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Within the Thomas Fermi approximation (TFA) we use a generalized approach to derive the diclectric function and screened potential for

LD, 2D and 3D systems. For all dimensions we present the asymptotic behavior of the temperature-dependent screened Coulomb potential

i terms ol the corresponding TFA screening parameters.

Kevwords,

Dentro de la aproximacion de Thomas-Fermi (ATF) usamos un formalismo generalizado para derivar una funcion dieléctrica y ¢l potencial
apantallado para sistemas en 1D, 2D y 3D. Para todas Tas dimensiones presentamos el comportamiento asintotico del potencial de Coulomb
apantallado en todas las dimensiones en términos de los correspondientes pardmetros de apantallamiento de la ATE

Descriptores

PACS: 73:20.Dx: 78.20. Ci

1. Introduction

One of the most important many-body effects is the so-called

screening or shielding effect which reduces the strength of

4 given interaction due to the presence of maobile charged
carriers. We are interested in studying the screening effects
ol these carriers when they are very mobile; that is, when
they can be considered as quasi-free carriers. It is important
to mention that the total medium to be studied is neutrally
charged. that is, the total charge density of the quasi-free car-
riers has 1o be balanced by an opposite charge density. In real
systems the electronic density can be balanced by an opposite
charge distribution made of a lattice of shielded nuclei (crys-
taly or free ions (plasma). Clearly, since electrons (quasi-free
carriers) are the lighter particles, their contribution to screen-
ing is generally more important.

Quasi-free carriers can be generated by a variety of pro-
cesses. For instance, they can be produced by modulation-
doping or optically by intense illumination of a nominally
undoped system. The way these carriers screen the bare
Coulomb potential depends on the dimensionality of the sys-
tem. When the dimensionality of the system is lowered, the
screening clfects decrease. That is, the influence of screen-
ing in 2D is considerably weaker than in 3D and this trend
continues if one passes from 2D quantum wells to quasi-
one-dimensional quantum wires. This occurs because, il we
assume that the quasi-free-carriers are confined in low di-
mensional systems (2D or 1D), screening between any two
charees occurs mainly inside the system-corresponding to

field lines inside the material-whereas the field lines that
abandon the system are not directly affected by those charges.
Clearly. screening is not decreased in this way in a bulk ma-
terial (3D) since all field lines are screened by the charge
carriers. It might be for this reason (weak screening in 1D)
that the behavior in real space of screened Coulomb potential
in quantum wires has not been investigated in detail. There-
fore, the purpose of this paper is to derive expressions for the
small wavevector dielectric function and for the long range
screened Coulomb potential for 1D, 2D and 3D systems. We
resort to the well known Thomas-Fermi approximation (TEFA)
which provides a simple model for screening and has been
extensively used lor 2D [1-3] and 3D [4]. An advantage of
the TFA screening model is that it generally allows to include
in a relatively simple way the dependence on the tempera-
ture and on the electron density, unlike more sophisticated
models such as RPA. However, it is well known that TFA
has an important disavantadge: it cannot reproduce Friedel
oscillations of degenerate systems at low temperatures that
arise from the abrupt change in screening at a wave vector of
k= 2k where kg is the carrier wave vector at the Fermi sur-
tace. These oscillations occur in 3D [3]. 2D [6] and 1D [7]
systems, dominate the long-range behavior of the screened
potential and they tend to disappear when the carrier occu-
pation probability becomes a smooth function of the wave
vector ke, that is, when the temperature increases sufficiently.

Previous important works on 3D Thomas-Fermi screen-
ing models are those of Calles ef al. [8] and Shivamoggi and
Mulser [9]. In the former treatment of screening [8] the well-
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known results of the Hartree-Fock [ree electron-theory where
incorporated in a simple way as a correction of the screening
parameter to obtain that screening is not as strong as esti-
mated in the original free electron approximation. In the latter
treatment 9] thermal, relativistic and very strong magnetic
ficld effects were investigated, as well as the motion ot the
test charge. However in latter reference thermal effects were
taken into account only for very small temperatures, but for-
tunately as we will discuss later, there exist a complementary
calculation [10] that extends the results to higher tempera-
lures.

The way these carriers screen the bare Coulomb potential
depends on the dimensienality of the system. When the di-
mensionality of the system is lowered, the screening elfects
decrease. That is, the influence of screening in 2D is consider-
ably weaker than in 3D and this trend continues if one passes
from 2D quantum wells to guasi-one-dimensional quantum
wires. This occurs because, if we assume that the quasi-
Iree-carriers are confined in low dimensional systems (2D or
D). screening between any two charges occurs mainly inside
the system-corresponding to field lines inside the material-
whereas the field lines that abandon the system are not di-
rectly affected by those charges. Clearly, screening is not de-
creased in this way in a bulk material (3D) since all field
lines are screened by the charge carriers. It might be for this
reason-weak screening in 1D-that the behavior in real space
ol sereened Coulomb potential in quantum wires has not been
investigated in detail. Therefore, one the purposes of this pa-
per is to derive expressions for the small wavevector dielec-
tric function and for the long range screened Coulomb po-
tential. We resort to the well known Thomas-Fermi approx-
imation (TFA) which provides a simple model for screen-
ing and has been extensively used for 2D [1-3] and 3D [4].
An advantage of the TFA screening model is that it gener-
allv allows 1o include in a relatively simple way the depen-
dence on the temperature and on the electron density, unlike
more sophisticated models such as RPA (Random Phase Ap-
proximation) [11]. However, it is well known that TFA has
an important disavantadge: it cannot reproduce Friedel os-
cillations of degenerated systems at low temperatures that
arise from the abrupt change in screening at a wave vec-
tor of I = 2}y where ky is the carrier wave vector at the
Fermi surface. These oscillations occur in 3D [5], 2D [6]

and 1D [7] systems, dominate the long-range behavior of

the screened potential and they tend to disappear when the

carrier occupation probability becomes a smooth function of

the wave vector k. that is, when the temperature increases
sutficiently. In contrast to metals, for which the intrinsic en-
ergy scales are usually much larger than the temperature, in
low dimensional semiconductor structures the experimental
temperature can be compared to the intrinsic energies. For
example, for a quasi-one-dimensional semiconductor quan-
tum wire (QW) to be in the quantum limit, the doping must
be necessary low and hence the Fermi energy is also small,
where by quantum limit we mean that electrons are confined
o the lowest subband of a QW. For a semiconductor QW,

some of their many-body properties have been discussed, for
example, in the extensive work of Hu and Das Sarma [12, 13]
and the references quoted therein. These properties can man-
ifest as lattice Peierls distortion, disorder-induced Anderson
localization. hole screening effects, plasma effects and im-
purity scattering, the last two of them being the most impor-
tant ones for actual semiconductor QWs [12. 13]. Because
the plasmon dispersion in a QW goes Lo zero as the momen-
tum ¢ gets small. dynamical effects are expected to be 1m-
portant for small ¢. In fact, Hu and Das Sarma have argued
that for 1D systems low-energy virtual plasmon excitations
can be crucial in dynamical screening since they cause the
Fermi surlace to disappear (in the sense that elementary ex-
citations are very different from those of the noninteracting
systems), but when impurity scattering is included, the Fermi
surface reappears because these plasmons are damped by im-
purity scattering, which is consistent with Raman scattering
and photoluminescence experiments since these experiments
are explained successtully on the basis of standard Fermi-
liquid theory [ 12, 13]. Thercfore, in the light of these results.
it secems that our static screening theory-which does not in-
clude plasma effects- can be safely applied to most semicon-
ductor QWs, but it should not be applied to very clean QWs
(where by clean we mean that it lacks impurity scattering).
In spite of all work done on TFA models, it scems that it
lacks a unified approach valid for all dimensions, so the mo-
tivation of this work is to develop the main TEA concepls in a
general way. The paper is structured as follows; in Sect. 2 we
derive, for all dimensions, general expressions for the Fourier
transforms ol the screened potentials and corresponding di-
electric functions. In Sect. 3 we develop the TFA approach
lor these quantities, in Sect. 4 we present analytical expres-
sions for the temperature dependence of the TFA screening
parameters. and in Sect. 5 we present the asymptotic behav-
ior of the potentials in terms of the TFA screening parameter.

2. Dielectric function

We will consider only the presence of a periodic background
potential through an effective mass m*. If we have a posi-
tively charged particle placed at a given position in a electron
gas and rigidly held there, it will attract electrons, creating a
surplus of negative charge in its neighborhood, which reduces
or screens 1ts field. Let us introduce two electrostatic poten-
tials. The first, @, arises only from the positively charged
particles so that it satisfies the Poisson equation given by

__‘—,'ann\" = ’_&‘_{)rm.“;*)‘ (1
1

where p"*" is the quasi-free particle charge density and r is
the constant of the medium or media that contains the system.
For 1D and 2D systems, this macroscopic constant accounts
for the dielectric function of the media that surrounds the cor-
responding low dimensional system while for a 3D system
this constant can represent the contribution to the dielectric
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constant of the bounded charges. With « defined in this way
we will be able to apply our generalized TFA approach to all
dimensions. The second, ¢, is the full physical potential pro-
duced by both the positive charged particle and the cloud of
screening electrons, it satisfies

- 1 N
V= = —p(r), 2)
K
where g is the full density,
A= .()"'“ (F) + ,Hi“d(?-") (3)

and p"M4 s the charge density induced in the electron gas by
the presence of the external particle.

In a static model, since the external charge has clectro-
static influence over a finite vicinity which surrounds it, ¢
has 1o have a nonlocal relation with ¢ given by

SR = /r/JTT,MQJ(I?;)x (4)

K

where ./ indicates the dimensionality of the homogenecous
system. The corresponding Fourier transforms satisfies

H{.}i'xi {
('t(rl',) = ,7(1” (5)
€"(q,)

where «"V(q, ) is the absolute value of the J-dimensional
wave vector dependent dielectric constant of the J-dimen-
stonal system.

The most natural quantity to be calculated is not the di-
clectric constant but the charge density p™® induced in the
clectron gas by the total potential ¢. When p*¢ and ¢ are
lincarly related (for sufliciently weak @), then their Fourier
transform satisfies

f’i”'j(f[.l) = \(’]J)C"‘)(GJ) (6)
We can relate ¢ to \ by taking the Fourier transforms of the
Poisson Egs. (1) and (2). Since these transtorms depend on
the dimensionality of the system involved, we perform for
the = oriented 1D, 2~y oriented 2D and the 3D systems the z-
Fourier. .-y-Fourier and 3D Fourier transtform, respectively,
to vield

, i 2 4
(./' - — = = | (it} =—pla v, d:) (7)
i .

\ i Iy

4n

; 3 e
(.-Jr; i —) s Uy~ =) :Tp(q,,.qq..:). (8)

ull-'J

1

4

{'1'_‘:‘- S '1',-3‘ e ‘If) ‘:’K‘]t Ay ) :Tﬂ(q;l'\ Q’y-q:)~ (9)

where pand ¢ have hybrid arguments (in real and Fourier
spaces). We solve Egs. (7) and (8) for ¢(x,y,q.) and

oltgeqy. =) by using the corresponding Green function of
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cach inhomogencous Hemholtz equation [14], we find re-
spectively

5
a(r fg-) == /[\'.,[q:.«(r. ) p(r' 8 g ) dr'd8’, (10)
B,
2w ) -
Py ys 2) =——F——= /!'(fl.r-f'{y--‘-'}
wJE 6

x e VEEHGI= g ()

where Nylg-s(r. " #)] is the moditied Bessel function of
second class and s(r. 0", #) = \/J“2 + (+")2 — 2rr! cos . The
solution ol Eq. (9) s just algebraic.

Finally, since the 1D and 2D potentials can be calcu-
lated as diply:) = lmg a0 @0 8,4:), donlge.qy) =
lim. o (e, gy, =), respectively, where a is the radius of
the cylindrical section of the wire (or yields the order of
magnitude of the cross section ol the wire for other noncir-
cular sections) and we have that [16] Ko(q-s(r,1".8)) =
—In(q-a/2) — W[s(r’8)/a] — 5 = —ln(g.a/2) =
— In (q-a) for very small values of ¢-«a, thus we arrive at

9
Omlyg:) = 77'“‘.(]:”)/»’11_)- (12)

I s
o (s tly) = s

——— (13)
I [ .2 ]

\/q; il
where py, = [ pr'dr'df" and p., = [ pdz" are respectively,
the 1D and 2D charge density. By performing the same treat-
ment for o' on cach dimension we obtain

)
B ()= — = In (g-a) p<=*, (14)
- 2r P
g TS R P (15)
B g+l
; 47 gL Xt
"-‘;’fgr,l‘(rf.ﬂ -f,’u-‘l-.-) ==l o ol (16)

w g g

Together with Eq. (3) for 1D, 2D and 3D densities and
Eq. (6) these give

{)u:\'l
Dip = = . (L7
Vg:)
1 + '_)Ill[q‘,_rl] i
i
. P
g = - . g
| \ \,-’;’/f + ;) 9=
S
ezt
(:':31111 = —_—— S 3 (l‘:))
| \(\/ff:’. + ¢ + q2) 47
IS (ﬁ =i (1_ﬁ S qg
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By comparing this with Eq. (5) leads to the relation

lll( (-

) =1+ 2In(q¢.a) \(1"). (20)
W I

0 (¢) W@ +a) o

=] — . (2L

. 8 V@ t+ag

¢ “((]_) i 4 (22)
5 i (e ot o N

Except for the assumption that the externally applied
charge 1s weak enough to produce only a linear response in
the electron gas, the foregoing analysis has been exact. The
following step is to calculate y by using the Thomas-Fermi
method which has the advantage that it is applicable even
when a linear relation between ™Y and ¢ does not hold but
has the limitation that is reliable only for very slowly varying
external potential,

3. TFA model

Let us consider ¢ as a slow varying function of 7”7 in the sense
that the energy of a charge carrier which is under its influence
1s given by

— €0, (23)

thus the energy is modified from its free electron value by
the total local potential. This only has sense in terms of
wavepackets since we must require that ¢(7") varies slowly
on the scale of a Fermi wavelength. .

To calculate the charge density produced by these elec-
trons we substitute Eq. (23) into the electronic number den-
sity, to lind

2 j 1
0?1+ ed(7)] = / d’k e !
[/ « )] (7)” . o CETE +1

(24)

where ./ indicates the dimensionality of the system, the factor
2 accounts for the possible spin states. 5 = 1/(kp1’) and a
similar expression for the charge density of the positive back-
eround 71y but with @ = 0. Thus the induced charge density
1s given by

P = —e{n[p+ ed(F)] + no(p)}, (25)

which is the basic equation of the nonlinear Thomas-Fermi
theory, ¢ being the electron charge. If we expand Eq. (25) we
obtain to leading order

pind — _F,z(éd”'ﬁ

= —_— 26
" e

Comparing the Fourier transform of Eq. (26) with Eq. (6)
we find that

_261.’()

\(G) = —¢ T 27N

where dng /dpeis independent of . Substitution into Eq. (20)
gives the Thomas-Fermi dielectric response function for all
JD dimensions (J = 1.2.3).

€P(q:) =k — qi" In(q.a), (28)
. 4 C
Pt =5 F : (29)
2 2
V49 T Oy
) (I%I) 2
Pty ) =8 + (4" (30)

A

where we have introduced the Thomas-Fermi parameters
@ = 270" [0, 2" = 2me?OnZP /O and (¢2°)° =

dwedng” /g Due to the fact that n = [1/L]” dimensions,

2D
5

¢} is dimensionless and ¢
inverse of length; 1/L.

Now, let us suppose that the external potential ¢**" is thal
of a point charge, that is, ¢ = ¢/r, thus its Fourier trans-
form potential for the 1D, 2D and 3D cases respectively, are
given by

. ¢." have both dimensions of

ol —2e
g L= . ln(g.a), (31)
- 2me
B (s ) =— e, (32)
K[43+ 4
: 47e
O (e Gy =) =————~ (33)

K@+ G+ )

The total potential in the semiconductor will then be in
cach case
e () —2eln(q.a)
Oinlg:) = — = B (34)
(g ) | —¢*In(g-a)

G g, Gy
*0(gaqy)

2me

“'I".*H({[ﬂ‘k(fl,') =

= (35)
02 o f gl + g
& (Gzr Qy» Q=)
Pap (G Qy- =) = ”,—J
€3 iy )
dre
= - ; (36)

4 + 42+ (B2)"

4. Temperature dependence of screening

TFA can be considered a uselul and simple model of screen-
ing when the system does not exhibit Friedel oscillations,
since these oscillations cannot be reproduced by TFA. As
mentioned in Sect. 1, it is known [7] that in low-temperature
1D systems these oscillations also dominate, as in 3D and 2D
systems, the long-range behavior of the screened Coulomb
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potential. Since Friedel oscillations tend to disappear when
the carrier occupation probability-the Fermi distribution- be-
comes a smooth function of the wave vector, then a necessary
condition for the TFA to be able to yield a better description
ol the system-including screening effects-is to increase the
temperiture. Therefore, in order to present a complete one
parameter-TFA theory it is important to be able to find the
dependence of 2" on the temperature. To do this, it is neces-
sary o caleulate dnd® /.

[For the 3D case the calculation of ¢" valid at very small
teniperatures was caleulated by Shivamoggi [9] to obtain

2z 4 20 A% =2 (KT\?| ,
\'--7 = ‘{(-‘L'} _g(f’—l) \/[7 15&(7-) (i

Toyee and Aeuilera-Navarro [ 10, 15] complemented the cal-
culation of Ref. 9 by extending their results to higher tem-
peratures using a series representation of 1*"(p) given by
5. (24) and reversing it by using the rules of series rever-
sion | 1G] which, up to third order in ». led to the expression

S Iny + Z Aprr™, (37)

n=1

where ¥ = (4n) (m-iﬁjﬂm")'l/l, z = efH, 4, 0.353,
4 = 4.9 x 107% and A3 = 1. 48 x 10~*. Aguilera-
Navarro [10] improved the convergence of this partial
summation by using the Padé approximant wdgp/dr =

[L/M](r). L + M < 4, where [L/M] denotes the ratio of

two polynomial of order L and M, respectively. The approx-
imation with £ = 2 and M/ = 1 gives the most accurate
results. A final integration yields

Sp=Inv+ Ky In(Nyr+ 1) + K3y,

with v} = 4.896. K’y = 0.0450 and 'y = 0.133. This ex-
pression is exact in the classic limit and provides an excellent
approximation for the range —~c < 13 < 30. From the latter
equation “I:,,]-: = (4me?)(OniP /Op) is given by

_ 1 K3 ( nh* ):.’.f"

dre? (Wor + 1) \ 2m*

() dmesn

dre? \ 2m*

4 A,H\/ﬁ(ﬂ_ﬁ_,).{/:

Fora 2D system Eq. (24) yields

( 2m ) /'\ 1
— dr ———.
n*3/) Ja Ll L

as an integration variable this expression

|~

and using t = ¢*
hecomes

m ;
0 = ——1In (1 + ™),
V" B
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which leads to Jp = In (r homnfm l). hence the exact

2D

&

B il -
20D =hic ] V-—h"fﬂﬂ,"rl?
il = — .

B
f'(]l”i

expression for ;" is given by

In the one-dimensional case ¢! can be calculated by

using a similar procedure [17] to that used by Aguilera-
Navarro [ 10] for ¢/". in which a series expansion of n'" (1)
is performed as well as its series inversion. It leads to a partial
summation of the form given by Eq. (37) where = is the same
as before but v = (n/2) \/rr.ffif/:?m*. Ay = =0.7071;
Ay = 01726 and Ay = —0.7526. Also a Padé approximant
of the quality vd(/4j)/dr allows us to improve the conver-
gence of this partial summation, that is [17]

113 Ky 2
Pl = B e 3R, (O
s 1+ Kyv
where the coelficients i/ 14.91. k! = —15.61 and

Ny = —0.3802. Here we have imposed the condition
Sy — lnie as v tends to zero which is required physically at
low densities (classical limit) and, to have an approximation
for w|[d{3) /(dir)] valid for every value of 1, even for very
low temperatures or high densities, we added to our Padé rep-
resentation the asymptotic limit of 3y — 272 [18] valid for
large values of 1.

[t is interesting to remark that. in contrast to the approxi-
mation performed by Aguilera-Navarro [10] for the 3D case,
the asymptotic behavior of o is given by an integer power of
1 in the 1D case allows us to match an unique expression for
e on its whole domain, Thus, by integrating Eq. (38) we find
that g is given by

w2h%n? i uh\/ T 1 nh

20n* i3

s |
Iy nh | w3

+ —1u |1+ [\7;1——\/

Iy 2N D

where (' is a numerical constant which can be found by inte-
arating numerically 11(71). Since ¢'Y = 2¢2dng /O, we have

—

i h /f T 1
=2 o T T
g St *e= ; -lr'*\/ 2m*3  2einf

[

L h7n

h ™
) 462\ m* 3
+ /\-_l 5 (4“)
| nh [ w3
+ A
g V 2in*
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5. Screened potential in real space

The Fourier transtorms of last section can be inverted to give

2¢ (“dyg. ;.. In(q.a
U”)(.‘): o T #th;.r {lv ) , (4])
Kk Ja 2w I —qgsIn(g-a)
€ e B B 2
Wan L g) = = drj,. .]“(rj G ol o ‘”M)NT . (42)
K Jg q:° + 45
P " 0 T
opleiy. ) = — gy / df,, sind,,
TR Jo Jo
R cos(,,) V/":+’fu+::(j3
x , ~. (43

q3 + (¢2")?

e eq
‘-"ua(;) = A_*JF

n=0

where we have expressed the second and third integral in
terms of cylindrical and spherical coordinates and we recall
that ¢, 1s magnitude of ¢ in ./ dimensions. Here we have used
the identity [19]

o 2T

| o 008 b or B 2
'[l)("fi /.1_3 i Ug) = = () i1z cos O/ a2+y ) (44)

T Jo

where J(¢2\/ % + y?) denotes the Bessel function of first
kind and zeroth order. We should mention that Eq. (41) does
not converge formally for a real value of =, but we shall per-
form an analytical extrapolation by extending = to the com-
plex domain and keeping just the real part of the resulting
expression. For small values of ¢}, we can expand Eq. (41)
in geometrical series and identify cach of its terms [20] lead-
ing 1o

n -)”+3 r 3
Z(f"' [( ( “})M ‘ (45)
guvtd N

lr’:l.;u e

where I" denotes the Gamma function [14] and R indicates the real part ol the quantity between brackets. By using Eq. [4.359
(1-5)] of Refl. [20] it 1s easy to show that Eq. (45) can be written explicitly up to arder 4 in ¢, as

2 f

[,i“( +‘lu . (™) {rr2

hZ K < Rz

g™y

K<

—[C*+ (2. )] +3CInz — -

S
e
L&
Nt

. —){)( A4 0 - 60¢(2.1) +4¢(3.1) = In 2 [(s('+ il +6C(2.1)]

F207 % s — 21® }+() [( “J)‘] (46)

Here €' = 0.577 is the Euler’s constant and (. k) =
a1/ + f'. )/ is the Riemann’s ¢ function. Note that Eq.
(46) does not depend on «, the radius of the wire. which
means that these results are the same for any small a: Eq.
(45) illustrates the limit behavior of ¢, which reduces to the
Coulomb potential when g. — 0, as it should be expected.
On the other hand, Eq. (42) can be rewritten as

¢ 1 7e
gty =
pyfat+yr 2K

[H;, (0o + 7)) = vo (a2 Va2 + ,uf)} (47)

where Y, (r['i"\f 4+ y’-’) and Hy (r,r;f“ Vot + ;;2) are the
Bessel function of second kind and the Struve function of ar-
aument e,{;“\/.rz + y? of order zero, respectively. By using
their Taylor series and asymptotic expansion [19], up to the
lirst nonvanishing orders in 1/, and ¢,, we find that

Gy =

wyfat oy

2D 2 2
T« s Wl Y

1 —In | ¢2F f . (48)

. e
! . . E 4 (4()}
sl a4 )z

R

Finally. integration over theta in Eq. (43) can be readily done
Lo give

¢ 2

) =—

TE \JaZ + 4 + 22

00 (3 Sin ((];; .
/ dlifs -
Jo

’1':‘; =+ (rlin)z

Ppylatiy Y 2

4y ‘2)

(50)

Rev. Mex. Fis. 44 (5) (1998) 522-528



528 JA.REYES AND M. DEL CASTILLO-MUSSOT

This integral can be performed by interpreting it as the in-
verse sine transform of q/[¢? + (¢*")]?, which is just the
imaginary part of the Fourier transform or the Sine transform
ol (2¢ al"lrl )/ 7. This means that ¢y, is given by

Let us compare the asymptotic behaviors for large ¢ of the
5D [4], 2D [3] and 1D screened Coulomb systems which are

3D

proportional to ¢ =% 7, 1/(¢*")? and 1/(g."), respectively.

s
From these expressions it can be seen that the potentials de-

crease more slowly as a function of ¢/" when the dimen-

sionality decreases. That is to say, by lowering the dimen-
sionality the screening effect gets diminished. This result is
reinforced by noting that the correcting terms to the Coulomb
potential in Eq. (46) contain terms proportional to 1/ z so that
this potential still has a long range. In contrast, the 2D and
3D screened potentials have as first correcting terms those
proportional to larger inverse powers of their respective vari-
ables, thatis, 1/(0* + »?) and 1/ (2 + y* + 23).
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