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Onsager’s reciprocity relations for the Soret and Dufour effects
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The Onsager reciprocity relations for the Soret and Dufour effects are shown to hold true in a binary mixture of inert dilute gases only if
the diffusive force is appropriately chosen. This statement follows from the solution of the Boltzmann equations for the mixture via the
Chapman-Enskog method to first order in Knudsen's parameter. We also show that if the gradients in the chemical potentials are taken as
diffusive forces, the linear relations hold true, but Onsager’s relations are not obeyed.
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Se muestra que las relaciones de reciprocidad de Onsager para los efectos Soret y Dufour en una mezcla binaria de gases inertes s6lo son
vélidas cuando la fuerza difusiva se escoge adecuadamente. Esta afirmacion se sigue de la solucién de las ecuaciones de Boltzman para la
mezcla via el método de Chapman-Enskog a primer orden en el pirametro de Knudsen. Mostramos también que si se toma a los gradientes
de los potenciales quimicos como fuerzas difusivas, se satisfacen las reacciones lineales, pero éstas no obedecen las relaciones de Onsager.
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1. Introduction

The Onsager reciprocity relations (ORR) are the corner-
stone of linear irreversible thermodynamics. Although im-
plicitly hidden in the old work on thermoelectricity done
by Lord Kelvin in the middle of last century [1,2], they
were only brought into the fore of modern irreversible pro-
cesses in 1931 by L. Onsager [3]. In his work, they were
extracted from a quite ingenious application of chemical ki-
netics and then shown to follow from the premises of the
Einstein-Smoluchowski formulation of the theory of fluctu-
ations [3-6]. After that, several derivations have been of-
fered using arguments ranging from the kinetic theory of di-
lute multicomponent systems [7, 8], moderately dense mix-
tures [9], the theory of fluctuations [5, 6], and the principles
of statistical mechanics [10-13]. A recent review paper cov-
ers all of these topics [14]. Nevertheless, it appears that in
trying to link the phenomenological aspects of these relations
with microscopic theories, a question arises which is crucial
to understand and to obtain such relations. This question con-
cerns the appropriate choice of thermodynamic forces and
fluxes which is not as trivial as it may appear. Rather than
attempting a long discussion on this issue, we shall discuss a
very specific example which clearly illustrates the point. This
will allow the reader to consider similar situations in which
the underlying ambiguities, which we shall here point out in
detail, may arise.

As it is obvious from the above statements, this is merely
a pedagogical paper. Nothing to be said is neither new nor

original. The problem is to discuss the thermal and diffusive
effects in a binary mixture of dilute chemically inert gases;
yet, for unknown reasons, we have failed to find it appro-
priately treated in the current literature. These effects known
after Soret and Dufour must satisfy the ORR. From the phe-
nomenological point of view, they have been exhaustively
discussed in the literature [2,7,15]. Yet, a proof of their va-
lidity starting from the Boltzmann equation is apparently ab-
sent when the Chapman-Enskog method is used to solve this
equation. If Grad’s moment method is used instead, then the
Onsager symmetry indeed follows [16], although the gist of
the validity is somewhat obscured by the inevitable tedious
mathematical details behind the method itself.

What we want to show in a very specific way is that, when
mass diffusion is present, coupled to another vectorial trans-
port process, the appropriate choice of the diffusive force is
essential to carry out the proof of the ORR. And, contrary
to what is believed and even insinuated in phenomenolog-
ical irreversible thermodynamics, such a force is not given
neither by the concentration gradient nor by the gradient of
the chemical potentials by themselves. This fact was already
hinted by Hirschfelder er al. [17] several years ago. Here, we
will explicitly prove it with a microscopic model.

To provide the reader with a self contained and clear ac-
count of the problem to be here discussed, we go back to one
of the basic postulates of linear irreversible thermodynamics
(LIT), namely in the Meixner-Prigogine formulation of the
theory [1, 7], one assumes that the fluxes which are present in
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a non-equilibrium state of a physical system are linear com-
binations of the thermodynamic forces. In isotropic systems,
Curie’s principle [7] requires that coupling among fluxes and
forces can only be tensorially homogeneous. Thus in typi-
cal examples where the fluxes are matter, heat, electrical or
other currents, the forces are the gradients of appropriate in-
tensive variables, concentration, temperature, electrical po-
tential, and so on. For a more complete account of such phe-

nomena, the reader may take a look at the table in p. 39 of

Ref. 1. The specific case to be considered in this paper is that
of a binary mixture of dissimilar dilute gases in which there

is low of matter due to a concentration gradient and flow of

heat due to a temperature gradient. Since ¢, + ¢, = 1.4, b,
labelling the two species, ¢; being their concentration, the
above mentioned postulate states that if J; is the mass flow
of species i and .J; the heat flow in the mixture, and further,
since J, = —.J, we can write that

J a

— Lngrad Cgr L;ggrad T
Jy == Laigrade, — Lysgrad T (1)

where L;; is related to the ordinary diffusion coefficient
(Fick’s law), Ls» is related to the thermal conductivity (Fouri-
er’s law), L, is Soret’s coefficient and L»; is Dufour’s co-
cfficient. If Eqgs. (1) are correct, as in the case of thermoelec-
tricity as the reader may easily find in Ref. 1, then the ORR
require that Lo = Lo;. Notice that we have used species “a”
to write Egs. (1), but we could have equally chosen species
“". Also, it is equivalent to use the concentration as an inde-
pendent variable or the chemical potential since,

grade; = (%) Tgrad;a.,- + (3—;)“ grad T,
which would require suitable redefinitions of the coefficients
LJ 1 and L]g.

The question we want to resolve in this paper is if indeed
Eqs. (1) are the appropriate expressions of the fluxes in terms
ol the arbitrarily chosen forces grad ¢; (or pti) and grad T'. For
this purpose, we use a microscopic model, namely the Boltz-
mann equation, because this model has served as one provid-
ing the microscopic foundations of LIT [1, 7, 8]. Therefore,
Egs. (1) ought to be obtained rigorously from such a model.
We shall show that this is not the case unless the thermody-
namic forces are chosen appropriately as hinted above. For
reasons that we hope become clear through the analysis, one
has to be very careful in choosing the correct thermodynamic
forces if both Eqgs. (1) and the ORR are to be obeyed. This
question has been either avoided [7] or not sufficiently well
taken in the literature, specially when resorting to kinetic the-
ory as a microscopic theory [16].

In Sect. 2, we shall briefly rewiew the kinetic aspects of
the problem, in Sect. 3 we shall compute the mass and heat
fluxes for the mixture and exhibit the Onsager symmetry of

the transport coefficients. Finally, in Sect. 4 we will show
why the argument fails if the gradient of the chemical po-
tential (or the concentration) is sought as a thermodynamic
force.

2. Review of basic concepts

Consider a binary mixture of dilute, chemically inert gases of
species a and b. It is worth mentioning here that the extension
to multicomponent mixtures is just a matter of notation. Also,
the notation here followed is identical to the one used in the
book of Chapman and Cowling [18] so that we shall avoid
unnecessary repetitions. Therefore the Boltzmann equations
for the mixture are

of. 0.

ot +vﬂ’?j‘if_«ﬂ(fufu)+ﬂ(fufb)«

3, 5 )

e L T AR 10 YA R
ot Or

In Egs. (2), fi = fi(r.v,,t) are the single particle distribu-
tion functions lor species i = a, b and J(fif;) the collision
kernels whose explicit forms are not needed for the rest of
the arguments. Clearly, these kernels contain the collisional
probability rates

(Vg Ny =% W VL) = o(vi, v = vi,v;),

the equalility simply implying the principle of microscopic
reversibility. If i = j then o(v;, v;; — vi, Vi, ) is the appro-
priate standard notation (see Ref. 18).

To solve Eqs. (2), we resort to the Chapman-Enskog
method which assumes that f;(r,v;.t) may be expanded
in a power series of Knudsen's parameter 4t and that its
time dependence occurs only through the conserved densi-
ties, namely, number density n;(r,t), momentum density
nu(r,t) and internal energy density ne(r,t) where u is the
barycentric velocity,

1
0= ;Zmum (3)

where p = man, + myng = Pa + pp, and

filrt) = / file,vi, ) dv; , (4)
1 [ p
u; = r fz‘(l‘,Vi,f)Vz‘ d\’g 1= (l.,b, (5)

1 o 1 "
pe(r.t) = 5 Ma / ¢ fa deg+ 5 /C,‘, Sfvdey, | (6)

¢i = v; —u(r, 1) is the thermal velocity and n = Na + 1.
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Therefore

filr,vi, t) = filr, vilni(r, t), u(r, t), e(r,t)]
= f}m [r, vi|ni, u, €]

x {1+ pgi(r, vilni,w, e} +...}, ()

withi = a., b. At this stage we wish to emphasize that Eq. (7),
the ultimate expression of the so called Chapman-Enskog
method for solving the Boltzmann equation, is the only ap-
proximation required in this work. The physical basis behind
this approximation is very easy to understand. The Boltz-
mann equation, as exemplified by Eqgs. (2), describes the dy-
namics of a dilute binary mixture in p-space. No trace of ther-
modynamic or hydrodynamic variables are contained in it. In
order to relate this dynamics to the macroscopic world, some
additional assumptions are required. These assumptions are
the basis of the Chapman-Enskog method:

i) The Knudsen parameter y is a measure of the macro-
scopic gradients in the system. This is how they enter into the
picture.

ii) The local variables defined by Eqs. (3—6) are intro-
duced via the local equilibrium assumption, namely f; be-
comes a time independent functional of them.

Thus, in Eq. (7), the first equality is simply the local equi-
librium assumption and in the second one we have arbitrarily
dropped out all terms of order n > 1 (Burnett and higher ap-
proximations). Thus, (,D'Sl) = ¢;, 1 = a,b. When Eqgs. (4-6)
are substituted into Egs. (2), we find by the standard proce-
dure that to zeroth order in p (Euler fluid),

IO AN +IGO =0 di=ab @

whose solutions are the local Maxwellian distribution fun-
tions,

o m; \3/2 mi 2 o
J = n,(m) exP{QkT [vifu(r, t)] } i=a,b (9)

provided one chooses to define the densities defined in
Egs. (4)—(6) only through ft-([” and interprets the thermody-
namic temperature in the conventional way,

pe = %nkT (10)

where & is Boltzmann’s constant. In this approximation, the
heat and mass fluxes vanish identically [7,8,18], and the
stress tensor is diagonal,

P=pl=nkTI (11)
which is simply Dalton’s law.

To first order in o we get that

a f(0) 5 £(0)
‘)J.f“ +Vq - afﬂ
ot dr

= fO{C(¢a) +Clpa+5)},  (12)

where

Clga) = /dvri dva dvl, 0(Va, Va1 = Vi, Va1)|ga| M,
A‘f")n = fbn (Vu,) + («bn (an) = ¢’ﬂ.{v:-¢) == (bﬂ.(v;l)ﬁ (]3)

C(d’a + '7"?)) = / (JV:, dv,., (fv;,

X 0(Va,Vh =+ Vi, Vi) |gas| A(da + dp), (14)

with a similar definition of A(¢, + ¢s). Also, i = v; —
vi,i = a,band go, = vy — V. The equation for ¢ is ob-
tained from Eqs. (12—14) by simply exchanging indices a and
b. We also emphasize that due to the fact that fi(o) has been
defined by choosing the conserved densities to be completely
determined through itself, the ¢;’s satisfy the so-called sub-
sidiary conditions, namely,

Z m; /(,'J, f,—(m\p,dc, =i, (15)

i=a;b
for ‘I’,‘ = {(_S.,;j, Vi, (,‘))
If we now call

A a(0) A p(0
aff o

ot Jr
evaluate the partial derivatives in the usual way, and take c;
as independent variable for the velocity, one gets that

=

(16)

=+ Vi

).
mic;

2T

9= ur 1:\_'111:1,+( —%) VinT

g
s
kT

Further, since Vu is a second order tensor which will not
couple with mass or heat diffusion, we will take Vu = 0.
This assumption is a typical example of Curie’s principle
referred to in the introduction. Since our binary mixture is
isotropic, only fluxes and forces of the same tensorial rank
couple among themselves. Thus the second order tensor Vu
cannot give rise to either mass fluxes or a heat flux which are
first order tensors (vectors). Moreover, in Eq. (17) take : = a,
add and substract V Inn and call

+ di=ach. (17

i ]

. - (0)
g ¢ Vi A:Tvﬁ}f

Na
g = —.
n

Then

Higer B élllf
g

T = [\7]!1 Nao + ( kT o

Mg Mp(my —mg) dlnp
Tla 10 (1104 ) - ! ] £O (18)
n P Jdr
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where by taking n/n, as common factor in the first an third
terms, we finally get that

. 2 2
:f = gy * [(Iﬂ,ﬂca _ é) alnT Edgb] féO)7 (19)

2k 2 Jor

where

ey OMao " n_ﬁnb(mb —mg) dlnp - —dy  (20)
dr n p Jar
Eq. (12) and (19) and their analogue for i = b , are the linear
integral equations that ¢; (i = a, b) must satisfy. Their solu-
tion follows once more from the standard method, so that no
details have to be repeated. One gets that

T
Do ==taAns(Csye)? 6(1;_ —AesDalcs: v dedap
dlnT
dy=—cpAp(cp,...) - - neyDy(ch, ... Jeday, (21)

where the scalars .4; and D; satisfy linear integral equations,
namely,

A2 =
(?;:;n o ;) Ca :C(Ca Aﬂ) + C(Cﬂ An = CbAb) 3 (22)

%ca =ClcaDa) + C(caDa + & Dy), (23)

and similar equations for 4, and D,. With all these results,
we are now in a position to compute the mass and heat fluxes
and thus to prove the ORR for the Dufour and Soret effects.
We shall pursue this task in the following section.

3. The Onsager relations

Recalling that in the Euler approximation (1 = 0) all the vec-
torial fluxes identically vanish, the quantities that we want to
compute are,

Jt' =1m; fcif,i(ﬂ)¢i d,'ci ] = a, b, (24)

for the mass flux, and

1 - 1
J, = E’nlu /cécaf(go) (hq deg + Emb fcgcbféo}qﬁb dey, (25)

for the heat flux. Recall that

Jo = —Jp.

The remaining steps are straightforward, although rather
clumsy. Take Eq. (24) for ¢ = a and substitute into it Eq.
(21) for ¢, to get that

J. = —nm, / FL9 {C(c, Ds)

alnT
or

+C(ca Do + c4Dy) } - Aa(ca)c, deg

—nm /cﬂfﬂ

The expressions C(c, D, ) and C(c, D, + ¢, D), which con-
tain the collision probabilities, can now be symmetrized fol-
lowing exactly the same steps that are used in the proof of the
H-theorem (see Refs. 7 and 8) to get that

Ca)ca deg -dgp.  (26)

: 1
] FOC(CaDa)eadadea = 7 [ [ £ de, deay lgal
X 0(Va, Va1 = Vi, Vo1 )A(C, Do) A(caAs) = I (27a)
[fm (caDa + D )caAa deo = /ff ©) de,, dcy,

X |gaslo(Va, Ve = Vi, i) A(ce Dy + c3Dy)

X Alcgda + cpAp) = I (27b)
so that
nmg p OInT
Jn ey Lt a a
1 (1% 1o =
= % [ 2 fOD, deodyy (28a)
nmy oy ey 00T
Jp=——=(1"+ ") ——
’ 4 W) Jr
nm .
- Tb 2 9Dy deyd,y - (28b)
To compute the heat flux, we conveniently define,
Ao 5 ds . Iy
roza,- 324 ), )
P (0) 22 D
Jq‘ fa Pa ('n_§ cq de,
(0) 22 5
F .fn @q s — 5 cg de, (30)
where
22 T’niC?
G = :
! 28T

Substitution of ¢, and ¢, from Eq. (21) into Eq. (30), rear-
ranging terms and performing trivial integrals readily leads to
the expression,
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r 1 : B s 5 : dlnT
Ty=-3 [[f(g‘” (c; = §)Aac§ de, + /fém (65 = §)Ab6§ dcb] -

-n {/ F9%,[C(Aaca) + ClAqeq + Apey)] - Dacq deg

Oy [ClApes) + C(Aqcq + Aycy)] - Docs dc,,} Qe 13D

This last expression, under the same symmetrization arguments used to arrive at Eqs. (27) readily transforms into,

5 InT
I, = _% U £ (cg - g)Aacﬁ de, + /f[f‘” (cg = §)Abc§ dcb] BT Bip sy pbia, %(I" + I")d,, (32)

with 7% and I" defined in (27a) and (27b). Egs. (28a), (28b)
and (32) have now the form of Egs. (1) written in the intro-
duction, namely,

J dlnT
== - a.da )
Mq Lag dr Laa das
J OlnT
=L = Ly, o - Lpdas, (33)
my or
, dlnT
Jg= Ly o (L;ﬂ + ]qu)dﬂb

where, by simple inspection of their full form, it trivially fol-
lows that,

Ly =L
Log = Ly (34)

Equations (34) are the main result of this calculation, namely
the ORR for the Soret and Dufour effects respectively. Some
remarks are therefore pertinent. This result was obtained by
the appropriate choice of the independent diffusive force,
namely d,,. From Eq. (20), which defines this quantity, it
appears clearly that a gradient in the pressure is unavoidably
present in its structure. An alternative form for this force,
which is derived in Ref. 18, clearly reflects this property. In-
deed,

o [ 1 1
dop = B (—Vpa = -Vpb), (35)
pP \pa Py

where p, and pj, are the partial pressures of species a and b.

or 4

| Starting from either of the two forms of d,; one could
attempt recasting it in terms of density or chemical poten-
tial gradients only. Although this is indeed possible, the ORR
fail to hold, as it will be shown in the next section. Finally,
it is worth pointing out that previous derivations of the ORR
for the crossed effects in multicomponent mixtures have only
considered mutual diffusion coefficients [7, 8]. A simple ex-
amination of the procedure followed for such a case is unap-
plicable to the Soret and Dufour effects.

4. Other thermodynamic forces

In this section we want to show that if one insists in identify-
ing the thermodynamic forces for the mixed thermodiffusion
effects as the gradients of the chemical potential, as in egs.
(1) of the introduction, in spite of fulfilling the condition that
d,, = —d;, the Onsager relations fail to hold true. As it is
sketched in the Appendix, Eq. (35) may also be written as,

1
doy = —nanp(mp — me)VinT
np

Tallpy My,
np kT

[(Vita)T = (Vip) 7] = —dba, (36)
and where,

(Vui)r = %Vln i, = (37
for an ideal gas.

Using Eq. (36) in Egs. (21) for ¢; (i = a,b) to compute
J, we get that

il
J. =m, /f((,m {fca.Aa —¢a D, [;nﬂnb{mb - ma)} } . Ci deaV 1InT

— [ fO [_pﬂ ( —)} ceqdeq [(Vita)r — (V)] (38)

p kT
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and a similar equation for J,. Further, the modified heat flux J', is also readily calculated to yield,
¥, = {[féO} (C(?I _ g) [—Aac(J — D,e, (%nﬂnb{mb — ma))} “€aidC,
1
+ ff,fo) (Cg - g) [—.Abc;, — Dy, (Enanb(mb = mﬂ))} - Cp a‘.cb} VInT

Y | ENC R P —

4 B
+ [ 1(ct-3

Equations (38), the corresponding one for J;, and Eq. (39)
are now of the form

bfJy == LagVInT = Lo [(Vita)r — (Vits)7]
Jo == LogVInT = Loy [(Vin)r — (V)] (40)
Vg ==LyqVInT = Lo [(Vta)r = (Vin)1]

— Lab [(Vie)T — (Vita)1]

where the diagonal coefficients £,,, £y, and Ly, readily
identifiable from Egs. (38) and (39) and, further, are irrele-
vant for our discussion whereas,

1
Enq =M, /ffsﬂ) {caAa+CaDa [Enanb(mbgmﬂ):'} 'cﬂdc“

1k
Ly :mb/fbw) {_Cb-Ab —cpDy [;nanb{ma -mb)}} “cpdey,

o[ 19(01-3) [ ()

_ [ 0 5 Nallp MaMy
Co= 17(€i=3) [-oven (P22 )] e,

where now obviously,

Lag #Lga
Lyg £ L - (42)
Moreover, since J, = —J,, the first two Egs. (41) imply that
Brg = —~Lag.
Loa = Ly, (43)

so that Eqs. (40) may be rewritten as

J(1 = kﬁm,v In T—C:m [(V,{LG)T = (Vp.b}:r] 2

Vg==LggVInT—(Loa—Lep) [(Vita) 7 — (Vis)r], (44)

but the Onsager relations are not obeyed. This means
that to achieve compatibility between kinetic theory and

) (—Dan (“ﬂpnb w)] ~epdes [(Ven)r — (Via)7]  (39)

kT

macroscopic irreversible thermodynamics, the thermody-
namic force associated with diffusion must be d,; as given
either by Eq. (20) or by Eq. (34) (see Ref. 17). As a final
remark, we wish to insist that these results may be easily ex-
tended to deal with the cross effects between mass and heat
flow in multicomponent mixtures.

Appendix A

We start from the expression given by Eqs. (35) [18],

ol [ 1 1
dn(i = i (_vpa = mv])b) 1 (Al)

PP \Pa Pb
where p; = n,;kT and p; = n;m; i = a,b. Whence

Vp; = nikVT + kTVn;,

so that (A.1) becomes

NaMp

dop = [ (my — mn)J VT

o

NaMy

+ P (mb\?ln Ng —m,V In nb). (A.2)

For an ideal gas

kT 3. 27kT
= Inn; — 5111 §

m; m;

so that

kT
(V) = HVIn n;. (A.3)

Substitution of Eq. (A.3) into Eq. (A.2), and rearrangement
of the terms leads at once to Eq. (36).

Acknowledgments

One of the authors (P.G.) wishes to acknowledge economical
support from proyecto DGAPA-UNAM IN106797.

Rev. Mex. Fis. 44 (4) (1998) 420-426



426

(]

Ca

on

=~

10.

L.S. GARCIA-COLIN AND PATRICIA GOLDSTEIN

. Also at “El Colegio Nacional”.

. L. Garcia Colin, Termodindmica de procesos irreversibles.

Coleccion CBI, UAM-Iztapalapa, (México, D.F., 1990).

R. Haase, Thermodynamics of Irreversible Processes,
(Addison-Wesley Publishing Co., Reading, Mass., 1969).

L. Onsager, Phys. Rev., 37 (1931) 405; ibid., 38 (1931) 2265.
H.G.B. Casimir, Revs. Mod. Phys., 17 (1945) 343.

R.K. Pathria, Statistical Mechanics, (Pergammon Press, Lon-
don, 1972).

. F. Reif, Fundamentals of Statistical and Thermal Physics, (Mc

Graw Hill Co., New York, 1965).

S.R. de Groot and P. Mazur, Non-Equilibrium Thermodynam-
ics, (Dover Publications, Mineola, N.Y., 1984).

L. Garcia-Colin, Teoria cinética de los gases, Coleccién CBI,
UAM-Iztapalapa, (México, D.F., 1990).

. E.G.D. Cohen, L.S. Garcia-Colin, and M.H. Ernst, Physica, 50

(1970) 177.
K. van Vliet, J. Math. Phys., 19 (1978) 1345.

12

13

14.

16.
17.

18.

- D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and

Correlation Functions, (W.A. Benjamin, Inc. Reading, Mass.,
1975).

F. Mohling, Statistical Mechanics: Methods and Applications,
(John Wiley & Sons, New York, 1982).

G.H. Wannier, Statisitical Physics, (Dover Publications Inc.,
Mineola, N. Y., 1991).

L.S. Garcia-Colin and J.L. del Rio, Rev. Mex. Fis., 39 (1993)
669.

. D.R.de Groot, Thermodynamics of Irreversible Thermodynam-

ics, (North Holland Publ. Co., Amsterdam, 1952).
R.M. Velasco, Rev. Mex. Fis., 39 (1993) 352.

J. Hirschfelder, C.F. Curtiss, and R.B. Bird, The Molecular The-
ory of Liguids and Gases, 2nd. ed., (John Wiley & Sons, New
York, 1964).

S. Chapman and T.G. Cowling, The Mathematical Theory of
Non-Uniform Gases, 31d. ed., (Cambridge University Press,
Cambridge, 1970).

Rev. Mex. Fis. 44 (4) (1998) 420-426



