107
centre (mm/s) —0.138 -0.139 —0.139 —0.190 —0.190 —0.190
depth (counts) 296050 314519 306882 24349 25580 27745
baseline (counts) 3912040 3919862 3926016 131081 131953 132679
2 1788 546 1897 400 215 559

T The fwhmis Ty = 2w,

" Value anomalously small of w, was obtained when w, was left to converge freely, then us inferior limit of convergence was fixed at 0.05 m/s.

¢ The fitting quality is calculated through the quantity S~ (experimental value-fitted value)? /(experimental value).

3.9E+06+
c
o
@ 3.8E+064
£
0
c
2
}v
3.7E+06
3.6E+06 T T T T T
-3 -2 -1 0 1 2 3

Velocity (mm/s)

FIGURE 5. Fitting result with Eq. (18), calculated for n = 8 terms,
for the spectrum of KsFe(CN)e3H20 compound with a thickness
of 5.0 mg/em?.

f. = 0.311. For the stainless steel, with g modified by the
factor: (natural width)/(2w,) = 0.587, the f, = 0.65 ob-
tained is in agreement with the value obtained by Margulies et
al. [6]. The fraction k for potassium ferrocyanide (k = 0.603)
shows a Lorentzian component greater than the Gaussian
component, and vice versa for stainless steel foil (k = 0.367).
Therefore, due to the k value obtained both samples present
a strong inhomogeneous broadening.

1 4E+051
1 3E4054
c
e
v
2
E 1.2E+05-
w
c
2
=
1.1E+054
1.0E405 T T T T T )
-3 -2 -1 o] 1 2 3

Velocity (mm/s)

FIGURE 6. Fitting result with Eq. (18), calculated for n = 8 terms,
for the spectrum of stainless steel foil, with a thickness of 8.5
mg/cm”,

4. Conclusions

In this work an expression for the inhomogeneous broaden-
ing Mossbauer line-shape has been derived, including the
TI as a particular case. This approximation is new because
it considers the whole Massbauer line-shape, and it is valid
for thickness absorbers with different Lorentzian source and
Lorentzian- Gaussian absorber widths. With this method it
is possible to calculate the Lorentzian and Gaussian mixture
through the k parameter.
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