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Hulthén's potential admits analytical solutions for its energy cigenvalues and eigenfunctions corresponding to zero orbital angular momentum
states, but its non zero angular momentum states are not equally known. This work presents a vibrational-rotational analy sis of Hulthén's
potential using hydrogenic eigenfunction bases, which may be of interest and useful to students of quantum mechanics at different stages.
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El potencial de Hulthén admite soluciones analiticas para sus eigenvalores de la energia y eigenfunciones correspondientes a estados con

momento angular orbital cero. pero sus estados con momento angular diferente de cero no son igualmente conocidos. Este trabajo presenta un
andlisis vibracional-rotacional del potencial de Hulthén usando bases de eigenfunciones hidrogénicas, el cual puede ser de interés y utilidad

para estudiantes de mecdnica cudntica en diferentes etapas.
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1. Introduction

Lamek Hulthén introduced the potential

F—)\r

in an article with the title ” On the Eigensolution of the
Schrédinger Equation of the Deuteron™ published in the Arkiv
for Mathematrik, Astronomi och Fysik in 1942 [1]. The short
distance behavior of the potential is like that of the Yukawa
potential,

Vi) = -1 (1)

7 P—)\r‘
Vi(r) = =V- o)
(r) 0 (2)
and asymptotically it becomes the exponential potential,
VE(r) = —Vpe " (3)

While the Schrodinger equation does not admit analytical
solutions for both potentials V'Y and V¥, Hulthén showed
in Ref. | that VM has analytical expressions for the energy
cigenvalues and eigenfunctions of its zero angular momen-
tum states. In fact, he used these eigensolutions of the V'H
potential to construct perturbative solutions of the Yukawa
potential in the case of the deuteron.

On the other hand, the Schriédinger equation does not ad-
mit analytical solutions for the non-zero angular momentum
states of the Hulthén potential either. Correspondingly, the
study of such states has been the subject of research and
the testing ground of different theoretical approaches in the
last few decades. References 2-7, limited to the eighties, il-
lustrate the methods and results of different approximation
schemes and also contain references to previous works.

This work is a didactic study of both zero and non-zero
angular momentum states of Hulthén’s potential, which may
be of interest and useful to students of quantum mechanics
at different stages. For completeness sake, our own version
of the exact eigensolution for s states is included in Sect. 2.
Variational solutions for any angular momentum / states are
formulated using hydrogenic eigenfunctions, and numerical
results are presented in Sect. 3. The formulation and numer-
ical evaluation are carried out in two successive stages. Sec-
tion 3.1 is limited to the states with no radial excitation and
allows the optimization of the nuclear charge variational pa-
rameter in the hydrogenic trial functions for each value of [
In Sect. 3.2 the linear variational method is implemented in
its matrix form using the complete hydrogenic eigenfunction
bases, obtaining at once the states with successive radial ex-
citations for cach [. Section 4 includes a discussion of the
results and methods.
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2. Exact eigensolution of the Hulthén potential
for £ = 0 states

The Schrodinger equation for the relative motion of two par-
ticles interacting via the Hulthén potential is written as

. "
b g
‘ 0 e—/\r

5 Y(7) = E¥(r) (4)
2 1—

in terms of the reduced mass s Because of the central nature
of the potential the problem admits the separable solutions in
terms of the spherical harmonics

P(r,8,¢) = R(r)Yim (8, ), (3)
which are eigenfunctions of the energy and angular momen-
tum. The radial function must satisty the equation

P f1d ,d o l(l+1)
LT LR 9 X
2pu \r2dr dr 2

e—M-

= e~ AT

= } R(r) = ER(r). (6)

The remainder of this section is restricted to s states with
| = 0 for which we make the standard change

R(r) = %r) (7)
obtaining the radial equation,
n? d? g
| R R v Y =41 : 8
20 dr? 07— 1) fr) {5

The square integrability condition is translated into the
houndary conditions on the radial function

f(r)y—0 and flr) — 0. (9)

r—0 r—o0

The asymptotic behavior may be ensured through an expo-
nentially decreasing factor

f(r) =e"%"g(r), (10)
in which case Eq. (8) becomes
d*g dg 2uVy e
bl O T R e il PSR 11
dr? X ar ¥ B2 1- e*’”'g 0 (1

with

o =/ —2uE/R* (12)

and the reminder that the energy E is negative for bound
states.

Hulthén found that Eq.(11) is integrable under the change
of variable

g=1-e (13)

which maps 0 < r < ~into 0 < r < 1, Here we take

additionally
g(x) = xh(z) (14)

in order to ensure the correct behavior of Eq. (9) forr — 0.
Then it is straightforward to establish that Eq. (11) takes the
form

d*h 20y dh
(l —2)—— — |
i T)(i,:rz # [ (3+ A ) ] dx
200 2uly
= |1 = e 2
{ A he)\2

The reader can identify that Eq. (15) corresponds to the
canonical form of the differential equation

] h=0; (15

/2
(1 -2 )(] r{ +le=(a+b+ 1)a }—r —aby =0. (16)
for the hypergeometric function [8],
o
)s(B)s &
o= u:l% s bt &) :Z%,* (17)

s§=0

where (a), = ala+1)---(a — 1+ s) and (a)o = 1 are the
Pochhammer symbols. Also, the parameters in Eq. (15) are
immediately identified as

(,.ﬁwg\/(;)u

2uVy

RZx2’

= (18)

For arbitrary values of these parameters, the hypergeometric
series of Eq. (17) is divergent for # — 1 corresponding to
r —s 0o, because each ol its asymptotic terms has the limit
value

I (a)s(b)s
Pl (c)ss!

=50 (19)

The only way to avoid such a divergent behavior for the solu-
tion of Eq. (15), in the form of Eq. (17) with the parameters
of Eq. (18), is to reduce the series with an infinite number of
terms to a polynomial of degree n, = 0,1,2..... This can
be accomplished by restricting the values of the parameter a
to the values —n,.:

2uVh
niaz’
ensuring that the coefficients (—n, ), with s > n,, vanish,

According to Eq. (12), this is equivalent to the restriction of
the energy to its eigenvalues

._1+—f (20)

/\

2

_(”r‘!']-)] s (21)

B _f X [ 2uVy
! 2u 4 | h2X2(n, + 1)
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wheren = n, + 1 = 1,2,3,... plays the role of the total
quantum number.

The corresponding radial eigenfunction takes the explicit
form

1- e X QM.VO ]
Rir) =N fexp [~2 (ﬁ,z/\'ln n.) 7

21V .
2By | == 1, o0 +1;2;1—e"\’} (22)
h=A\2n

which involves power series in the exponential function.

For a given pair of particles interacting via a Hulthén po-
tential, Eqgs. (21) and (22) show that the number of bound s
states is the integer part of /2uVy /hA.

It is also instructive to view the Hulthén potential as a
type of screened Coulomb potential, in which A is the screen-
ing parameter. Egs. (1) and (2) show that if the strength pa-
rameter is chosen as V5 = Ze?) then in the limit A —s
0, both the Hulthén and Yukawa potentials reduce to the
Coulomb potential,

, Ze?
Ve(r) = ——. (23)
(
It can be easily verified that in such a limit, Eq. (21) is
reduced in turn to the Bohr formula for the atomic hydrogen
energies

2.4
e Zretp
" oRp2p2’

(24)

which are infinite in number, and the eigenfunctions in
Eq. (27) also become hydrogenic [9]

4 e2ur 2Zeur

RC(r) = Ne~ 522 | Fy (-(-::-1);2; ‘;‘”), (25)
h*n

recalling that the confluent hypergeometric function

L Fy(as e, is the limit of the hypergeometric function [8]:

g T
lim oK) (a,b;c; 3) = 1Fi(a;c;x). (26)

b— oo

3. Variational solutions of the Hulthén Poten-
tial for any ¢ states

In this section we consider the solution of Eq. (6) for states
with any angular momentum /. Since no analytical solutions
are known in this case, we propose a variational analysis. The
connection between the Hulthén potential and the Coulomb
potential and their eigenfunctions, established in the previous
Section, suggests that the atomic hydrogen eigenfunctions
may be appropriate as a basis to construct variational solu-
tions of Eq. (6). Here we consider the equivalent of Eq. (6)
for a Coulomb potent with a nuclear charge parameter /3

{—5 [i 258 Kt ”} e E}RC'(:»-) — ER(r) (27)

20rdr  dr r2 r

From here on we assume i = y = e = land Vy = Z\in or-
der to conform with the notation of [2-7]. The eigensolutions
of Eq. (27) correspond to the well-known atomic hydrogen
Bohr energies

EC = — 3 /2n? (28)

and eigenfunctions

: 24
RS (1) = Nprle /™ By (—nr; 2+ 2 %) (29)

where n = n, + 1 4+ 1 [9]. The reader may recognize that
Egs. (28) and (29) reduce to Egs. (24) and (25) for the case
of I = 0 states.

The variational analysis of Eq. (6) to be carried out next is
based on trial functions constructed with the basis of Eq.(29),
and taking /4 as a variational parameter.

In Sect. 3.1 the analysis is restricted to the states without
any radial excitation, for which it is sufficient to start with the
trial functions of the type of Eq. (29) with n,, = 0. The anal-
ysis of Sect. 3.2 includes radial excitations and requires trial
functions constructed as linear combinations of the complete
basis of Eq. (29) withn, = 0,1,2. ...

3.1. Variational Calculation for States without Radial
Excitation

We choose the normalized hydrogenic trial functions

5 i 1/2
‘ 03\ 2+ 1 )
i Byr = wl Br/n
BE) [( n ) (2 + 2)! = G0

for the variational calculation of the energy eigenvalues of
the states of the Hulthén potential without radial excitation
for which n,, = 0 and n = [ + 1. The calculation involves
the evaluation of the expectation value of the energy using
Eq. (6), and its minimization with respect Lo the variational
parameter /3. Both steps are carried out as described next.

The evaluation of the expectation value of the kinetic en-
ergy term in Eq. (6) for the trial function of Eq. (30), is the
same as the corresponding evaluation in Eq. (27). In the lat-
ter we use the virial theorem for the Coulomb potential [9]
to conclude that the expectation value of the kinetic energy
is the negative of the expectation value of the total energy
of Eq. (28). The evaluation of the expectation value of the
Hulthén potential is straightforward making use of its geo-
metric series representation:
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TABLE L. Successive entries correspond to states nl without radial excitation for which I = n — 1, screening parameter A, scaled variational
parameter 3/, minimized energy Emin, and exact energy Fexact. from Eq. (21) for s states and trom [2] for other states.

nl A B/n Bl Eexact

Is 0.025 0.999921874999206 —0.487578124 —(0.487578125
0.050 0.999687499949197 —0.475312483 —0.475312500
0.100 0.998749996759909 —0.451249740 —0.451250000
0.150 0.997187463302950 —0.427811189 —0.427812500
0.200 0.994999795404474 —0.404995874 —0.405000000
0.300 0.988747717623176 —0.361229363 —0.361250000

2p 0.025 0.499478764284810 —0.112760438
0.050 0.497910184684437 —0.101042017 —0.101043
0.100 0.491560051950861 —0.079172425 —0.079179
0.150 0.480683850935646 —0.059405503
0.200 0.464744947741120 —0.041769513 —0.041886
0.300 0.412514662309447 —0.013136737 —0.013790

3d 0.025 0.33168477909624 —0.043602856 —0.043603
0.050 0.326639664406316 —0.032750023 —0.032753
0.100 0.304639712141441 —0.014428372 —0.014484
0.150 0.256131972358986 —0.001013290 —0.001391

4f 0.025 0.246186909018531 —0.019690293 —0.019691
0.050 0.233865882537618 —0.010047935 —0.010062
0.075 0.208808334469317 —0.002467821 —0.002556

oo

- N 95\ 2+ 1 =
(R|Vy|RT) = —Z (—) _(2’ o / drr 22— hr Z e Mstl)r
L+ 2) Jo

s=0

28 2143 1 o0
—ZA (#) \2l+3 Z

n

where ¢ (N, a) is the generalized Riemann zeta function [10].
The first step is completed by writing the expectation value
of the total energy,

2 9 2043 93
LAY i ¢ 21+3,£+1 , (32)
nA nA

2n?

E(f3)

The second step consists in obtaining the derivative of this
energy with respect to the variational parameter and finding

its Zeros,

aE _
dg

The implementation of this step was carried out in a per-
sonal computer using the Mathematica program [11].

Illustrative numerical results are presented in Table I,
where the successive columns correspond to the spectro-
scopic designation of the states without radial excitation, for

(33)

23

; 21+3
s=0 /
s+1+—
(H u,)\)

: 2043 2
—Z/\(zﬁ) q(2z+3,“”+1), 31)
nA nA

which I = n — 1, to the chosen values of the screening pa-
rameter A of the Hulthén potential, to the scaled variational
parameter 3/n evaluated via Eqgs. (32) and (33), to the re-
spective minimized energies Enin from Eq. (32), and to the
exact energies from Eq. (21) for s states and from [2] for the
other states. The reader may notice that the variational pa-
rameter /3 takes values close to Z = 1, with systematically
increasing departures from such a value as the screening pa-
rameter increases and as we move to states with increasing
rotational excitation. Correspondingly, the variational ener-
gies of the Hulthén potential, starting from the values of the
hydrogen atomic energies Eq. (28) for A = 0, show similar
departures from these values as A and [ take on larger values;
such a trend can be understood on the basis of Eq. (32). The
exact energies are included as points of reference for numeri-
cal comparison. The overall conclusion is that the variational
energies are very close to the exact energies with systemati-
cally increasing departures for larger values of A and (.
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3.2. Linear variational method for states with any radial for the expansion coefficients a,., :

excitation
In this section we formulate and implement the variational so- Z R | (HH —~ E)|n.d) = 0,
lution of the Schrodinger equation for states with any radial n,.=0
excitation of the Hulthén potential, Eq. (6), using the basis of o = .19 N (35)
YR [ (S ./

hydrogenic functions, Eq. (29). We consider a trial function

in the form of the linear superposmon: The solution of these equations requires the vanishing

of the determinant of the matrix (HH — ET), which deter-

RE( Z By 7 4 (34)  mines the variational energy eigenvalues E, and the opti-

n.=0 mized eigenvectors a.,, . By writing the Hulthén Hamilto-

in which the nuclear charge parameter 3 in the hydrogenic ~ hian in terms of the Coulomb Hamiltonian, Eq. (27), the sec-
functions is given the optimized values obtained in the previ-  ular equation becomes

ous section for chosen values of A and /.

The substitution of the trial function, Eq. (34), in the det |(ES — E)dps n, + (nbl) (VT — V) |n6)] =0 (36)
Schrodinger Eq. (6), and the subsequent and successive scalar
multiplication by each one of the hydrogenic eigenfuctions The matrix elements of the Coulomb and Hulthén poten-
Bf?"_f(r), leads to the set of linear homogeneous equations  tial are constructed using the explicit forms of the hydrogenic
| functions of Eq. (29):

Ty

il (=nr)e  (28/0)5(268/n) (26 +1 + 5 + t)! ,
"l =|n.£) = Nt e N, )
(n'r‘ ]T|ﬂ7‘ ) £ E’Zurz(; QP—!—‘) 9(+ );f' ()‘f/ll + i/.’? ’{:—L)+b+f ( 7)
o0} » ﬁv« 243 & 23 t
.,’ﬁ‘ AP+l g n)s(—np)e (267 (28
(7.’[ Pgﬂf’ My ) n anT‘fg; f)(J 5' 2( =3 rJ) n' n
20+ 2+ s+ 1t)! Fu il | d;
gy e A R A A St R e R (38)

The numerical construction and diagonalization of the matri-
ces was implemented in a personal computer with the Math-
ematica Program [11].

Table II contains the numerical results for the linear va-
rational energies of the eigenstates of the Hulthén potential
with successively increasing radial and rotational excitations.
The entries in the two first columns, corresponding to the
screening parameter and the states without radial excitations,
coincide with their counterparts in Table I; the entries in the
following columns correspond to the states with n,. = 1,2, 3.
The energies reported in each row were obtained from the
diagonalization of 20x20 matrices constructed using Eqs.
(37) and (38), and the corresponding values of the variational
parameter /3 from Table 1. Again, the exact energies from 4. Discussion
Eq. (21) for s states and from [2] for states with rotational
excitation are included in parenthesis for numerical compari- ~ The study of the Hulthén potential presented in this paper
son. For the states without radial excitation the improvement ~ covers topics of interest for students of quantum mechanics.
of the linear variational energies of Table II relative to the ~ Section 2 illustrates an example of an exact analytical solu-
simple variational energies of Table I is very small for the  tion of the Schridinger equation yielding the energy cigen-
lower values of A and £, but it becomes quantitatively signifi- ~ values Eq. (21) and eigenfunctions Eq. (22) of Hulthén’s po-
cant for the higher values of A and ¢ as in the specific cases of ~ tential £ = 0 states, including their limiting atomic hydro-
E(3d) for A = 0.150, and E(4f) for A = 0.050 and 0.075.  genic forms Eqgs. (24) and Eq. (25) when the screening pa-
For the states with radial excitation the linear variational en- ~ rameter becomes vanishingly small. Section 3.1 presents the
ergies show convergence towards the exact energies with a  simple varational calculation of the energies of the states with
decreasing number of digits as the values of A, n, and ¢ get any angular momentum and no radial excitations using the
larger. This trend of the convergence and accuracy of the lin-  corresponding atomic hydrogenic functions, Eq. (30), as trial

l

ear variational energies follows the expected behavior; more
accurate numerical results can be obtained by enlarging the
size of the matrices, which we could not do in our personal
computer due to its limitations in precision and memory ca-
pacity. In any case the reported values are good enough for
our didactic purposes, and comparable with those of [2-7].
Also in our diagonalization procedure we obtain the energies
of states with higher radial excitations, and the a,,, expan-
sion coefficients of Eq. (34) for the linear variational eigen-
functions.

Posi AMov Eic AR rAAI1QOQY AT12 A10
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TABLE 1. Successive entries correspond to screening parameter A, linear variational energies E(nl) of states with and without radial and
rotational excitations. For comparison exact energies from Eq.(21) for s states and from [2] for other states are included in parenthesis.

A E(1s) E(2s) E(3s) E(4s)
0.025 —0.4875781245 —0.1128124890 —0.043758616 —0.01999981
(—0.4875781250) (—0.11281250) (—0.043758681) (—0.02000)
0.050 —0.47531249 —0.1012498299 —0.033367177 —0.01124820682
(—0.47531250) (—0.101250) (—0.033368056) (—0.011250)
0.100 —0.4512498668 —0.0799975629 —0.016797794 —0.001246256
(—0.4512500) (—0.0800000) (—0.016805556) (—0.001250)
0.150 —0.4278118279 —0.061239729 —0.0058544125
(—0.4278125) (—0.06112500) (—0.005868056)
0.200 —0.40499788 —0.04497502 —0.0005490027
(—0.4050000) (—0.0450000) (—0.0005556)
0.300 —0.3612394377 —0.0199444
(—0.3612500) (—0.0200000)
A E(2p) E(3p) E(4p)
0.025 —0.1127604501 —0.04370687 —0.0199485
(—0.043707) (—0.019949)
0.050 —0.1010422 —0.03316428 —0.01105728
(—0.101043) (—0.033165) (—0.011058)
0.100 —0.07917547 —0.01605176 —0.00075387
(—0.079179) (—0.016054) (—0.000754)
0. 150 —0.059421418 —0.004462177
(—0.004466)
0.200 —0.0418222
(—0.041886)
0.300 —0.0134634
(-0.013790)
5 E(3d) E(4d)
0.025 ~0.04360294 —0.01984620
(—0.043603) (—0.019846)
0.050 —0.0327515 ~0.010666642
(—0.032753) (—0.010667)
0.100 —0.01445634
(—0.014484)
0.150 —0.00124455
(—0.001391)
A E(4f)
0.025 —0.01969075
(—0.019691)
0.050 —0.01005618
(—0.010062)
0.075 —0.00252351
(—0.002556)
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functions. The numerical values of the variational energies
are quite accurate, comparing favorably with the exact ener-
gies for the lower values of A and ¢, and showing increasing
deviations as these parameters become larger. In Sect. 3.2 the
linear variational method is formulated for states with both
radial and rotational excitations, using the matrix formula-
tion with the complete atomic hydrogenic eigenfunction ba-

sis, Eq. (29). For each value of ¢, the energy eigenvalues of

the states with successively increasing radial excitations are
obtained simultaneously in the same numerical diagonaliza-
tion process. The energies of the states with no radial exci-
tation show an improvement when going from their values
of Table I to those of Table II, the improvement being more
appreciable for higher values of A and ¢. The linear varia-
tional energies of the states with both radial and rotational
excitations show reasonable convergence and accuracy when
compared with their values reported in the research litera-
ture [2-7]. Students of quantum mechanics may complement
their study of topics on problems with analytical solutions,
simple variational calculations and linear variational calcula-
tions by working the details of Sects. 2, 3.1 and 3.2. While

419

the first two topics are covered and illustrated in standard
courses, the last one is usually treated only formally. The
availability of computers makes the latter workable and in-
structive for students.

Apart from the specific study of the Hulthén potential
of Sect. 3, it may be pointed out that the simple variational
method and the linear variational method as formulated in
Sects. 3.1 and 3.2 can be systematically applied to other po-
tentials. For instance, the Yukawa and exponential poten-
tials, Eqs. (2) and (3), can be investigated using the same
atomic hydrogenic eigenfunctions basis, Egs. (30) and (29);
in both cases the evaluation of the matrix elements is straight-
forward, involving factorials instead of generalized Riemann
zeta functions in the counterparts of Eqgs. (32) and (38). Of
course, other basis of functions may be used for these and
other potentials trying to improve the convergence and accu-
racy of the results in each specific situation. Also, the reader
may become aware of the approximate perturbative methods
of [1-7], and be interested in comparing them among them-
selves and with the variational methods.
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