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In this article we give an introduction to the Fock quantization of the Maxwell field. At the classical level, we treat the theory in both the
covariant and canonical phase space formalisms. The approach is general since we consider arbitrary (globally-hyperbolic) space-times. The
Fock quantization is shown to be equivalent to the definition of a complex structure on the classical phase space. As examples, we consider
stationary space-times as well as ordinary Minkowski space-time. The account is pedagogical in spirit and is tailored to beginning graduate
students. The paper is self contained and is intended to fill an existing gap in the literature.
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En este articulo presentamos una introduccién a la cuantizacion del campo de Maxwell. A nivel cldsico se da un tratamiento tanto en el
formalismo de espacio fase covariante como en el de espacio fase canénico. El tratamiento es general pues se consideran espacios tiempo
arbitrarios (globalmente hiperbolicos). Se muestra que la cuantizacion de Fock es equivalente a la definicion de una estructura compleja
en el espacio fase de la teoria. Como ejemplos se toman espacios tiempo estacionarios asi como el espacio de Minkowski ordinario. La

presentacion se pretende sea pedagdgica, estd enfocada a estudiantes de posgrado y llena un vacio existente en la literatura.

Descriptores: Mecdnica simpléctica; campo de Maxwell; cuantizacion de Fock

PACS: 03.50.De; 03.70.+k; 11.10.Ef

1. Introduction

The motivation to write this article comes from the author’s
discomfort with the usual treatment that textbooks give to the
canonical quantization of free fields in their first chapters [1].
There seems to be a “quantum jump” from the quantization of
mechanical systems with a finite number of degrees of free-
dom to the quantization of fields. Here, by fields we mean
that the classical system to be quantized is described by (at
Jeast) one function of space-time. The best known example is
precisely the electro-magnetic field, described by six quanti-
ties at each space-time point. In ordinary quantum mechanics,
one starts with the phase space I' of the system, which is nor-
mally given by pairs (¢*,pi), i = 1,2,..., n of generalized
coordinates and their conjugate momenta. The quantization
procedure implies a passage from the basic Poisson Brack-
ets (PB) relations {¢'.p;} = 4} to the Canonical Commuta-
tion Relations (CCR): [¢*, p;] = ihd}. This is usually called
the Dirac quantization condition. One finally finds a Hilbert
space M and a representation of the basic observables ¢’ and
p; as self-adjoint operators on ‘H satisfying the CCR. More
precisely, one should find at the classical level a set § of el-
ementary observables (real functions) on I' that are: i) large
enough to generate, via linear combinations of products of
them, any function on I and ; 2) small enough to be closed
under Poisson brackets [2]. To these observables, elements
of &, there will be associated a quantum operator in a unique
way, satisfying the Dirac quantization condition. For details
see Secl.i2:

When the classical system to be quantized is a field the-
ory, one is led to ask: Can we follow the same prescription?
that is, can we identify the phase space of the problem and a
set & of basic observables? How is the Poisson bracket de-
fined? Can we implement the Dirac quantization condition
and find representations of the CCR? If yes, which is the
Hilbert space H? The aim of this paper is to give answers
to all this questions when the classical system to be quan-
tized is the free Maxwell field. In the case of a Klein-Gordon
field, the problem is satistactorily addressed by Wald [3] (The
reader is urged to read the first three chapters of that book).
Recall that the Klein Gordon field is described by a scalar
field ® on space-time satisfying the Klein-Gordon equation:
(O — m?)® = 0. The main difference between the Klein-
Gordon and the Maxwell field is gauge invariance. This in
turn brings some subtleties to the program of quantization.
These problem are dealt with in this paper.

The particular quantization method we shall consider is
the one known as Fock quantization. The intuitive idea is that
the Hilbert space of the theory is constructed from “n-particle
states”. (In certain cases one is justified to interpret the quan-
(um states as consisting of n-particle states. For a discussion
see below.) As we shall see later, the Fock quantization is nat-
urally constructed from solutions to the classical equations of
motion and relies heavily on the linear structure of the space
of solutions (The Klein-Gordon and Maxwell equations are
lincar). Thus, it can only be implemented for quantizing lin-
car (free) field theories. The main steps of the quantization
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are the following: Given a 4-dimensional globally hyperbolic
space-time (M, ¢)'*), the first step is to consider the vector
space I of solutions of the equations of motion and construct
from it the vector space of physically indistinguishable states
I'. One then constructs the algebra & of fundamental observ-
ables to be quantized, which in this case consists of suitable
linear functionals on I'. The next step is to construct the so
called one-particle Hilbert space Hy from the space I'. As
mentioned before, the one particle Hilbert space Hy receives
this name since it can be interpreted as the Hilbert space of a
one particle relativistic system (in the electro-magnetic case,
the photon). The one-particle space is constructed by defining
a complex structure on I' compatible with the naturally de-
fined symplectic structure thereon, in order to define a Hermi-
tian inner product on I'. The completion with respect to this
inner product will be the one-particle Hilbert space Hy. From
the Hilbert space H one constructs its symmetric (since we
are considering Bose fields) Fock space F,(H), the Hilbert
space of the theory. The final step is to represent the algebra
S of observables in the Fock space as suitable combinations
of (naturally defined) creation and annihilation operators.

We will construct in detail the quantization outlined
above for the case of the Maxwell field. In our opinion, an
unified treatment (although completely elementary) is not
available elsewhere. The structure of the paper is as follows.
In Sect. 2 we give an overview of the prerequisites to tackle
the quantization program. In particular, we review the canon-
ical quantization using symplectic language. In the Sect. 3
we consider the classical treatment of the Maxwell field.
We follow two paths in the phase space description of the
theory. The first one, the so called covariant phase space
starts from the solutions to the equations of motion. The sec-
ond approach, the ‘standard’ 3+ 1 formulation, is considered
next and compared to the covariant framework. Section 4 ad-
dresses the quantization. We outline the quantization strategy
starting from the classical analysis and show that it depends
on certain extra structure (a complex structure) defined on the
classical phase space. We consider then two examples of par-
ticular interest on Minkowski space-time: the standard *pos-
itive frequency’ decomposition and the self dual decomposi-
tion. We end with a discussion in Sect. 5.

Throughout the paper, we use Penrose’s abstract index
notation'”) and units in which ¢ = 1, but keep f explicit.

2. Preliminaries

In this section we shall present some background material,
both in classical and quantum mechanics. This section has
two parts. In the first one we will introduce some basic no-
tions of symplectic geometry that play a fundamental role in
the Hamiltonian description of classical systems. In the sec-
ond part we outline the canonical quantization starting from
aclassical system as described in Sect. 2.1,

2.1. Classical mechanics

A physical system is normally represented, at the classical
level, by a phase space. This consists of a manifold ' of di-
mension dini(I') = 2n, where n is an integer corresponding
to the dimension of the configuration space. Physical states
are represented by the points on the manifold. Observables
are smooth, real valued functions on T'. There is a non-
degenerate, closed symplectic two-form 2 defined on it. The
two-form €5, satisfies: V.0, = 0, and if Q,,V" = 0 then
V" = 0. Therefore, there exists an inverse Q7 and it defines
an isomorphism between the cotangent and the tangent space
at each point of I'. Here square brackets over a set of indices
means antisymetrization. That is Ay 5= %(_4(:;, — Apa) land
Ay = (A + Apa)]. The space I’ with the symplectic
two-form €2 is called a symplectic space (or a space endowed
with a symplectic structure) and denoted by (T, Q).

A vector field V' generates infinitesimal canonical trans-
formations if it Lie drags the symplectic form, i.e.:

Lyil= 0. ()

This condition is equivalent to saying that locally the sym-
plectic form satisfies: 1* = Qb f .= X% for some func-
tion f. The vector X7 is called the Hamiltonian vector field
of [ (wrt. Q). Note that the symplectic structure gives us
a mapping between functions on I' and Hamiltonian vector
fields. Thus, functions on phase space (i.e. observables) are
generators of infinitesimal canonical transformations.

The Lie Algebra of vector fields induces a Lie Algebra
structure on the space of functions.

{f.9} = QuXpX! = 0%V, fV,g, (2)

suc‘h that X{r.9y = —[Xs. Xy]°. The ‘product’ {-, -} is called
Poisson bracket (PB).

Note that the Poisson bracket {f, g} eives the change of
[ given by the motion generated by (the HVF of) ¢, i.e.,

{5} =L f. (3)

The PB is antisymmetric so it is also (minus) the change of ¢
generated by f.

The role of the symplectic structure §) in symplectic ge-
ometry is somewhat similar to the role of the metric in Rie-
mannian geometry. It provides a one to one mapping between
vectors and one-forms at each point of the manifold. There is
however a very important difference: In symplectic geometry
one can always find coordinates (¢, p;) in a finite neighbor-
hood such that the symplectic form takes the canonical form
(known as Darboux theorem),

Srznh == QV[”}J,;VM(]} (4)
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With this form. the Poisson bracket between the coordinate
functions takes the form

{¢',p;} = Q®Va(g")Ve(p;) = 6, (5)
{¢', ¢} = OV, (¢") Vo) = {pir s}
= Q“hvu (Pz‘)vb(Pj) =0. (6)

In such a chart, the ¢* coordinates are like ‘position” and p;
are like ‘momenta’.

Since the symplectic form is closed, it can be obtained
locally from a symplectic potential w,,

Qﬂb = ‘)v[a'-‘-"b] (N

Time evolution is given by a vector field h* whose inte-
gral curves are the dynamical trajectories of the system. On
phase space there is a preferred function, the Hamiltonian H
whose Hamiltonian vector field corresponds precisely with
h%. e

he = OOV, H (8)

Adopting the viewpoint that all observables generate
canonical transformations we see that the motion generated
by the Hamiltonian corresponds to ‘time evolution’. The
‘change’ in time of the observables will be simply given by
the Poisson bracket of the observable with H: g := h*Vag =
Qe HV o9 = {9, H}.

If the system has a configuration space C, then the phase
space I is automatically “chosen” to be the cotangent bundle
of the configuration space T*C. There is also a preferred 1-
form on C that can be lifted to 7*C and taken to be the sym-
plectic potential which determines uniquely the symplectic
structure. Therefore, the fact that there exists a configuration
space picks for us the phase space and the symplectic two-
form. For field theories this description is obtained when one
performs a 341 decomposition on space-time and the phase
space is defined from the initial data of the theory. An alterna-
live is to consider the covariant variational principle, without
any decomposition, and construct a naturally defined sym-
plectic two-form. This is the covariant phase space formalism
that will be seen in Sect. 3.

Let us look in detail at the simplest example: a particle
in 3 dimensional Euclidean space. The state of the system is
specified by the value of its configuration ¢' and its momenta
variables p;. In this case, q* are coordinates in the configura-
tion space C. Here i = 1, 2.3 and the dimension of Iis 6.
The phase space has in this case a cotangent bundle structure
[ = 7*C. and the naturally defined symplectic potential is

Wq = pr‘,vaqi 9)
from which the natural symplectic structure can be derived,

Qop = 2V [apiVi)a" (10)

That is, in the dual basis {V,q', V,pi} for the cotangent
space the 2-form (10) has a matrix representation that can

be written as
0 -1
!2” ; — nxn )
r_ (IHX'H. (] )

In the basis of the tangent space to I, the inverse of the sym-
plectic two-form is given by

5 [ 9 b)
Qn!: ] A
@) @) o

The Poisson bracket in this coordinates has the usual form
gy = =—- = - = . = 2
{9} =3 : (12)

and the evolution equations are

q' = {q’.H} = % and p; ={pi.H} = —% (13)
In this form, we recover the usual textbook treatment of
Hamiltonian mechanics.

In the case that the system exhibits come gauge freedom
in the classical theory, its description in symplectic language
gets modified. The details are different for the covariant and
canonical phase space descriptions. but the common theme
is that the phase space accessible to the system is not a true
symplectic space: the two-form 2 is degenerate. In this case
the space is called a pre-symplectic space and (Y is a called a
pre-symplectic structure. In Sect. 3 we treat the Maxwell sys-
tem and comment on the strategy to deal with gauge systems
in both descriptions. Let us now look at the quantization.

2.2. Quantization

In very broad terms, by quantization one means the passage
from a classical system, as described in the last part, 1o a
quantum system. Observables on I are to be promoted (o
self-adjoint operators on a Hilbert Space. However, we know
that not all observables can be promoted unambiguously to
quantum operators satisfying the CCR. A well known exam-
ple of such problem is factor ordering. What we can do is
to construct a subset S of elementary classical variables for
which the quantization process has no ambiguity. This set &
should satisfy two properties:

e S should be a vector space large enough so that every
(regular) function on I can be obtained by (possibly a
limit of) sums of products of elements in S. The pur-
pose of this condition is that we want that enough ob-
servables are to be unambiguously quantized.

e The set S should be small enough such that it is closed
under Poisson brackets.
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The next step is to construct an (abstract) quantum alge-
bra A of observables from the vector space S as the free as-
sociative algebra generated by S (for a definition and discus-
sion of free associative algebras see [7]). It is in this quantum
algebra A that we impose the Dirac quantization condition:
Given A, B and {A, B} in § we impose

[4, B] = ih{A, B). (14)

It is important to note that there is no factor order ambiguity
in the Dirac condition since A, B and {A, B} are contained
in § and they have associated a unique element of A.

The last step is to find a Hilbert space H and a represen-
tation of the elements of 4 as operators on H. For details of
this approach to quantization see [2].

In the case that the phase space I is a linear space, there is
a particular simple choice for the set §. We can take a global
charton I and we can choose S to be the vector space gener-
ated by /inear functions on I'. In some sense this is the small-
est choice of § one can take. As a concrete case, let us look at
the example of ¢ = R?. We can take a global chart on I given
by (¢',p:) and consider S = Span{1,q",¢% ¢* p1,pa, p3}.
It is a seven dimensional vector space. Notice that we have
included the constant functions on I, generated by the unit
function since we know that {¢', m} =1, and we want S to
be closed under PB.

We can now look at linear functions on I'. Denote by Y
an element of I', and using the fact that it is linear space, }'*
also represents a vector in 7T. Given a one form A,, we can
define a linear function of I' as follows: F\(Y) := )\, Y.
Note that A is a label of the function with Y as its argument.
First, note that there is a vector associated to \,:

= DA
SO we can write
Fy(Y) =Rad°Y =¥ ¥ (15)

If we are now given another label v, such that G, (¥ =
v, Y, we can compute the Poisson Bracket
{F), G} = OV R(Y)VG(Y) = Q%X (16)
Since the two-form is non-degenerate we can re-write it as
{F,\. (&N } = Q,—lg,/\”t/b. ThUS,
{QAY), Qv Y)} = Q) »). (17

As we shall see in Sect. 4 we can also make such a selection
of linear functions for the Maxwell field.

The quantum representation is the ordinary Schrodinger
representation where the Hilbert space is H = L(R*, % 1)
and the operators are represented:

(1-¥)(q) = ¥(q),

(q" - ) (q) = ¢'¥(q),

" . d

(Pi - ¥)(q) = *tﬁa—qi‘l’(q) (18)

Thus, we recover the conventional quantum theory.

3. Classical description for the Maxwell Field

In the classical phase space description of the Maxwell
field there are two equivalent but complementary viewpoints,
namely the covariant and the canonical formalisms. In what
follows we shall develop both approaches and show their
equivalence.

3.1. Covariant Phase Space

In this part we shall introduce and employ the covariant
phase space formulation [8]. Since in our opinion this for-
malism is not widely known, we shall outline the main steps
using the Maxwell field as an example. The starting point for
the construction of the covariant phase space is the identifica-
tion of the symplectic vector space I, the phase space of the
problem, starting from solutions to the equations of motion.
Let us start by writing down the action for the free Maxwell
theory:

5 1 [
Spmi=— = / F®Fu /gl d*,
J‘f

4 /)

17
-3 /” F“r’V[(,A,,] Vgl d*z (19)

Il

where Fyy, = 2V, Ay). The variation of the action is given
by

Fo5 4, dT,. (20)
oM

88y = / (Vo F™®)54, /]g| d'x —
M
The volume term tells us that the action is extremized when
Vo F® = 0. Since we are assuming that there exists a one-
form A, such that its exterior derivative is the Maxwell field
“ab = 2V, Ay, the equation ViaFye) = 0 is automatically
satisfied (the Bianchi identity). Therefore we have the full
set of Maxwell equations. The second term in Eq. (20), the
boundary term, is often referred to as the symplectic current.
[t can be interpreted as a 1-form on the space T of solutions to
the equations of motion (it is analog to the symplectic poten-
tial w introduced in Sect. 2). Itis acting on the vector § 4, and
producing a number. We can take now another ‘variation® of
this term in order to get the conserved (pre)-symplectic struc-
ture £2(-, -),

(O(64,04) = /((SF”’HE; ~FF Ay A5, 21)

where 37 is any Cauchy surface in the space-time M (¢}, We
have not been very precise about functional analytic issues.
We are just requiring falloff conditions (on any ) such that
the symplectic form at spatial co vanishes. If, in particular,
we restrict ourselves to solutions of the Maxwell equations
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that induce data of compact support on any Cauchy surface,
that conditions will be satisfied(®) . This bilinear mapping de-
fined by €2 is, however, degenerate. There are tangent vectors
X, such that Q(X.,Y) = 0, ¥ Y € TT(®). These are the
degenerate directions of §2. The fact that the two-form 218
degenerate on [ is an indication that there is some gauge free-
dom in the system. Let us now try to identify what the degen-
erate directions of §) are. Since we are restricting ourselves to
the space T, the tangent vectors satisfy the linearized equa-
tion of motion, that in this case coincide with the Maxwell
equations. Consider vectors of the type X, = VA for some
function A. Then, using the fact that it satisfies V(o Xy = 0
we have,

QX,84) = [ —F®V,A d5,

b

L&)

Y

b3

_ / AV, (6F) dSa = 0.

We can conclude that the degenerate directions of {2 are of the
form V,A. This is the manifestation, in the covariant phase
space approach, of the “gauge freedom” present in electro-
magnetism. In order to get a true symplectic space, we should
take the quotient of T by the degenerate directions of {2 to get
[, the (reduced) phase space of the theory. Note that I can be
equivalently parameterized by the equivalence class of gauge
potentials [4,], where A ~ Aiff A, = A, +VaA, oralterna-
tively, by the gauge fields Fyy, satisfying Maxwell equations.

We can now write the (weakly non-degenerate) symplec-
tic formon I':

QF,F) = f(F“"K,, — Fo4;) dZ, . (22)

b

Note that it is well defined on T since it does not depend on
the representative of the equivalence class [A]. Note that in
writing (22) we have used the fact that T is a linear space and
therefore we can identify points in I' with tangent vectors.

The next step is to construct observables of the theory,
namely, real valued functions on I'. A natural strategy is to
use the symplectic form in order to construct such functions.
Let h, be a “test 1-form™. The observable O[h] : I' — R,
Jabeled by i, is defined in complete analogy with Sect. 2 by
the expression,

(O[)(F) == AF,T) = / (F%hy — T*4,) dSa, (23)

where Ty, := 2V hy). We need it to be a well defined func-
tion on I, so [h] should be invariant under gauge transfor-
mations A, — A, + V,A. Thus, we have to require that

[ TOY,A dS, =0, (24)
0>

which implies V,, 79 = 0. Therefore, an element h, of I de-
fines by itself a linear observable, since h, and b, + VA de-
fine the same function. In the quantum theory, to each of this

observables there will correspond a quantum operator, mak-
ing the correspondence between solutions to Maxwell equa-
tions and quantum operators precise.

Let us re-write the symplectic form (22) in terms of the
familiar electric and magnetic fields. Recall that given a local
observer with four velocity t* (f,t* = —1), then the electric
field with respect to this observer is given by E, := t* Fra.
It is naturally defined as a 1-form. Since we have a metric
we can ‘raise’ the index and define the corresponding vec-
tor field. We can also define the dual tensor of the field Fgp
by: *Fob = LeoMdF,, where e i the canonical volume
form defined by the metric ga, with all its indices raised with
the metric. The magnetic field is defined by B, := t"*Fy,. In
the integrand of the symplectic form, one is contracting the
tensor F** with the unit normal n, to the surface ¥ (that is
the meaning of dS, 1= eqpea dS"4), so we get naturally the
electric field E* with respect to ¥. We can now express (22)
as follows:

Q(F,F);= [(E“Au- E®A) Vhd’x.  (25)

JT
This expression can be rewritten in terms of objects defined

purely on the hyper-surface » . We can write

F® 4, dS, edted . A, dY

B | —

* abed gh
Fea 44!1‘: €afgh dSIJ )

b | =

1 ;
75 *ch Ab dsulb )

Therefore, one can take the 3-form *F' A A and integrate it
on ¥,

Q(F, F) = —.1 / (*FrapAe) = “FlapAg) . (26)
Note that the pullback to £ of the dual tensor *Fy, is, in a 3-
dimensional sense, the electric field two-form: E,p, 1= "Fap.
This is naturally dual to a vector density of weight one
E° := j*®E,,. which is, as we shall later see, the elec-
tric field arising from the canonical approach. Here, fobe ig
the naturally defined completely anti-symmetric Levi-civita
density of weight one on ¥.

Finally, one can ask what the Poisson bracket of the ob-
servables defined by (23) is. Given hi, and h;, in I" the Poisson
bracket of the observables they define is given by

(O[h], O[K]} =T, T")

- / (TR, — T"*hy) dSa.  (27)

We have seen that starting from the action, there is a natu-
rally defined symplectic structure €2 on ['. We constructed the
lineal observables (O[], the generators of the algebra & and
computed the Poisson bracket amongst them. We shall now
go to the canonical approach.
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3.2. Canonical Phase Space

In this part we shall present the canonical phase space de-
scription of the Maxwell Field, which is normally known as
the ‘Dirac analysis’ [9]. However, our presentation will be
‘covariant’ in the sense that our analysis is coordinate free:
that is, we do not assume any coordinate system on M. The
action (19) can be written in a 3+ 1 fashion. First we write the
expression for the action as follows,

B e / 929 Foc Fya /g d'% (28)
4 S

Next, we decompose the space-time metric as follows: ¢ =
It — nn® Here h®" is the (inverse of) the induced metric
on the Cauchy hyper-surface ¥ and n® the unit normal to T.
We also introduce an everywhere time-like vector field +* and
a ‘time’ function ¢ such that the hyper-surfaces ¢ =constant
are diffeomorphic to ¥ and such that t*V,t = 1. We can
write t* = Nn® + N® The volume element is given by
V19! = N V. Using this identities in Eq. (28) we get,

S = —i /(ﬁ[ JV\/E{’]ﬂpll.bdFachd
J1 3

2
vz [(Leda = Va(t- A) + NP Fyy)

X (LeAc = Ve(t- A) + NUF,q)] } (29)

where (¢ - A) := t*A,, and I = [to,1,] is an interval in the
real line. Note that since for all the terms in the previous equa-
tion, both the one-form A, and the field strength F,,;, are con-
tracted with purely “spatial” objects (n*N, = n%h,, = 0),
then both 4, and F; in (29) are the pull-backs to ¥ of the
space-time objects. For simplicity, we shall continue to write
A, for the 3-dimensional potential.

From the 3+1 form of the action (29) we can find the
momenta canonically conjugated to A,,:

. 88

a

T S(LAL)

h

It can be rewritten as,

- i
e = %hm‘(f(’ - Nb)F‘[,(

(30)

[T P—
= %}z."ﬂ\-‘nbﬂm =VhE*, (31)
thus, the canonically conjugated momenta is just the densi-
tized electric field (w.r.t. £). In this subsection, a ‘tilde’ over
a lensor means that it is a density of weight one.
The Eq. (30) can be solved for the ‘velocity’, £, A,,

LiAg = —= ho II® + V(- A) - N9F,,

7 (32)

We can perform a Legendre transform of the Lagrangian den-
sity in order to find the Hamiltonian:

95 / dy (1:[” LA, — C-)

= / d*r [— (t- A)V,II* — N¢B, 411°

NvVh

+ 2 IO + Th“n*"‘BahBM} . (33)

A7
2/

We have denoted by Ba, = Fy, the field strength of the 3-
dimensional potential 4,. It is related to the magnetic field
in the following way: B® = Luv}“""B;,C. The last term
in (33) can be rewritten: h*“h*® Bo,Beq = BB ¢4 e qr =
20y B¢ BY. In the ‘Dirac analysis’ of the action (28) the first
step is lo identity the configuration variables. In this case,
these are pairs [¢ := (t - A), A,], that is, we have four con-
figuration degrees of freedom per point. In the action there is
no term corresponding to time derivative of ¢ so we have a
primary constraint y; = I:Io 2 (). The basic Poisson brackets
are,

{Aa(2), 1" (y)} = 826% (2, y)

{6(2), Iy (y)} = 6%(z,y). (34)

Asking that the constraint be preserved in time with respect
to the Hamiltonian (33) leads to the secondary constraint
X2 = V.II® =~ 0. There are no extra constraints. They
form a First Class systemY). One can eliminate the first
one by giving the gauge condition y3 = ¢ — Alz) i~ 0,
with A an arbitrary function on . We can reduce the con-
straints (v, y3) since they form a second class pair. We
are then left with the Gauss constraint X2 = \—f,lI:I" = 0
Now, ¢ has the role of a Lagrange multiplier. Therefore, the
phase space I' is coordinatized by the pairs (A,,I1%), hav-
ing three degrees of freedom per point. The constraint sur-
face I" are the pointin T where the Gauss constraint is satis-
fied. In the canonical picture, gauge transformations are those
canonical transformations generated by the (first class) con-
straints. The reduced phase space T. is then the space of or-
bits generated by the gauss constraint in I". The canonical
transformation generated by the (smeared) Gauss constraint,
G[A] = [ AV, IT%d%, is given by,

Ay — Ay — V). (35)

Therefore, the (reduced) phase space is given by pairs
([4].IT) of gauge equivalence class of connections and vector
densities satisfying Gauss’ law. Thus, we recover the two true
degrees of freedom the the Maxwell field has (corresponding
to the two types of polarization). One alternative to the re-
duced phase space description is to impose a gauge condition
in order to select one particular representative from the equiv-
alence class. A convenient gauge choice in this case is to ask
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that 4 := V*A, = 0. This is a good gauge condition since
the pair (y2.14) forms a second class pair'¥’. Thus, we can
coordinatize T by (A,, £/*), a pair of divergence-less (trans-
verse) vector fields on ¥. We have used the fact that we have
a metric on ¥ to de-densitize the momenta IT.

The Poisson brackets (34) induce a (weakly) non-
degenerate symplectic form £ on pairs of tangent vectors
(0A,0E) on T*T":

Q((6A6FE); (r\hflr.b‘E’)) =
/ Vhd* (SALGE® — 5AE"™) . (36)

The Poisson brackets on transverse traceless quantities
(The Dirac bracket in the standard terminology) are given by,

TAT (), BL ()} = 686% (x,y) — A™' D" D% (2,y), (37)

where A is the Laplacian operator compatible with the metric
hn,l,.

We can now relate the two approaches and see that the
phase space I from last section is precisely the space T'. con-
structed via the canonical approach. The key observation is
that there is a one to one correspondence between a pair of
initial data of compact supporton X, satisfying the transverse
condition, and solutions to the Maxwell equations on M,
modulo gauge transformations (an element of I') [4]. There-
fore, to each element F,, in I there is a pair (A4, E") on
I 2V, Ay = Fap and £ = h*tp© E., and more impor-
tantly, for each pair, there is a solution to Maxwell’s equa-
lions that induces the given initial data on ¥. Here, ‘under-
line® denotes restriction to ¥. From now on, we shall refer to
clements of the vector space ' in-distinctively either as fop
oras (Aq, E?).

Observables for the space T' can be constructed directly
by giving smearing functions on X (compare (0 the discus-
sion of the previous section in which the observables were
constructed from space-tinme smearing objects). Given a 1-
form g, on ¥ we can define,

Elg] := [ Vhd*z Eg, . (38)

Similarly, given a vector field f* we can construct,

Alf]= / Vh &t Ao f°, (39)

Asking that E[g] be gauge invariant does not impose any con-
dition on g,. since Gauss’ law does not ‘move’ the electric
field. Note however that E[g] takes the same value for g, and
ga + VA Itis convenient to restrict ourselves to g, satisly-
ing Vg, = 0. The requirement that A[f] be gauge invariant
tells us that V, f* = 0. Therefore, in order to get well defined
operators, we need the pairs (ga, f") to belong to the phase
space I'. These are the precise images of the observables (23)

given by the identification of phase spaces. The relation is
given by g, = h, and f* = avienbly,.

Note that any pair of test fields (g,, f*) € ' defines
a linear observable, but they are ‘mixed’. More precisely, a
one-form g, in I, that is, a pair (g,.0) € T gives rise to an
electric field observable E[g] and, conversely, a vector field
(0, f*) € T defines a connection observable A[f].

As we have seen, the phase space I' can be alternatively
described by equivalence classes of solutions to the Maxwell
equations in the covariant formalism or by pairs ol trans-
verse vector fields on a Cauchy surface X in the canonical
approach. In both cases, the elements of the algebra & to be
quantized are linear functionals of the basic fields. In the co-
variant case they are constructed out of space-time smearing
fields and in the canonical language out of a pair of space
smearing fields. In the next section we consider the construc-
tion of the quantum theory.

4. Quantization

In this section we shall construct the quantum theory. This
section is divided into four parts. In the first one we con-
struct the one-particle Hilbert space Hq from the phase space
" of the classical theory. In the second part, we introduce
the symmetric Fock space F associated with the one-particle
Hilbert Space Hg. In the third part we find representations of
the CCR an the given Fock space. Finally, in the last part we
give some examples.

4.1. One-particle Hilbert Space

The first step in the quantization program is to identify the 1-
particle Hilbert space Hg. The strategy is the following: start
with (T, Q) a symplectic vector space and define J : I' — I,
a lincar operator such that J* = —1. The complex structure
J has to be compatible with the symplectic structure. This
means that the bilincar mapping defined by pi(-.-) := Q(-,.J+)
is a positive definite metric on I'. The Hermitian (complex)
inner product is then given by

(o =g, ) +a52 00 ) (40)
The complex structure .J defines a a natural splitting of I'r,

the complexification of T, in the following way: Define the
‘positive Irequency’ part to consist of vectors of the form

¢+ = L(® — iJP) and the ‘negative frequency’ part as
¢ := L(®+iJ®). Notethatd~ =P¢ T and @ = ¢+
Since J2 = 1, the cigenvalues of .J are =i, so one is de-

composing the vector space I in cigenspaces of .J: J(®F)
+i®=. We have used the term ‘positive frequency’ since in
the case of M Minkowski space-time that is the standard de-
composition. The Hilbert space H is the completion of I with
respect to the inner product (40).

There are two alternative but completely equivalent de-
scription of the I-particle Hilbert space Ho:
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1. Hg consists of real valued functions (solution to the
Maxwell equation for instance), equipped with the
complex structure .J. The inner product is given
by (40).

(S}

. Hyg is constructed by complexifying the vector space
' (tensoring with the complex numbers) and then de-
composing it using J as described above. In this con-
struction, the inner product is given by,

(. ®) = %Q(*I)‘.(iﬁ) (41)
)
Note that in this case, the 1-particle Hilbert space con-
sists of ‘positive frequency’ solutions.

It is important to note that the only input we needed in
order to construct  was the complex structure .J. For a gen-
eral space-time there is no preferred one. This in turn leads to
the infinite ambiguity in the representation of the CCR. In the
case of stationary space-times there is a preferred, canonical,
complex structure given by the Killing field. This construc-
tion for the case of the Klein Gordon field is described in [10].
For Minkowski space-time there are several ways of charac-
lerizing the usual quantization. The standard textbook treat-
ment uses a (globally inertial) time coordinate ¢ to perform
the positive-frequency decomposition. Another way ol se-
lecting this decomposition is to ask that the vacuum on the re-
sulting theory be Poincaré invariant. A third way is to ask that
the coherent states in the quantum theory have the same en-
ergy as the classical solution on which they are peaked [12].

4.2. Fock Space

Given a Hilbert space ‘H there is a natural way of construct-
ing its associated Fock Space. In this part we shall describe
this universal construction of the Fock space associated to the
Hilbert space  and then give in detail the representation for
the Maxwell field in Minkowski space-time.

The symmetric Fock space associated to H is defined to
be the Hilbert space

Fe(H) = EB (@H) , (42)

n=0

where we define the symmetrized tensor product of H, de-
noted by " <H, to be the subspace of the n-fold tensor
product (@" H), consisting of totally symmetric maps o :
Hy x - x H, — C satisfying

ZIO((?,“....

The Hilbert space H is the complex conjugate of H with
{é,.-+.&;.---} an orthonormal basis. We are also defining
Q. -
®"H = C.
We shall introduce the abstract index notation for the
Hilbert spaces since it is most convenient way of describ-
ing the Fock space. Given a space ‘H, we can construct the

& )P < o0 (43)

spaces H. the complex conjugate space; H*, the dual space;
and H * the dual to the complex conjugate. In analogy with
the notation used in spinors, let us denote elements of H by
o, elements of 7 by ¢ Similarly, elements of H* are de-
noted by ¢4 and elements of 7 * by ¢ 4. However, by using
Riesz lemma, we may identify H with H* and H with H *.
Therefore we can eliminate the use of primed indices, so ¢ 4

H* corresponding to the el-

*

will be used for an element in 'H
ement ¢! € H. An element ¢ € " JH then consists of
elements satisfying

(.‘J‘_‘Jm"l" - l.‘J('Al]mA“) (44)

An element v» € @™ H will be denoted as Y A,.. A, In partic-
ular, the inner product of vectors 3, ¢ € H is denoted by

(), ) =: st (45)

A vector ¥ € F,('H) can be represented, in the abstract
index notation as

W= (g g3, ey (46)

T

(Ar...A

where, for all n, we have ¢* =) The norm

is given by

H‘,,-hﬂz + - <00, (47)

9 bt - - s
[E|7 =i + ¥4 A + Y, 4,Y

Now, let &' € H and let E-t denote the corresponding el-
ement in H. The annihilation operator A(§) : Fo(H) —
Fs(H) associated to ¢ 4 is denoted by

A @ =
(€A, V2E 4 VBE AN A2 ) (48)

Similarly, the creation operator C(£) : Fs(H) — Fi(H) as-
sociated with £ is defined by

(1(5) « W=
(0. .Ur,£/ll . \/i)-&:("ll (’g.-"lz)' x/gg(ﬂqu,A:zﬂsl_l ). (49)

[f the domains of the operators are defined to be the subspaces
of Fs(H) such that the norms of the right sides of Eqgs. (48)
and (49) are finite then it can be proven that C(£) = [A(£)].
It may also be verified that they satisfy the commutation re-
lations,

[A(&),C(n)] = Ean™ 1. (50)

A more detailed treatment of Fock spaces can be found
in [3, 13, 14].
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4.3. Representation of the CCR

In the previous section we saw that we could construct linear
observables in (T, ©2), in either of the classical constructions.
For the covariant picture the observables are given by (23)
and in the canonical by (38) and (39). This is the set & of
observables for which there will correspond a quantum oper-
ator. Thus, for O[h] € S there is an operator O[h]. We want
the canonical commutation relations 1o hold,

(0], 03] = in{olh), O} = iKQ(h. k). 6D

Then we should find a Hilbert space and a representation
thereon of our basic operators satisfying the above condi-
tions. We have all the structure needed at our disposal. Let
us take as the Hilbert space the symmetric Fock space F(H)
and let the operators be represented as

O[h) - ¥ := K [C(h) + A(R)] - . (52)

Let us denote by 1 the abstract index representation cor-
responding to h, in H. First, note that by construction the
operator is self-adjoint. It is straightforward to check that the
commutation relations are satisfied,

[@[n], @[n*]} = 12[C[h], AR']] + h2 [A[], C[1]]
= 12 (Rah'* — B b
=1 ((h,h') = (R', 1))
2ih* Im({h, b)) = ihQ(h,R') . (53)

where we have used (50) in the second line and (40) in the
last line. Note that in this last calculation we only used gen-
eral properties of the Hermitian inner product and therefore
we would get a representation of the CCR for any inner prod-
uct {-,-). Since the inner product is given in turn by a complex
structure .J, we see that there is a one to one correspondence
between them.

4.4. Examples

As mentioned at the end of Sect. 4.1, the choice of a complex
structure .J is far from being a straightforward process. For a
general space-time, there is no a priori criteria to select one.
Furthermore, there are an infinite number of choices that give
inequivalent quantum theories [3]. In the special case that
there exists a time-like Killing vector field t* on the space-
time (M, g); that is, for a stationary space-time, there exists
a canonical choice of complex structure given by the killing
field. From the physical viewpoint, this choice is motivated
because it gives to coherent states peaked at a particular solu-
tion an energy equal to the classical energy associated to that
solution [12]. The complex structure is given by,

T <, . G~ g, (54)

A particular important example of a space-time with a
globally defined Killing field is Minkowski space-time (in
fact it has an infinite number of such vector fields, one for
each inertial reference frame). From now on, let us restrict
our attention to Minkowski space-time and inertial hyper-
surfaces ©. Therefore, the induced metric h,), is the Eu-
clidean flat metric. We will perform two different decompo-
sitions of T, for two different complex structures. First, we
shall consider the ordinary ‘positive frequency’ decomposi-
tion. This leads to the standard quantum theory of the free
Maxwell field found in textbooks. Next, we decompose I" in
self-dual and anti-self-dual fields.

4.4.1. Positive frequency decomposition

Since it is completely equivalent to use the covariant or
canonical notation, we shall denote elements of ' as pairs
(AT, E$), of transverse (i.e. divergence-free) vector fields.
The first step in the quantization is the introduction of the
complex structure .J : I' — I'. It is given by,

A\ [-AMVERE,
I (E) - (A‘/BAR) , (55)

Next, we can construct the projector operator K+ : T' — Ty,
such that Fﬁ, = KT (F,,) is the positive frequency part of
Fa, € I'. The projector is given by the following action in
terms of the pairs of initial data,

g A 1 (A, —iA~2E
+ adl . 4 a a
i (F> =3 (Eﬂ +iAV2A, ) - 9

With this definitions, we can construct the inner product in
H. For F, F" in H we have,

(F,F) = }’_Q(F*‘,Fﬂ
L

o R TA FE A S

S

# _ (.{:-5;]: [(Eﬂfi,,_ _ ‘,_\I/'?AQA—]/‘_’E*I” - E(:Aa

o Al’/?fiﬂf_\_l/gEu)
_ ’."(:L,,Al/g/-l“ i EuAl/'lEa
+ AAVPAY + BCATIRED] . (5T)

The norm of (g,. f*) € H is given by,

((g, ). (9. ) =

l\Jr)_‘

2 /\_‘ dg:i" [{}'{;Al/zfjﬂ £ fﬂAﬁl/'_).fa)] . (58)
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One should keep in mind that all the objects (g,, f*) are
transverse. The reason for this requirement is that the com-
plex structure takes a very simple form (55) in terms of trans-
verse vector fields, making also the expression for the norm
look simple (58).

We are now in position of asking whether an observable
generated by the pair (g,, f*) induces a well defined opera-
tor on F(H). Clearly, if the pair (g,, f®) belongs to the |-
particle Hilbert space H the answer is in the affirmative. We
shall take this criteria also as necessary condition. The ques-
tion is now whether the pair (g,, f*) defines an element of
', namely, whether they are ‘well behaved’ initial data for a
solution of Maxwell equations with finite norm. This will be
the case iff the norm of (g,, f*), given by Eq. (58), is finite.
This question is of relevance when defining observables given
by the fluxes of electric and magnetic field across surfaces
bounded by closed loops. The Heisenberg uncertainty princi-
ple takes a particular simple form when this observables are
considered [15].

4.4.2. Self-dual Decomposition

As we mentioned in the last section, one can define the dual
tensor to the electro-magnetic field tensor F,;,, by *F,;, :=
S€ancaF . Note that if we apply the duality *-operator again
we gel:

1
)= ;Fqbch"dEfF«f
= —Llap, (59)

since e€qpeqectef = —4(5’16;{. Therefore, the *-operator
defines a complex structure .J on I'. Note that this struc-
ture is available for any 4-dimensional Lorentzian manifold
(M, gay) without the need to introduce extra structure. As
discussed above, the *-operation decomposed the complexi-
fication of T into eigenspaces with eigenvalues +i. The cle-
ments of F(L, of I'r such that *F(Ib = iFJb are called self-dual;
and those that satisfy *F}, = —; F,, are anti-self-dual. The
corresponding projector is given by,

K! .

[S=R

% (5,08 — iear”™) . (60)
Therefore, the self-dual electro-magnetic field is of the form:
Fl, = Y(Fa — i*Fy). In terms of objects defined on the
hyper-surface ¥, namely electric and magnetic fields, a self
dual element is of the form E, — iB,. Let us now write the
projector I acting on the pairs (A B9,

- A, 1 [/ A, +id,
! r . e @ g [
' (E) 2 (E‘” ﬁiB”) B0
where d, is the electric vector potential, i.e., such that £* =
€@ brf(')(,(i(-.

Finally, we could follow the same steps as in the previ-
ous case and write the ‘norm’ in the 1-particle Hilbert space

411

constructed from the *-operator decomposition as follows,
(A.B). (4, B)) = / & (Bd, + AB,). (62)
1/

Note that this norm, in contrast to the positive frequency
decomposition case, is not positive definite, and is there-
fore, physically incorrect. In math jargon, one says that the
complex structure defined by the *-operator is not compat-
ible with the simplectic structure. If one were to quantize
naively this “Hilbert space”, one would get a Fock represen-
tation with negative norm states. In spite of this, it is possible
to quantize the system when dealing with self-dual fields. A
holomorphic quantization with a positive definite inner prod-
uct was constructed in [16], and the corresponding loop rep-
resentation is the subject of [17].

5. Discussion

In this paper, we have introduced the Fock quantization for
the classical Maxwell field. We have seen that given a phase
space point, thatis, a solution to Maxwell equations on space-
time [or equivalently, a pair (A4, E) of initial data], we can
construct a quantum state via a creation operator. There are
several questions that come to mind. First, how can we make
contact with the ordinary treatment of Fock spaces given in
textbooks? Recall that, from the outset, the basic fields are
written in a Fourier expansion. This already assumes a vector
space structure for the background space-time (Minkowski)
and a globally defined vector field (time coordinate) in or-
der to perform the Fourier transform. The expression (58),
when re-expressed in the Fourier components takes the famil-
iar form of the inner product found everywhere. This proof is
left as an exercise for the reader.

Second, we can ask how is that the particle interpreta-
tion of the theory arises? We have used solutions to Maxwell
equations to create the ‘n-particle states’, but a classical
electro-magnetic field certainly does not look like a parti-
cle. Let us recall how it is done in ordinary textbooks. In
that case, the solution to the Maxwell equations is written
in terms of a plane wave expansion (via a Fourier transform),
and each plane wave with wave vector  is interpreted as (the
wave function) of a photon of momentum in the & direction.
Thus, the Fock space is constructed from plane waves, each
with the interpretation of a “particle’. Strictly speaking, plane
waves are not normalizable and, therefore, do not belong to
our phase space I'.

Finally, we can ask how the Fock quantization com-
pares with the standard Schridinger representation we are
used 1o in ordinary quantum mechanics. Recall that in this
case, quantum states are given by complex-valued functions
on configuration space )(g'). There is however, a unitarily
equivalent representation where the wave functions are (ana-
lytic) functions on phase space ¢(z? = ¢’ —ip;). This is the
so called Bargmann representation of quantum mechanics.
This is not usually done in ordinary quantum mechanics, but

Rev. Mex. Fis. 44 (4) (1998) 402412



412 ALEJANDRO CORICHI

we could in fact construct a Fock space for the harmonic os-
cillator, where the “particles’ would be quanta of energy [3].
In this case the basis is given by the |n) kets, corresponding
10 the eigenstates of the Hamiltonian. The most natural rep-
resentation for this construction, in terms of wave-functions
is the one given by Bargmann. Thus, the Fock representation
is the field theory analog of the complex Bargmann repre-
sentation (for details see [12]). Is there in field theory the
analog of the Schrodinger representation? Can we construct
it? The answer to both questions is in the affirmative. In the
Schrodinger representation, quantum states are functionals of
the potential A, on ¥, ¥(4) and the basic observables (38)
and (39) are represented as derivative and multiplicative op-
erator respectively [18]. Just as in ordinary quantum mechan-
ics, where the Schrodinger and Bargmann representations are
connected by a coherent state transform, there is a similar
transformation in field theory relating Schrodinger and Fock
states. Which of this representations is more useful? The an-

swer depends on the situation. Fock representations are very
uselul when considering scattering processes. In perturbation
theory one considers incoming free states and outgoing free
states (belonging to the Fock space) and one tries to approxi-
mate the Scattering matrix relating them using a perturbative
expansion. The problem with this approach, from the math-
ematical viewpoint, is that this procedure is not completely
justified [19]. To explain why, then, perturbation theory is
so succesful is still an open problem. The natural way to
construct a quantum theory for non-linear fields is then the
Schridinger representation (or its path integral variant), but
progress in this direction has been slow [20].
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(@). Recall that a globally hyperbolic spacetime is one in which the
entire history of the universe can be predicted from conditions
at the instant of time represented by a hyper-surface . In tech-
nical terms ¥ is a Cauchy surface. For details see [4].

(b). In this notation, the index ‘a’ of a vector v" is to be seen as a
label indicating that v is a vector (very much like the arrow in
"), and it does not take values in any set. That is, ‘a’ is not the
component of ¥ on any basis. For details see [4-6]

(¢). A Cauchy surface is a space-like surface ¥ whose domain of
dependence is the entire space-time M.

(d). A function of compact support is a function that vanishes out-
side a compact region of .

(¢). We denote by X, the infinite dimensional tangent vector (with
abstract index o) defined by Xo (z).

(f). A first class system has the property that the Hamiltonian vec-
tor fields Xy, and X, are tangent Lo the y1 = x2 = 0 surface.

(g). A second class pair of constraints is such that the symplectic
structure restricted to the surface they define is non-degenerate.
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