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Inhibition of two-stream plasma instabilities due to thermal pressure gradient
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We present a study of the plasma instabilities in a system consisting of two mutually interpenetrating plasma beams, taking into account
the effects of the thermal pressure gradient in one of them. We discuss how this gradient may destroy these instabilities. Also we include a
derivation of the dispersion relation for this system and a commonly used criteria to classify instabilities.

Kevwords: Plasma waves: two-stream instabilities
Presentamos un estudio de fas inestabilidades de plasma en un sistema que consiste de dos plasmas mutuamente interpenetrantes, tomando

en cuenta los efectos del gradiente de presion térmica en uno de ellos. Discutimos cdmo este gradiente puede destruir estas inestabilidades.
Incluimos una derivacion de la relacién de dispersion para este sistema asi como un crilerio cominmente usado para clasificar las inestabili-

dades.

Deseriptores: ondas de plasma; inestabilidades de dos corrientes

PACS: 52.35.-g; 52.35.Fp: 52.35.Qz

1. Introduction

The propagation of electromagnetic and plasma waves in
complex media has been a topic of interest in many branches
of physics. The wide variety of possible technological appli-
cations and also the rich amount of basic physics involved
in these phenomena has lead to study them deeply and con-
stantly through the years [1]. It is common to deal with waves
whose amplitudes decrease or remain constant as they prop-
agate. However, this is not always the case since there are
systems in which waves may grow as they propagate. For ex-
ample, one of the most studied systems which may exhibit
this kind of behavior are plasma streams and particularly the
case ol two mutually interpenetrating plasma streams [2—13].

A thorough understanding of the electromagnetic wave
propagation in plasma systems requires a dynamical descrip-
tion of the charge carriers, such as the simple hydrodynamic
model. In this model one includes, besides the electromag-
netic and damping forces acting on a carrier, the force due
to the carrier thermal pressure gradient. This pressure has
been shown to have an important role in semiconductor het-
erostructures [1, 14]. Since the thermal pressure gradient has
not been discussed in detail for the two-stream system, the
purpose of this paper is to investigate in detail its effects on
the system. For this purpose, we proceed in the following
way. First, we introduce the basic framework by presenting
a short derivation of the dispersion relation for longitudinal
normal modes of the electric field. Then, we present wave in-
stabilities by classifying waves according to their spatial and
temporal behavior and we choose one of the simplest crite-
ria used to decide whether a solution of the dispersion rela-
tion corresponds to an instability or not. Finally, we derive

the two-stream plasma system dispersion relation including
the thermal pressure gradient term and discuss quantitatively
how the instabilities may be suppressed by choosing appro-
priate values for this term.

2. Dispersion relations

Letus discuss the problem of electromagnetic wave propaga-
tion and the corresponding dispersion relations. The variables
in our problem (as for example the field intensities) may be
expressed as functions of the spatial coordinates r and time ¢,
thatis, as o(r.1). If the medium is homogeneous in r and ¢,
one proceeds to loak for solutions of the form

p(r,t) = eilker—ut) (1

which are plane monochromatic waves.

One normally finds that solutions of type (1) may exist
only if w and I are appropriately related. The equation which
determines permissible relations is known as the “dispersion
relation™. In the case of longitudinal electrostatic waves prop-
agating in a medium, the dispersion relation can be found
from Gauss law,

V-D = 47p®t, (2)

where D is the electric displacement vector and p®** is the ex-
ternal charge density. The most general linear relation among
the electric displacement field and the total electric field is a
relation of the form

o 5
Delmd) = / dt' / dV'eas(r, t;r HYE(x', ¢, 3)
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INHIBITION OF TWO-STREAM PLASMA INSTABILITIES DUE TO THERMAL PRESSURE GRADIENT 515

(a)

(b)

(c)

FIGURE 1. Wave packet contours U(x, t) for a convective instabil-
ity in one dimension. /. ¢, and x are the constant parameters in
punels (a). (b) and (c) respectively (after Pozhela [16]).

moves through the medium. But if instead of this impulse
we perturb the same medium with a steady-state oscillating
source which is spatially localized, then we expect to sce
a steady-state oscillation of the medium at any fixed point
hut the wave form shows an exponential growth in amplitude
as the wave propagates away from the source as shown in
Fig. 3a. This oscillation can be described as a wave with real
[requency w but complex k which is precisely an amplifying
wave. On the other hand, to construct the convective wave
package shown in Fig. 1, it is necessary to have a superpo-
sition of waves with some of them being amplified. In both
cases the medium is the same but the initial conditions are dif-
ferent. Therefore, a medium that supports amplifying waves
may exhibit convective instabilities. In other words, the state-

t
U=1 u=1

u=0 \ Ut = u=0

\]

(a)

(c)

FIGURE 2. Wave packet contours U (2, ) for an absolute instability
in one dimension. {7, f, and @ are the constant parameters in panels
(a), (b) and (¢) respectively (after Pozhela [16]).

ment that the system supports amplifying waves is synony-
mous with the statement that the system exhibits convective
instabilities.

AL this point. it is necessary to emphasize that the sign
ol the imaginary part of & cannot be the criterion for distin-
auishing between amplifying and evanescent waves. This is
due, in part, because a change in the sense of propagation for
a given direction is equivalent to a change in the sign of k.
Nonetheless, there is a more subtle reason that arises when
both. o and /- are complex. In order to see this point let us
consider the wave behavior of a localized oscillatory source
whose amplitude grows exponentially in time. If this growth
is not very rapid, the form of the curve is similar to that shown
in Fig. 3a. Butif the amplitude of the oscillatory source grows

Rev. Mex. Fis. 44 (5) (1998) 513-521
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Fraure 3. Spatally localized oscillatory source with (a) constant
amplitude, (b) rapidly growing amplitude.

i time sufficiently rapid, the amplitude close 1o the source
can he made Targer than the amplitude far from the source—
the later having grown because of the convective instability
at a much lower starting level. In this way the spatial gradient
ol the amplitude can be reversed, corresponding to the rever-
sal ol the imaginary part of k as shown in Fig. 3b. With this
facts in mind, we can think on a procedure to decide whether
a solution of the dispersion relation with real w and complex
J- corresponds to an instability or to an evanescent wave; first
we take w with a large positive imaginary part, corresponding
to growth in time of the wave and then let this imaginary part
tend to zero. If in the process the imaginary part of I changes
sign, then the system is convectively unstable. There are other
procedures to find out if a solution of the dispersion relations
correspond or not to an instability. for example, Sturrock de-
scribes a criteria [2] based on a certain diagram on complex &
plane that can be constructed from knowledge of the disper-
sion relation. Since this criteria can be difficult to apply we
have chosen the criteria described above due to its simplicity.

4. Waves on plasma streams

We proceed to obtain the dispersion relations for a system
consisting of two mutually interpenetrating plasma beams.
We do this by considering each plasma beam as a charged
fluid formed of an specific type of charged particles desig-
nated by s(= 1,2). Particles of type s have mass m,, and
charge ¢.. We will assume that in the unperturbed state, the
density and velocities of species s are n? and v¥. In presence
of a perturbation, the density and velocity of carrier s arc

”s:”2+(5”5- (1)

and

V= Va4 vy (12)

The motion of an average carrier in stream s is given by

the transport equation

v, q. 1
{'_" (W= Vv = 1 (E + -V, X B)
at M (o4
VE;
- v, (13)
mynd

CARLOS 1. MENDOZA AND MARCELO DEL CASTILLO-MUSSOT

where v, is the collision frequency, E and B are the total
clectric and magnetic fields in the position of the carrier, and
VP, is the electron thermal pressure gradient.

It we are considering two plasma beams with charges of
the same sign and also that the system is electrically neutral,
so that there is no electric field in the unperturbed state, then
we should assume a uniform charged background with charge
ol opposite sign of that of the beams:

n‘,'(,u + u!_iqg +nlq, =0, (14)

and nf and ¢, are the (constant) density and charge of the
backeground. respectively. Therefore, the only electric field is
OE and it satisties Gauss law [15]:

V- dE = A7(g1dng + g201) . (15)
It is also supposed that there is no magnetic field in the un-
perturbed state and that the magnetic fields produced by the
carriers can be neglected. Finally, i we disregard collisions
{(vs = 0). then the transport equation of an average carrier in
the stream s can be written as

m,.n"? ) (16)

v, s
: 5 s (vl: Vv, = =2 B
N ' My
Lincarizing this equation we can write the equation of motion
for the perturbation dv
s VP,

+ (v - V)dvy, = —0E —
o g

0V,

(17)

1t 418

where we wrote P, = P + §P,, with P? the unperturbed
clectron pressure.

To complete the system of equations it is necessary (o in-
clude the continuity equations

i

At

+ V¥V -(ngv,) =0, (18)

These can also be linearized and written for the fluctuations
of carrier density

Ao 0

5 + v Vo, +niV-dv, = 0. (19)
1

s

Carrying out a Fourier analysis of the equations of mo-
tion, that is, looking tor planc-wave solutions so that the first-
order quantities vary as expli(k - r—wt)], the lincarized fluid
cquations [Eqs. (15), (17) and (19)] take the form

ik -E =4n(qn, + q20ns),  (20)
by, £l - vy, = Lm0y
g n!
and
—iwdng +i(k - vD)ong +inlk - dv, = 0. (22)

Rev. Mex. Fis. 44 (5) (1998) 513-521



INHIBITION OF TWO-STREAM PLASMA INSTABILITIES DUE TO THERMAL PRESSURE GRADIENT 517

In writing Eq. (21) it was necessary to simplify the pres-
sure term, that appears in Eq. (13}, which was written as

s 3 "rPP‘ &
‘r)\ —_ P{](”") :[):]+ . a();’fﬁ-ﬁ-...m"‘.’PS‘Fl’.‘)P\. (23]

* Nl 7nJ
where
~P?
Dl = n“b ong 24)
Then,
ﬂlpﬁ - 0
VB, =ViP; = = {)s Viong = ik- ﬂs ons . (25)
Tl 1

- i

II'we define the constant 32 so that 32 = vP? /n%m, we
arrive. finally, to the simplification needed to write Eq. (21).
/42 depends on the properties of the electron gas, for exam-
ple. if we are considering a semiconductor at zero Kelvin de-
grees then the electron gas is highly degenerate, the exponent
vy = 5/3 and

5000

2 = 371,'3)2/3(”9)5/3 -
o 3nUmy i')m,( ¢

5 -0
EESF‘ _1 2
3 m, g

with = the unperturbed Fermi energy, and v, the Fermi
velocity. On the other hand, if we are dealing with a classical
Boltzmann electron gas, then

5 kpTy By

-;;Z = sT
' 3 1, 9

with i the Boltzmann constant, 7 the temperature of the
cas, and v?, the root mean square velocity. These expres-
sions change slightly when we consider a frequency regime
much higher than the collision frequency. In this case, the
one dimensional nature of the oscillation is maintained and
the acoustical value v = 5/3 for a gas of particles with 3 ex-
ternal. but not internal, degrees of freedom is not valid. Since
5 = (m + 2)/m, where m is the number of degrees of free-
dom, we have ¥ = 3 and 32 = 5v2/3 for the degenerate
clectron gas and 32 = o2 for the Boltzmann gas.

Equations (21) and (22) lead to the following expressions
for the velocity and density perturbations:

ms32
g E — ‘?Onsik)
) n?
f’Vl‘- == - (26]
M (w—k - v?)
S0 .
Oy = Myt & 2N

5 :
My [(u.' -k- v?) - ;_J’Ek'~’]

Substituting Eq. (27) into Eq. (20) and ordering terms we get

>

0,2
1-ar Y e

s=1 Mg [(w —k: V2)3 - ;j\;zk'z]

k- E =0, (28)

Comparing this equation with Eq. (6) we can identify the lon-
eitudinal dielectric function
-.4.‘1—”

[(w-k-v})* - 32k?]

gilk,w)=1-

o “"’ . 9)
[(w—k-v3)" — #3k2)

Therefore, il we are looking for longitudinal modes of the
system (E parallel to k), we must have

P
3 2 Y
WY T i ——
{( vi) 3 my
w2, B
- {.‘_k-v“)_-gigikg =1 (30)
: 3 mo

where w,, = /4dmgZn!/m, is the plasma frequency of
stream s.

Dispersion relation given by Eq. (30) is a very general
one in the sense that we may have arbitrary velocities v{ and
v} (but of course in the non-relativistic limit). As pointed out
betore, we can choose a reference system in which one of the
velocities becomes zero, that is, we consider a plasma beam
moving through a plasma at rest. Also, for the sake of sim-
plicity, we are going to consider only waves with wave vec-
tors parallel to the velocity of the stream and that the plasma
at rest is “cold™, that is, the pressure term for this plasma is
zero. Therefore, the dispersion relation for this simple case
becomes

2 9

- i
(w — 00k) - B2k2

1. 31

In order to simplity the notation, it is convenient to introduce

. i PTG G 0 R 2
the dimensionless variables & = wz, /w?), 3% = (3/19)".
w = w/wy,, and k = vsk/w,,. Then, the dispersion relation
can be simply written as

1 &

2
s

Vg

where v, is the phase velocity we can write an alternative
form of Eq.(32):

(34)

Rev. Mex. Fis. 44 (5) (1998) 513-521
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5. Results and discussion
5.1. Cold beam

First. we are going to exhibit the possibility of instabilitics
contained in Eq. (34) ignoring the effects of thermal pressure
eradient (1 = 0). We can do this by means of a simple graph.
Fig. 4a shows the left hand side (LHS) of this equation. As
we can see, the curve presents two poles (zeros of the de-
nominators) localized at the points vy = 0. and v, = 1.
The right hand side (RHS) of Eq. (34) is plotted as horizon-
tal lines. These lines intersect the curve at different points:
when & takes values above certain critical value labeled /2.
the horizontal lines meet the curve in four points. This repre-
sents four waves that propagate without growth or decay, but
when A7 takes values below &2, that is, when the horizontal
line lies in the shaded region, it crosses the curve in just two
points. Now, Eq. (34) is a fourth order equation in 7y, and it
has real coetticients, then there must be four solutions for .
therefore, two of the solutions must be a complex conjugate
pair corresponding to complex frequencies, one of them rep-
resents a mode that grows exponentially in time, and hence
instability.

5.2. Warm beam

Now we are going to investigate the effects of taking into ac-
count the thermal pressure gradient term (3 # 0). The poles
ol the curve in this case are localized at the points o, = 0,
and i, = 1 4 3 as can be seen from Eq. (34). Several pos-
sibilities can occur as shown in Fig. 4b—dc: if 3 is small, the
veneral behavior of the zero thermal pressure gradient case
is preserved and it is similar to that of the cold beam shown
in panel (a). In panel (b) we use a small value of 3. For the
reeion ol interest [positive values of LHS ol Eq. (34)] there
is not qualitative change, that is, there is still a critical valuc
ol &% below of which there is a pair of complex conjugated
solutions one of them representing an amplitying wave and
therefore, from the results of Sect. 3, the system may support
convective instabilities. It we increase the value of 3, two
critical values for &2, named £, and k2,, appear due to the
three-pole structure of the curve. This structure is also present
in Iig. 4b but it is not shown there because it is located in
the negative region of the vertical axis. The shaded region
of panel (¢) (k2 < k* < k2,) indicates that there are two
real roots and two complex roots—one of these representing
an instability. Finally, if we increase the value of J even more
[see panel (d)], all roots are real, and therefore no instabilities
may propagate in this case. In other words, we have arrived
to the important result that instabilities can be annihilated by
increasing the value of 3. Since 32 = {.i/'e‘.(:')". in order to
have instabilities, we need small values of 7 or large values
of the velocity 0.

It is custom to plot the dispersion relation in a diagram ol

w vyl Inorder to do these plots, we find k from Egq. (32)

10

(d)

Fraure 4. Plots of the LHS of Eq.(34) (labeled as G) for four dif-
ferent values of 4. The shaded arcas represent the regions where

instabilities occur.
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0.5
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(a)
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0.0 0.5 1.0 1.5 2.0
[Imkl
(b)
FIGURE 5. Dispersion relation [Eq.(35)] for 3 = 0 (open circles)
and 3 = 0.3 (solid circles); (a) & vs. Re k and (b) & vs. [T &|. In
these plots we used a” = 0.1
which is a second order equation in J: with solutions:
w -9 e l-l."( 1 - y':J)E}
/. ﬁ 1 £+ sen(w” — 1)/ 8% + —,l— (35)

where the function sgn(z) is defined as = /|z| with - an ar-
bitrary complex number different from zero and we have as-
sumed that &% # 1 and 32 # 1. In Figs. 5-7 panels (a) [(b)]
we show the solutions of Eq. (35) when we input real values
of & to get possible complex values of k. Since the solutions
can be either real or complex conjugated pairs, we just show
in panels (b) [T %|. In all these plots we compare the case
4 = 0 with 3 # 0. In Fig. 5 we plot solutions of Eq. (35)
for 4 = 0 and 3 = 0.3. Tt is clear from this figure that for
cach value of # considered, there are four different branches;
Iwo ol them have a vanishing imaginary part of k- and rep-
resent waves that propagate without growth or decay and are
located in the range @ > 1. The remaining two branches are
complex conjugated of each other and correspond to an insta-
bility and an evanescent wave. Figure 6 is the same as Fig. 5
but for 3 = 0.5. It is seen that there is a shift in the region
where convective instabilities occur and the range for which
the waves propagate without decay (vanishing Im k) is now
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0.0 L 1 :
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FIGURE 6. Dispersion relations [Eq.(35)] for 3 = 0 (open circles)
and = 0.5 (solid circles): (a) @ vs, Re k and (b) @ vs. [T k|, In

o
these plots we used a” = 0.1,

~

extended to w <= (.8, Finally, in Fig. 7 we choose a still
larger value of /1. We observe a very rich structure of the dis-
persion relation where we can see a small region in which
Im % is non-zero indicating the existence of two evanescent
waves. This is shown in the inset of Fig. 7a.

In order 1o establish the character of the instabilities we
apply the criteria described at the end of Sect. 3 to Eq. (35).
Figure 8 shows a plot of the imaginary part of k as a function
of the imaginary part of (I w) for a given value of the real
part of w(Re w). This value of Re & is chosen so that in the
limit where Im @ is zero. we fall in a region where Im k is
non-zero. for example. if 7 = 0 we can chose for Re w any
value between O and |, As can be seen from the Fig. 8a-8c.
one of the two solutions of Eq. (35). the one that changes sign
as Im @ goes 1o zero, corresponds to a convective instability.
The other one corresponds o an evanescent wave, Finally, in
Fig. 8d we show that the curves shown in the inset of Fig. 7a
correspond to evanescent waves. This result is consistent with
the onc of Fig. 4d which shows that no instabilities are possi-
ble.

It is interesting to discuss the origin of instabilities in the
two-stream system. Again, we consider first the situation in
which there is no thermal pressure gradient term. Starting
with an initial perturbation, one has to investigate the effect
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FIGURE 7. Dispersion relation [Eq.(35)] for ..? = 0 (open circles) and 3 = 2 (solid circles): (a) @ vs. Re k and (b) & vs. |Imfci. In these

plots we used & = (.1,
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FIGURE 8. Plots of the imaginary part of k as a function of the imaginary part of & for a given value of the real part of . (a)~(c) Re o = 0.9
and (d) Re & = 1.01. The curves that change sign correspond to convective instabilities and the ones that do not change sign correspond to

evanescent waves.

produced by the two streams on the electrostatic potential
ol the system. Since particles moving in either stream are
slowed down at the top of the potential hill, their density there
will exceed the particle density at the bottom, where they
move faster. The larger electron density, on the other hand,
enhances the electrostatic potential. This feedback mecha-
nism leads to the exponentially growing potential wave. In

other words, the electric field of the propagating wave accel-
erates the beam particles causing a fluctuation in their den-
sity. At the same time, some of the particles are carried back
towards the original point of disturbance by the zero-order
streaming motion of the beams producing a bunching of the
particles. This bunching leads to potential wells which fur-
ther enhance the bunching. Therefore, the free streaming en-
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erey is rapidly converted to field energy, and particles be-
come trapped in the potential wells. If the thermal pressure
is included then it is harder for the particles to increase their
density at the top of the potential hill and therefore we ob-
serve a tendency to reduce the two-stream instability. When
thermal pressure gradient is large enough, the instability is
finally destroyed.

6. Conclusions

In this work. we presented an introduction to the interesting
subject of plasma instabilities, and in particular, we studied

a two-stream plasma system consisting of a warm electron
beam and a cold plasma at rest, mutually interpenetrating.
Starting from hydrodynamic equations, we obtained the dis-
persion relations for this system. Using a simple intuitive cri-
teria, the convective character of the instabilities present on
this system was established and we discussed the physical
origin of them. We investigated in detail the effects, on the
dispersion relations, of the electron thermal pressure gradi-
ent. Even for the simple two-stream system, we found a very
rich structure for these relations that show a reduction and fi-
nally an inhibition of the instabilities as the thermal pressure
aradient term is increased.

L. Sece for example: R, Fuchs and P. Halevi. “Basic Concepts and
Formalism of Spatial Dispersion™; and R.F. Wallis and B.G.
Martin, “Effect of a DC Current on Electromagnetic Surface
Waves™. in Spatial Dispersion in Solids and Plasmas, edited by
P Halevi, (North Holland. Amsterdam, 1992). and references
therein.

2. PA. Swurrock, Plasma Physics, An Introduction to the Theory

of Astrophysical, Geophysical and Laboratory Plasmas, (Cam-

bridge University Press. Cambridge. 1994). Phyvs. Rev. 112

(1958) 1488.

TH. Stix. Waves in Plasmas. (American Institute of Physics,

New York, 1992)

4. R. Dendy, Plasma Physics, An Introductory Course, (Cam-
bridge University Press. Cambridge. 1993).

5. EM. Lifshitz and L.P. Pitaevskii, Physical Kinetics, (Pergamon
Press Ltd., Oxford, 1981).

G. JA. Drummond, Plasma Physics, (McGraw-Hill Book Com-
pany Inc.. New York, 1961).

7. R.A. Cairns, Plasma Physics, (Blackie & Son Limited, Glas-
sow, 1985).

8. D.R. Nicholson, Introduction to Plasma Theary, (John Wiley &
Sons, New York, 1983).

9. PC. Clemmow and J.P. Dougherty. Electrodynamics of parti-
cles and Plasmas. (Addison-Wesley Publishing Company. Inc..
Redwood City, CA. 1990).

L0 G Schmidu, Phvsies of High Temperature Plasmas, (Academic
Press. New York, 1979).

1. Al Akhiczer. et al.. Collective Oscillations in a Plasma, (Perg-
amon Press Ltd., Oxford. 1967).

12. M. Glicksman. “Plasmas in Solids™, in Solid State Physics. Vol.
26. edited by H. Ehrenreich et al., (Academic Press. New York,
1971).

13. L.G. Linhart. Plasma Physies. (North-Holland Publishing Co.,
Amsterdan, 1960)

4. C.I. Mendoza. M. Del Castillo-Mussot, and G.J. Vizquez,
Phvys. Rev: 1354 (1996) 7647,

5. We are using Gauss law Eg. (2) written in the alternative form
VB = d7p"" where p'" is the total charge density.

16. J. Pozhela, “Plasma and Current Instabilities in Semiconduc-
tors™. Intern. Ser: Sei. Solid State, Vol. 18 (Pergamon, Oxford,
198 1).

Rev. Mex. Fis. 44 (5) (1998) 513-5321



