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We present a method to reformulate Einstein’s equations as functional geodesics defined on a metric manifold. Such reformulation is made at
the level of the Einstein-Hilbert action by means of a harmonic map transformation between the spacetime manifold and a functional space.
We then use canonical transformations and Maupertuis’ variational principle in order to reduce the dimensionality of the functional space.
To show the applicability of this approach, we analyze the well-known case of stationary axisymmetric fields. We show that the symmetries
of the corresponding functional geodesic equations can be used to generate new solutions of Einstein’s equation. In particular, we generate
solutions describing the exterior field of a dyon and that of a slowly rotating body.

Kevwords: Einstein’s equations; harmonic map transformation

Presentamos un método de reformulacion de las ecuaciones de Einstein como geodésicas funcionales definidas en una variedad métrica.
Dicha reformulacion se realiza al nivel de la accién de Einstein-Hilbert por medio de una transformacion con mapeos armonicos de la
varicdad del espacio-tiempo a un espacio funcional. Posteriormente utilizamos transformaciones canénicas y el principio variacional de
Maupertuis para reducir la dimensionalidad del espacio funcional. Para demostrar la efectividad del método, analizamos el caso, bien
conocido, de campos axisimétricos estacionarios. Mostramos que las simetrias de las ecuaciones geodésicas funcionales correspondientes,
pueden ser utilizadas para generar nuevas soluciones a las ecuaciones de Einstein. En particular. generamos una solucion que describen el

campo exterior de un dyon y otra que describe el campo exterior de un cuerpo rotando lentamente.

Descriptores: Ecuaciones de Einstein; transformacion con mapeos arménicos

PACS: 04.20.-q: 04.20.Fy

1. Introduction

To simplity the structure of Einstein’s equations, it is usual to
postulate the existence of one or more Killing vector fields in
the spacetime under consideration or, in less technical terms,
the independence of certain coordinates. In a more general
sense, the omission of the coordinates can be regarded as a
special case of the Kaluza-Klein approach. Indeed, to inves-
tigate solutions with two Killing vectors in a systematic fash-
ion. we can consider a Kaluza-Klein type reduction of Ein-
stein’s theory to two dimensions [1]. The dimensional reduc-
tion just amounts to dropping, for all the fields in the space-
time, the dependence on the coordinates that can be associ-
ated with the Killing vectors.

In this work, we are concerned with a different type of di-
mensional reduction in which the number of fields—in our
case, the metric components—is reduced to the minimum
necessary for describing the spacetime. This reduction occurs
at the level of the Einstein-Hilbert Lagrangian and consists
in dropping the terms that can be represented as total diver-
gences, and applying canonical transformations such that the
number of “dynamical variables” decreases. The “dynamical
variables™ are in fact coordinates on a differential manifold
which we introduce by means of a harmonic map transfor-
mation which acts on the spacetime manifold [1]. A scketch
of this approach has been presented in a previous work [2].

A possible application of this reformulation is to use
the symmetries of the functional geodesic equations, which
are solutions of the geodesic deviation equation, to gener-
ate new solutions from known ones. Several solution gener-
ating techniques have been developed during the last years.
In fact, Geroch [3] proposed a method to generate solu-
tions when the seed solutions have at least one Killing vector
field. Kramer [4] introduced the concept of potential space to
investigate symmetry properties of the Einstein-Hilbert La-
grangian, and studied a technique, which can be applied when
the spacetime admits a non-null Killing vector field. In order
to show the validity of the functional geodesic method, we
apply it to stationary axisymmetric spacetimes, which have
been extensively investigated in previous works [3, 4].

In Sect. 2 we define the concept of functional geodesic by
means of a harmonic map, and outline a method to reduce the
dimensionality of the Einstein-Hilbert Lagrangian coupled to
an arbitrary matter Lagrangian.

In Sect. 3, we apply our method to stationary axisym-
metric fields in vacuum. In Sect. 4, we analyze the geodesic
deviation equation in the functional space and investigate the
existence of affine collination vectors. It is shown that there
are only three Killing vectors, which are then used to generate
new solutions.

Section 5 contains an approximate solution generated by
applying on the Chazy-Curzon metric the symmetries associ-
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ated with the Killing vectors. We study the properties of this
solution and show that it may be interpreted as describing the
exterior field ol a gravitational dyon. Section 6 is devoted to
derivation and study of a linearized solution which contains
the necessary parameters to describe the field of a slowly ro-
tating mass. Finally, we present the conclusions and outline
some possible lines of further research.

2. General approach

Let us consider a differentiable manifold M with metric
¢;;(«*) and line element ds® = g;;da'da? defined on M.
Further, we consider a Lagrangian (density) of the form
L = Lgp + Ly, where Ly = /—gR is the Einstein-
Hilbert Lagrangian and £,y represents an arbitrary malter
Lagrangian that determines an action Iy, = [ Ld'a on
M. Tf we neglect the divergence terms of £ gy, which do not
contribute to the field equations, the total Lagrangian can be
written as

F.re Ly, (B

. g ij kol
L= E\/—{I!}J(F.rl ik 445

where F"U are the Christoffel symbols associated with the
melric g;;, and ¢, j.... = 0, 1,2, 3. The Einstein-Hilbert La-
erangian is then a function of the metric g,, and its first order
derivatives g;; . Let Ly be a function of the matter poten-
tials ', A = 1,2,...,p, and their first order derivatives
i)’} The variation of the action Iyra, With respect to the met-
ric gij. 01y = 0, leads to the usual Einstein equations

] o -
R,_,, — l—;]l"r,',JZSWFg. (2)
where
V=0 0L
y (3)
8w dgv
We now define new variables X = {g;;,n"}, where
av = 1.2,...n. The number n may have any values in the

interval p + 1 < n < p + 10, depending on the number of
independent components of g;;. In fact, a transformation of
the space time coordinates with four free parameters may be
used to reduce to six the number of independent functions
¢i;- However, if we use this freedom to fix a priori the num-
ber of dependent components of the metric, we arrive (o a
variational problem which in general is not equivalent to the
original one. This approach is allowed only in special cases
which will be treated below.

Accordingly. the Lagrangian Eq. (1) has the functional
dependence £ = L£(X“, X9) and is, therefore, defined in
the configuration space determined by the new variables X'
and their first order derivatives X¢.

The introduction of the new variables X may be per-
formed in a more formal way by means of a harmonic
map [5. G]. Consider a differentiable manifold N with metric

Goap( X7 and line element dS? = GapgdX© dX ¥ defined
on N. Themap X : M — N, orequivalently X* = X*(z*),
is a harmonic map il the action

]hm = / vV —4 C;nd .\r': ‘\"Lj'gi" atz (4)

is extremal, i.e., 61y, = 0. Here g is the determinant of the
metric g;; and 1 is the dimension of M. Accordingly, the
Euler-Lagrange equations following from the action Eq. (4)
can be written as

—— (V=g99X3) +T%X0X g% =0, (5
v =4 i

where 1, are the Christoffel symbols associated with the
metric Gy 10 dim(M) = 1, then, ' — A, where ) is
a parameter, and Eq. (5) reduces to the geodesic equations
X = X()) for the metric G o3

X* 4 1% X2X7% =0 (6)
on N, where a dot represents the derivative with respect
to A. A detailed analysis of harmonic maps can be found
in [7,8]. By increasing the dimensionality of M we obtain
from Eq. (5) a generalization of the geodesic equation: a
functional geodesic (see below).

Our main goal is to relate Einstein’s equations (2) with
the harmonic map Eq. (5). To this end, we introduce the con-
cept of functional geodesic in the following manner:

A harmonic map X : M — N, where M is a 4-dimen-
sional pseudoriemannian manifold with metric g;; satisfying
Einstein’s equations (2), will be called a funcrional geodesic
if there exists a metric (7, 3 on N such that the harmonic map
Eq. (5) is equivalent to Einstein’s equations (2).

Clearly, our definition of functional geodesic is condi-
tioned to the existence ol a very specific metric (¢, 3 which
might not exist. In fact, a comparison of the actions Tygray and
L1, shows that for (7, 5 to exist, the gravitational action must
be represented as

—t

9 \"’fjﬁ-q”(rfl"fr[ﬂ —T’AJF;‘}U Ly =
\//—_H(r’uﬂ ‘Y‘EI: ‘\':j_q"" o T

a relationship which, obviously, is very restrictive and can-
not always be satisfied. This condition might be relaxed by
allowing the two Lagrangians to differ by a null Lagrangian
(i.e., a Lagrangian which leads to identically vanishing Euler-
Lagrange equations) or, in particular, by a total derivative.
It would be interesting to find the most general form of the
Lagrangian £ satisfying Eq. (7); however, our aim in this
work is 1o show an explicit example (stationary axisymmetric
fields) in which the representation (7) exists, and to investi-
gale in this example the advantages of representing Einstein’s
equations as a set of equations for a functional geodesic.
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Morcover, we will present a method which can be used in
order to attack the problem of finding the necessary represen-
tation (7). The method consists in treating the Lagrangian £
as in field theory and applying to it canonical transformations
which simplify the field equations. To this end, let us consider
the general Lagrangian £ in terms of the new variables X'
with the functional dependence £ = £(X“, DX ¢'). For
the sake of simplicity. we introduce the notation DX which
represents all partial derivatives X 9 so that, for instance,

Gug DX DX" = Gopg X§ X'9", (8)

Starting from the general Lagrangian £ we can construct
the corresponding “Hamiltonian™ H as

H=H(P, X"+ = P,DX® - [, ()

where 7, = dL/JD X" is the canonical conjugate “momen-
tum”. Notice that our construction of the Hamiltonian (9)
does not follow the usual procedure of introducing a folia-
tion with respect to which the evolution of the system may be
analyvzed. Our Hamiltonian is only an auxiliary function lead-
ing o a set of “Hamiltonian equations™ which are equivalent
to the original Euler-Lagrange equations. The advantange of
using this type of Hamiltonian function is that one can intro-
duce canonical transformations in the usual way, r.e. as such
transformations which preserve Hamilton equations. As we
will see below, this fact can be used in order to reduce the
“dimensionality” of the problem.
A canonical transformation

P.o= PP X", X®=X(P. X" (0
is applied to H such that one of the new coordinates. say X8,
becomes cyclic, i.e.. 0H /X ™ = 0, where H_is the Hamil-
tonian obtained from H by applying the canonical transfor-
mation (10). The advantage ol this type of canonical trans-
formation is that the corresponding conjugate momentum be-
comes a constant of motion. Accordingly, the action of n — 2
canonical transtormations of this tvpe leads to a Hamiltonian
of the form

HIH 2 H‘H 2](]".“”"3}.‘\'(1”_21,‘\'5”__:)..r"). (1

where the index (1 — 2) refers to quantities obtained by
means of a canonical transformation. It can be seen that the
canonical transformations have reduced by nn — 2 the num-
ber ol independent canonical coordinates of the Hamiltonian.
In principle. one could continue this procedure until one gets
a system in which all the conjugate momenta are constants
ol motion and hence the field equations reduce o a sim-
ple system of equations which can be solved by quadratures.
However, in each step one has to solve also the equations for
the canonical transformations, which can become as ditficult
as the original field equations [9]. Therefore, when applying
this procedure to concrete Hamiltonians one has to analyze
the resulting equations carefully in order to decide which is
the most suitable number of canonical transformations one

should apply. In the general case analyzed here. we apply
1 — 2 canonical transformations, i.e.. we keep only two inde-
pendent variables X(‘” .y and .\'("’” ). because in the explicit
example we will analyze in the subsecuent sections this is ex-
actly the number of arising independent variables.

If it happens that the conjugate momenta £/}
some ol them) associated with the cyclic variables en-

(or

ter the Hamiltonian (11} only lincarly, then it is possi-
ble to climinate them by applying a method proposed by
Routh [9]. To this end, we construct the Lagrangian £ 721 =
i ¢ 9].,\'(.3” v DXL, syt
Hamiltonian (11). Routh’s method essentially consists in per-
forming a Legendre transformations for the cyclic coordi-

') corresponding to the

nates only. i.e.,

dL=2) .
R — BRSO (12
(.)[)‘\I\H 2 )

where the cyclic coordinates are labeled by X7, 5 =
3.4, o0 The resulting Routhian is then a function of the
noncyclic coordinates and their associated “velocities™. and a
set ol constants A” related 1o the momenta conjugate to the
cyclic coordinates. r.e..

R =R{X}

(n—2)

; X

(=232

T a=1;2. (13)

The variation of R with respect to X@ leads to a set
of second order differential equations (Euler-Lagrange equa-
tions) which are the main ficld equations. When solving these
cquations, we can ignore the cyelic coordinates. and consider
the Routhian as a Lagrangian. Additionally. the field equa-
tions for the cyclic coordinates are obtained (variation with
respect to A% in the Hamiltonian form.

In the procedure described above we have used the
Hamiltonian (9). This implies that the general Lagrangian
does not contain terms linear in the “velocities™. There-
fore, the Routhian (13) will contain only quadratic “veloci-
ty” terms. Hence, after applying the above procedure. we can
consider a general Routhian of the form

R = hal X% 3.2 DX DX — V(X* X5 2.

=12 gi= B o L (14)
where V7 is a “potential” term that does not contain deriva-
tives of X, It turns out that the further investigation of the
Routhian (Lagrangian) can be divided in two different cases.

2.1. Pure kinetic Lagrangians

Consider a Lagrangian with vanishing potential £ =
Do (N e )DX DX We have dropped the constants A®
since we are interested in the Euler-Lagrange equations only,

which in this case take the form

RX® +0% DXBX"4 W™ Dl PX" =0, (19
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where ' are the Christoffel symbols associated with f,,,.
Lquation (15) corresponds to the functional geodesic equa-
tions in a two-dimensional space. The last term in the left-
hand side ol Eq. (15) is due to the fact that the metric /i, cx-
plicitly depends on the spacetime coordinates ' which now
are being used 1o parametrize the coordinates X, Thus, a
solution of Eq. (15) is a two-dimensional functional geodesic
that represents a solution of Einstein’s equations. This reduc-
tion ol the problem is of especial importance since we can
now make use ol all the symmetries of two-dimensional func-
tional geodesics in order to investigate solutions of Einstein’s
cquations. For instance, it is possible to introduce affine pa-
rameters in Eq. (15) such that the last term dissapears. Addi-
tionally, onc can always perform a coordinate transtormation
that brings the Lagrangian into its conformally flat form, i.c.,
L=5SX"X)H[(DX")? + (DX?)?], where T is a confor-
mal factor. Furthermore. one can generate solutions using the
lollowing approach. Let X' be a solution of Eq. (15). The
infinitesimal transformation

'\,” ' '\"n — J\-—u o FI[”, (]ﬁ)

eenerates a new solution of Eq. (15), to first order in €. if 5"
satisfies the equation

Vit + R DX DXy — DTS )DX"% =0, (I7)

15 the Riemann tensor of the metric 71, and ¥V
is the total derivative “on shell”

where R

bed

¥ =D +DX—2
=L+ > =
(j){'\'u

[T BXP0XE +g® Bk, ) DX* )—;\—' .
I the metric h,,,, does not depend explicitly on the “parame-
lers™ ', Eq. (17) reduces to the equation of geodesic devia-
tion for the connecting vector . Consequently, one can use
Killing vectors or affine collineations of the metric /i,,;, in or-
der 1o generate solutions. Also, we have used this method to
study the posibility of relating seemingly unrelated problems
by means ol a hypersymmetry [11].

(18)

1.2, Lagrangians with potential

[.ci us consider the Lagrangian

DX*Dx®
Dy Dt

For the sake of simplicity, we assume here that the coordi-

nates X are parametrized by 7. The field equations for the
Lagrangian (19) can be obtained from the variation

L= Tap(X?) = PR, (19)

NDXe
f)if)r

i Cxome
§ / Eir = / 9% pxe —,s/ HDr (20

Since the Lagrangian (19) does not depend explicitly on the
parameter 7, the corresponding Euler-Lagrange equation im-
plics DH = (), i.e., the associated Hamiltonian is a conserved

quantity. Consequently. the last term of the right-hand side of
Eq. (20) vanishes, and we can use Maupertuis’ principle [9]
to derive the field equations. From the Hamiltonian associ-
ated with the Lagrangian (19). we obtain

bR XD X0
Vw—v

,’)T =

Introducing Egs. (19) and (21) into Eq. (20), we get

A / = 2 / \/(H - "._)/l”I,D_Y”JD‘\'h. (22

This corresponds to the variation of the two-dimensional line

element

)

N s vy N T D (23)

This result shows that the case of a Lagrangian with non-
vanishing potential 17 # 0 can be reduced to the case of a
pure kinetic Lagrangian with a conformally transformed met-
ric, when the Hamiltonian is conserved, D'H = (. The field
cquations are. theretore, given by Eq. (15) with f1,,, replaced
by i, = (H — V)l Accordingly, solutions of the Ein-
stein equations are equivalent o functional geodesics of a
two-dimensional space described by the metric £/,

In the following sections we apply the method developed
here 1o the case of stationary axisymmetric fields, for which
itis well known that ditferent solution generating techniques
apply and lead to real new solutions.

3. Stationary axisymmetric fields

We begin considering the stationary axisymmetric line ele-
ment in Weyl canonical coordinates

ds® = 2V (et —wdp): — o2 [1'2""(.'/[)"’ +(.f:2)+,02r."(f)."]. (24)

where ¢, w, and 5 are functions of p and = only. If © =
const., Eq. (24) lcads to the special case of static axisymmet-
ric ficlds. The calculation of the corresponding scalar curva-
ture leads to the Lagrangian density

rll

= golw +wz) +20(8pp + 2

12 2 F
— Vo= Naz— U',., = ’W:) -+ 2‘.{‘;) ) (25)

which generates the usual Einstein equations. We proceed 1o
construct from Eq. (25) another Lagrangian which leads to a
set of functional geodesic equations as described above.

Following the description given in the previous section,
Eq. (25) can be written as in Eq. (8) in the following form:
[we made the substitution pD*B = D(pDB) — DpDB and
neglected the total divergence terms|,

LAy

£ =9DpDy + '.)—(Dw)‘-' —2(DP)? . (26)
_[)
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where D = (9,.3.), and X = (1), w,v,p). Now, since
and w are already cyclic coordinates of the Lagrangian (26),
we directly use the Routhian density R, Eq. (12) for those
coordinates:

oL L
=———Dy+ —Dw—L
R B
1 S NS
=5pe VI, + 2p(Dy)” . (27)

Here 11, is the canonically conjugate “momentum™ asso-
ciated with the generalized “coordinate” w. Note that the
conjugate momentum I1, (as well as ) does not enter the
Routhian (27) at all. As a consecuerce, it can be shown that
the metric function 7 is determined by two first order partial
differential equations that can be integrated by quadratures
once ¢ and w are known [12].

It follows from Eq. (27) that I, is a “constant of mo-
tion” (i.e., DIL, = 0) in the manifold N. Using this fact, we
can define an additional differential operator D = (—0d-, d,)
such that DD = 0. Introducing a function €2 by means of the
relationship

I, = p~'e™Dw=DQ, (28)

the Routhian (27) becomes

R = Lpf2((Df)? + (DR, (29)

where f = exp (2¢'). The variation of R with respect to f
and €2 leads to the Euler-Lagrange equations:

DAf— U2~ DO 457 Dol =1
D*i— 2 DFDO + p  DpB0=0 . (30)

It is straightforward to show that Eqs. (30) are equivalent
to the principal vacuum equations (2, = 0) which follow
from the stationary axisymmetric line element (24). For com-
pleteness. we mention that taking £ = f + i€, the Routhian
density (29) can be rewritten as

2p

P
(8 +EB*)*

DE.DE" 30

where an asterisk represents complex conjugation. The vari-
ation of Eq. (31) with respect to £ or E* leads to the Ernst
equation [13]
(Re E)AE =(DE)?,
with
AE =D*E + p ' DpDE . (32)
As expressed in Eq. (29), the final Routhian may for-

mally be interpreted as a “line element” of the form given
by Eq. (14) with no potential term, so in this case it is a pure

kinetic one, where /1, (a.0 = 1,2) is a 2 x 2 symmetric

matrix
I .sif1 0
By = E'“f (U 1) (33)

and X* = (f, Q).

4. Symmetries of the functional geodesics

Starting from Eq. (29), we can perform an infinitesimal trans-
formation to generate new solutions from known ones, which
are called “seed” solutions. Taken the symmetry vector i as
a function of the parameter s and the coordinates only, the
symmetry equation (17), (the geodesic deviation equation),
can be rewritten as

0 +20%) s DX+ (0} + RGeqn)DXP DX =0, (34)

where a semicolon represents the covariant derivative asso-
ciated with the metric h,, given in Eq. (33). Notice that in
the case that " is just a function of X*, even for a met-
ric depending on the parameter s, the symmetry equation re-
duces to that of affine collineations. Consider this last case,
n" = 5" (X"). Introducing the metric (33) into the symmetry
equation (17). we gel

Dyt —2f-Y(DfDy' — DQDn?)

Ly

- r}'f_zl[D_/‘}j — (D)) + p"leDr,-1 =0
D*n® —2f~YDfDy* + DOQDnp")
+ 2 f2DfDOQ+ p ' DpDy* = 0. (35)

A detailed investigation of Eq. (35) shows that it possesses
three independent solutions:

iy = (010 (36)
ne = 2. (37)

N2 _ r2
J—f—). (38)

= (f 9
Moreover, it can be shown that there are no affine eigen-
collineations, that is, the solutions (36-38) coincide with the
Killing vectors of the metric (33). To find more general sym-
metry vectors, il is necessary to consider the most general
ansarzm® = n%(s. X' DX". In this work, however, we
want to focus attention on the symmetry vectors (36-38) and
to show that even these simple vectors can be used to connect
classes of solutions with different physical properties.

We will now consider the type of solutions which can be
generated by means of the vectors (36-38). Let €1, €2, and e5
be the parameters introduced by the symmetry vectors 1)y, 15,
and 1%, respectively, according to Eq. (16). Acting on a seed
solution {f,Q}, the vector 1) leads to the new functional
geodesic f' = fand Q" = £} + ¢;. According to Eq. (28),
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this is equivalent to adding a constant wy to the metric func-
tion w. Obviously, this symmetry transformation is trivial
since a coordinate transformation of the form t’ =t — wyo
in the line element (24) absorbes the new term. Physically,
this is equivalent to the introduction of a rotating frame for
the line element (24). Similarly, it is possible to show that the
parameter ¢, associated with the symmetry vector 75 can be
absorbed by means of a rescaling of coordinates. The only
non-trivial symmetry vector is 7§ and it can be used to gen-
erate new solutions of the form

i

g =g+ %’(Q’ U (39)

F(1+ &8 ,

Although, when acting alone, the symmetry vectors 1y
and 75 are trivial, we will see below that they are helpful
when used together with 75 to generate non-trivial solutions.
Note, moreover, that the corresponding parameters € and ¢,
can take any real value because they do not enter in the sym-
metry equations at all. That is, putting the infinitesimal trans-
formation, Eq. (16), with »{ and 5§ given by Egs. (36) and
(37) respectively, one sees that the resulting geodesic devia-
tion equations, Eq. (35), are identically satisfied regardless ol
the values of the parameters ¢, and e», respectively. Conse-
quently, the symmetry vectors 7§ and 75 define finite sym-
metry transformations of the Routhian (29). In order to find
the finite transformation associated with 7§, we consider the
corresponding infinitesimal generator 7); defined as

3]

: ) i o

af
The repeated application of 73 leads to the finite transforma-
tion which corresponds to the integral curves of 73 and, ac-
cording to Eq. (16), satisfies the differential equations (see,
for instance, Ref. 14)

89" 1 2 2

= = [ — ) 41

Bes 2( I ) (41)
with initial values f'(e3 = 0) = f and §)'(e3 = 0) = Q. The
integration of Eq. (41) leads to the finite transformation law

af’ B

(:_)F_‘{

leI .

= 4f(f+0%)
Tl (P02 —20P2 4452
_2(f2+52!)[€;} (f2+slz)*ZQ]

) = ‘
[e3 (f2+ Q%) —2Q)2 + 472 (42)

which satisfies the initial value conditions. As expressed in
Eq. (42), there is no obvious relationship between the trans-
formation generated by 7j3 and other known solution gener-
ating transformations [15]. However, the existence of such
a relationship cannot be excluded at this level because it is
necessary o use a different representation of (42), namely
as o Bicklund transformation. Even if the transformation 7j;

turns out to be expressable in terms of known transforma-
tions, the interpretation of solutions of Einstein’s equations
as functional geodesics allows us to investigate more general
symmetries such as affine, curvature or Ricci collineations for
the metric g,p. Moreover, it is possible to analyze the sym-
metries mentioned above also as contact transformations, i.e.
depending on the derivatives of the seed solutions. This task
will be treated in further investigations.

The finite symmetry transformation (42) can be used to
generale exact solutions from known ones. Nevertheless, in
the next sections we will use only the infinitesimal genera-
tor (40) to derive approximate solutions, since the latter are
sufficient to investigate the physical significance of the solu-
tions generated by this method, and this is the main task we
are interested in the present work.

5. Exterior field of a gravitational dyon

The interest in monopole structures has rapidly increased
during the past few years due to their discovery in gener-
alizations of the standard model of particle physics. Mag-
netic monopoles were first introduced by Dirac [16] in elec-
trodynamics to symmetrize Maxwell’s equation in a direct
way. Certainly, the most important consequence of the ex-
istence of magnetic monopoles is the quantization of elec-
tric charge. Most grand unified theories possess t'Hooft-
Polyakov monopoles [17]. In general relativity there exist
two different sorts of monopole structures: a magnetically
charged black hole and a gravitational dyon. In fact, the mag-
netic black hole is the magnetic counterpart of the electrically
charged black hole described by the Reissner-Nordstrom
metric, and is related to it by a duality rotation. A magnetic
black hole can also be interpreted as a magnetic monopole
with mass greater than a determined critical value [18].

A gravitational dyon is a hypothetical object the existence
ol which follows from the relativistic character of gravita-
tion. In Newtonian theory, the only source of gravitation is
the mass. In contrast, general relativity predicts that mass as
well as rotation are stationary sources of gravitational interac-
tion. This leads to the well-known analogy between relativis-
tic gravity and electromagnetism. The gravitational field gen-
erated by a distribution of mass turns out to be analogous to
the electric field, and the field of an angular momentum cur-
rent presents characteristics similar to those of a pure mag-
netic field. For this reason, the field generated by an angular
momentum current is called “gravitomagnetic™ field. For this
analogy to be complete, it is necessary to require the exis-
tence of a “gravitomagnetic monopole™ as the counterpart of
the magnetic Dirac monopole of electrodynamics. A gravita-
tional dyon is thus a mass endowed with a gravitomagnetic
monopole. In this section, we will investigate solutions that
can be generated from a static seed metric by means of a com-
bination of symmeltry transformations, and may be used to
describe the exterior field of a gravitational dyon.

To give a correct interpretation of the solutions presented
in this work, we will use a coordinate-invariant method based
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upon the investigation of the relativistic multipole moments
lor asymptotically flat solutions, according to the definition
proposed by Geroch and Hansen [19]. We now proceed Lo
derive the solution for a gravitational dyon. 1f we consider a
static asymptotically flat solution (. €2 = 0) as seed melric
and apply to it the symmeltry transformation associated with
the vector 1)y . we obtain a stationary solution with ' = f and
14 /7 /2. It can be shown that for any given asymptol-
ically Hat f the new solution does not satisty the condition of
asymptotic Hatness d la Geroch-Hansen [20]. Consequently,
il 1s not possible to covariantly interpret the solutions gencr-
ated by this type of transformation. To avoid this difficulty.
we use a combination of three different symmetry transfor-
mations (36-38). To the seed static solution f we first apply
the symmetry vector 1 with parameter €. The resulting so-
lution is then used as seed solution for a transformation with
the vector 1y and parameter ey, and, finally, we apply the
symmetry vector 15, The new solution can be written as

=1+ e) f[1 +erez(l +e2)] (43)

and

9

sz’:uwﬂ{n ~ ikl el - €5} = (44)
IUis now necessary to choose the parameters introduced by
the svmmetry transtormations such that the new solution be-
comes asymptotically flat. This condition leads to the rela-
tionships

. - €9
r=——"— . and e =-—-———-"-—, (45)
24 o el +e0)?
where ¢2 18 a negative constant defined in the interval e, &
(~2.0)\1—1}. As we mentioned at the end of Sect. 2, the
parameters € and e; do not need to be infinitesimally small.
Consequently, they can be chosen such that Eq. (45) is satis-
ficd and €4 becomes infinitesimally small as required by the
transformation taw (16). In fact, even for very large values of
¢ 1. ¢y remains infinitesimal and e, remains in its domain of
definition,

To analyze a concrete solution, we have to specity the
asymptotically flat seed metric. Consider the Chazy-Curzon
metric [21]

f=exp(=2m/r), r? = pP 4 22, (46)
where i is a positive constant. The new solution is then given
by substituting Eq. (46) in Eqs. (43) and (44). Choosing the
new parameters according to Eq. (45), we calculate the cor-
responding Geroch-Hansen multipole moments and obtain

Mg=m ., Jo = —mes . (47)

There are higher mass multipole moments M, which corre-
sponds to the axisymmetric mass distribution of the source,
and higher moments for the angular momentum current ./,
which, however, can be neglected since they are proportional

10 €3. Equation (47) shows that this solution represents the
eravitational field of a body with mass m and gravitomag-
netic monopole —niey. Hence, the new parameter ¢; may
be interpreted as the specitic “eravitomagnetic™ mass which
may be positive as well as negative. The tetal “gravitoelec-
tric™ mass of the seed solution has not been affected by the ac-
tion of symmetry transtormations. For the sake of complete-
ness, we present the metric functions of the new solu tion:

0 = —Byes (1 4 ea)ale. (48)

Finally, we would like to mention that using the
Schwarzschild metric as starting  solution, it is possi-
ble to generate the linearized Taub-NUT (Newman-Unti-
Tamburino) solution which is also a candidate for describing
the exterior field of a gravitational dyon. In general, it should
be possible to find other solutions which. being different from
the Taub-NUT metric or the one presented here, present sim-
ilar properties and hence might be used to describe a dyon.
They all could differ only in the set of multipole moments
higher than the monopole one; that is, there may exist dil-
ferent distributions of mass possessing the same gravitomag-
netic monopole structure.

6. Field of a slowly rotating mass

For the study of the gravitational field of astrophysical bodies
like stars and planets. it is necessary to investigate solutions
which possess @ set ol mass multipole moments as well as a
set of gravitomagnetic moments representing the rotation of
the source. In contrast to the solution presented in the last sec-
tion. a solution with realistic rotational propertics may have
only gravitomagnetic multipoles higher than or equal to the
dipole one. In this section we derive a solution wich satisfies
this condition.

Consider any stationary seed solution (f. ) satistying
the conditions of asymptotic fatness. As we have done in
Sect. 3, we apply three consecutive symmetry transforma-
tons according to Eqs. (16) and (36)-(38). The new solution
is then given by

J =14 e) f[L+ ea(l +cg)(sz+m]ﬂ (49)

QF =41 F'_}) Q—F'fl

5 (el (f° —e = Pegl —2

)| . (50)

In general, this new solution is not asymptotically flat. How-
ever, il we demand that the parameters € and ¢, satisly the
relationships (45). asymptotic flainess is conserved and the
resulting solution can be written as
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f'=f1+es(l +€2)%Q) . G
@ =0+ 21+ 1+0% -7, ]

The calculation of new solutions does not present any dif-
ficulties. We will present here only one solution which illus-
trates our approach and can easily be interpreted. Consider
the seed solution [22

2

=1 +n'f(y"‘ —1)

/= T IEs ol 1P
200 (x + y) .
= - e — (53
(r+1)2+ad(y—1)2 )
with
1
r=——(ry 47_),
_)Hi
1
g= —{rgp=r.j, (54)
2m

P+ (z£m)?,

,_:l‘;

where m and a; are constants. To illustrate the effect of
symmetry transformations, we first analyze the seed solu-
tion (53). An investigation of the corresponding multipoles
show that there are gravitoelectric as well as gravitomagnetic
monopole and dipole moments. Due to the presence of the
gravitomagnetic monopole and gravitoelectric dipole, this so-
lution cannot be considered as a candidate for the description
ol the gravitational field of any astrophysical object. Hence
solution (53) is of no interest from a physical point of view.
However. if we apply three different symmetry transforma-
tions to solution (53), its physical meaning can totally he
changed. In fact, putting Eq. (53) into Egs. (51) and (52), and
calculating the relativistic multipole moments of the resulting
solution, we see that all undesirable multipole moments van-
ish il evy is assumed to take the value

) :7(:{(]-{—-(:2)2_ (55)
Then, the only nonvanishing multipoles are

Mo =1, and Ji = es{14€3)%m (56)
The last equation shows that the total mass of the body is
given by 1 and that only the gravitomagnetic dipole moment
survives in accordance with the dipole character of rotation.
The angular momentum per unit mass is given by e3 (1 +¢1)”
and can be positive as well as negative, corresponding to the
two possible directions of rotation of the source with respect

to the symmetry axis. Consequently, the new solution may be
interpreted as describing the exterior field of a slowly rotating
mass. Using Eqs. (51)—(55) and (28), the calculation of the
meltric components leads to

P r—1
S a1
21 —y?
& =meg(1 +e2)” — .
a1
I # =1
e (57)

This is equivalent to the Lense-Thirring metric | 23], the phys-
ical meaning of which has been investigated by using other
approaches and coincides with that we have obtained above
by just analyzing the corresponding multipole moments.

7. Conclusions

We have presented a method to reformulate the Einstein-
Hilbert Lagrangian coupled to an arbitrary matter La-
grangian, in such a way that the resulting field equations can
be interpreted as functional geodesics in a different manifold.
This reformulation is made by means of a harmonic map. We
then proceed to perform a dimensional reduction of the new
Lagrangian by applying canonical transformations.

As an application of this method, and in order to prove
its validity, we studied the symmetries of the functional
geadesics of the space associated with axisymmetric station-
ary gravitational fields, and we were able to generate some
solutions and to analyze their physical significance. It is also
possible to show [24] that the method presented here apply to
other vacuum gravitational fields like Einstein-Rosen waves,
rotating gravitational waves, plane symmetric fields, rotat-
ing cylindrically symmetric gravitational waves, spherically
symmetric ficlds. as well as to non vacuum fields like an ad-
ditional pure scalar ficld or a perfect fluid which preserve the
symmetries of the spacetime.

The reformulation of the Einstein-Hilbert action as in
Eq. (7). indicates the possibility of analyzing it in the frame-
work ol other theories, like the non-linear ¢ models, and
string theory. The investigation of these topics could be of
interest. Morcover, we want to stress the fact that the idea
presented here is not only a method to generate solutions, but
also a different point of view to work with Einstein’s equa-
Lons.
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