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Equivalent Hamiltonians by means of the Hamilton-Jacobi equation
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Making use of the Hamilton-Jacobi equation, two Hamiltonians in three-dimensional space that determine the paths of a light ray in a
conformally stationary gravitational field are obtained; one of these Hamiltonians coincides with that of a non-relativistic charged particle in
a magnetic field. Similarly. it is shown that the orbits of a non-zero rest mass particle in a stationary gravitational field correspond to those
ot a non-relativistic charged particle in an electromagnetic field. It is also shown that the Hamiltonian of the Kepler problem for bounded
motion is equivalent to that of a free particle in a sphere in four dimensions and a simplified proof of the Jacobi principle is given.

Kevivords: Hamilton-Jacobi theory: geodesics: stationary space-times; Kepler problem

Usando la ecuacion de Hamilton-Jacobi se obtienen dos hamiltonianas en el espacio (ridimensional que determinan las trayectorias de un
rayo de luz en un campo gravitacional conformemente estacionario; una de estas hamiltonianas coincide con la de una particula cargada no
relativista en un campo magnético. Similarmente, se muestra que las érbitas de una particula con masa en reposo distinta de cero en un campo
aravitacional estacionario corresponden a las de una particula cargada no relativista en un campo electromagnético. Se muestra también que
la hamiltoniana del problema de Kepler para movimiento acotado equivale a la de una particula libre en una esfera en cuatro dimensiones y

se da una prueba simplificada del principio de Jacobi.

Descriprores: Teorfa de Hamilton-Jacobi; geodésicas; espacio-tiempo estacionarios: problema de Kepler

PACS: 03.20.+41: 04.20.Cv

1. Introduction

Asis well known, the Hamilton-Jacobi (HJ) equation consti-
tutes an alternative to Hamilton’s and Lagrange’s equations
to solve the equations of motion of a mechanical system. In-
stead of the system of ordinary dilferential equations given by
the Lagrange or the Hamilton equations, the HJ equation is a
single first-order partial differential equation and a complete
solution of this equation gives the solution of the equations of
motion. An advantage of the HI equation is that, in the case of
a system with a time-independent Hamiltonian, the time de-
pendence can be eliminated from the very beginning (looking
for Hamilton’s characteristic function) and the solution of the
resulting equation yields the orbits of the mechanical system.

In the case of a system with a time-independent Hamilto-
nian, the HI equation also allows us to find alternative (equiv-
alent) Hamiltonians that lead to the same orbits determined
by the original Hamiltonian. In this paper we consider three
nice examples of this application of the HJ equation. The pos-
sibility of relating different problems of classical or quan-
tum mechanics by means of coordinate transformations has
been known for a long time. Some systematic procedures em-
ployed to obtain such transformations are based on the HJ
equation (see, e.g., Rel. 1), the Jacobi principle (see, e.g.,
Rel. 2) and the generalized canonical transformations [3].
However, two ol the examples given below do not involve
coordinate transformations; the alternative Hamiltonians cor-
respond to different parametrizations of the orbits.

In Sect. 2, it is shown that the light rays in a conformally
stationary space-time coincide with the orbits of a charged
particle in a certain magnetic field in a possibly curved three-
dimensional space. This result was previously obtained in
Ref. 4 by a different procedure. We also show that the path
of a test particle with a non-zero rest mass in a stationary
space-time coincides with that of a charged particle in a cer-
tain combination of electric and magnetic fields in a possi-
bly curved three-dimensional space. In Sect. 3, it is shown
that the Kepler problem with negative energy is related to
the problem of a free particle on the unit sphere in four-
dimensional space. This result shows that the Kepler problem
for bounded motion is invariant under the group of rotations
in four dimensions and is analogous to Fock’s transforma-
tion of the Schrodinger equation for the bound states of the
hydrogen atom into an integral equation on a sphere in four
dimensions [5]. Finally. in Sect. 4, a simplified proof of Jaco-
bi’s principle is given,

2. Test particles in gravitational fields

It H{q'. p;.t) is the Hamiltonian of a system with 1 degrees
of freedom, the corresponding HJ equation is given by

as as
H | q". g+ = =0,
(q dq' ) "o Kb
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which is a partial differential equation for the principal func-
tion S. I S(q", ;. t) is a complete solution of the HJ equa-
tion (1), i.e., a solution of Eq. (1) containing n non-additive
independent constants a;, then the equations d5/da; = /',
where the 4" are also constants, yield the solution to the
cquations of motion. If A does not depend explicitly on ¢,
one may look for complete solutions of Eq. (1) ol the form
S = W(q", a;) — Et, where W is the characteristic function
which contains 1 — 1 non-additive independent constants and
obeys the condition

oW
H (q'. i—) = E, (2)
aq’

Then, the equations dW/da; = £* (i = 1,2,...,n— 1),
which do not contain the time, yield the equations of the or-
bit.

The world line of a particle subject only to the gravita-
tional field can be obtained from the Hamiltonian

= égcmpnpﬁ (3)

(Greek lower case indices o, 3. ..., run from 0 to 3), where
the matrix (g®”) is the inverse of (g.3). and the g, are
the components of the metric tensor of the space-time in
some coordinate system. In other words, the Hamilton equa-
tions, da® /dN = OH/Opa, dpa/dX = —0H ]2, lead to
the geodesic equations corresponding (o the metric ds? =
Gopde®da? . 1 the particle has a non-vanishing rest mass.
the parameter A can be chosen as the particle’s proper time,
which amounts to the condition H = —¢?/2, assuming that
the signature of the metric is (— + + +). On the other hand,
for zero rest mass particles, g“ﬂp,\ ps = 0 and therefore
B =

The HI equation for the Hamiltonian (3), in the
case of zero rest mass particles (or light rays) leads to
%_q”'fj(BS/ar” )(0S/0x?) = 0 or, equivalently,

1 .t O h " as g8
£ e , S, o
29 dal A A0 )
1 a8 as
B A (= — ] =10,
N 29 (OJ'*) (r’).ri) L

where the lower case Latin indices ¢, j.... . run from | to 3.
Hence. writing 1" = ¢t, from Eq. (4) we have

.

as ¢ il
— R i
it ”()U 9 rt

as ds
\/ (101‘3’0"f}"m/”)dr'()u v A5)

which has the form of the HJ equation (1) for the Hamiltonian

O ; . .
" 400 {.r/“‘,m - \/ (g% g% — !IUU.ff”)Pw'!J.'f} - W

If the space-time 1s stationary, there exists a coordinate sys-
tem in which the metric components, .4, are independent of
¢”: then, in such a coordinate system, the Hamiltonian (6) is
independent of # and, hence, conserved. Since the Hamilto-
nian (6) is a homogeneous function of degree one of the p;,
Hamilton’s equations are invariant under the transformation
pi ++ ppi, where g is any constant greater than zero; there-
fore, we can normalize the p; by requiring that the constant
value of i be ¢ (with this choice we recover the normaliza-
tion employed in the Hamiltonian formulation of geometrical
optics in flat space-time, see, ¢.g., Ref. 6).

Before discussing the general case of a stationary space-
time, it is convenient to consider the simpler subcase of the
static space-times. A space-lime is static if there exists a co-
ordinate system in which the metric components are inde-
pendent of " and furthermore go; = 0, which implies that
g% = 0. 9" = (goo)~" and the 3 x 3 matrix (g;;) is the
inverse of (¢" ) [see Egs. (9) below]. Thus, assuming that the
space-time is static, in an appropriate coordinate system, the
orbits of the light rays coincide with those corresponding to
the Hamiltonian [see Eq. (6)]

e
h = Cy/ (—go0)g" pip;- (7)

The orbits of the Hamiltonian (7) are the geodesics cor-
responding to the metric do® = (—gpg)™

(—g00) "
ric (induced by the spacc-time metric ds?

1_9",-71 drtdayi =
di?, where di* = g;; dx'da’ is the spatial mel-
on the hyper-
surfaces ¢ = const), Le., the curves that locally mini-
mize the integral [ do = [(—goo) "/ dl. In fact, the HJ
equation for the Hamiltonian (7), with i = ¢, amounts to
(—goo)g" (OW/Da") (W /Dw?) = 1, which is the HJ equa-
tion for the Hamiltonian (—gon)g" p;p;, whose orbits are the
geodesics corresponding to the metric do? [¢f. Eq. (3)]. The
metric do” is sometimes called the optical metric and has sev-
eral remarkable properties (see, e.¢., Ref. 7 and the references
cited therein). Since for a light ray ds* = 0. under the present
= ’,I(JU(UIJ'“)E+

assumptions we have 0 = g, do® dz®

i drt dr) = goo(da®)? + dI*; therefore, f —gao) " V2 dl =
| da" = ¢ [ di, which proves that in a static space-time the
Fermat principle holds. Note that n = (—gon)~'/? plays

the role of a refractive index and the normalization h = ¢
amounts (0 \/g"/p;p; = n. The Fermat principle also holds
in conformally stationary space-times; as we shall show be-
low. (The Fermat principle is considered in many textbooks
on general relativity; for a recent treatment see Ref. 4 and the
references cited therein.)

Going back 1o the case of stationary space-times, from
Hamilton's equations 2" /dt = dh/dp; and Eq. (6) we find
that

(053

8
pe — g% "

g'pi—=g
l}.'.

ar _
o
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on the hypersurface 1 = ¢. Then, it can be readily verified,
making use of the formulas

0c 00 0i
Joad " = gooy  + 90ig

._.
Il

0 = goad™ = go09™ + 059",

=
|

Jo 0
= 9ia9" = giog™ + gi;9™,

= gind"™ = ging’" + ik g'*, (9

(="

that the inverse of Eq. (8) is given by

gi (& /) + goi

—goo — Yok (¥ /c)’

(10)

D =

which differs from the commonly encountered relations be-
tween the velocities and the momenta.

Alternatively, assuming that the space-time is stationary,
Eq. (4) admits separable solutions of the form S(z%) =
W (') — va®, where i is a constant. Since py = 85/02° =
— 1 and the signature of the metric is (= + + +), for a fu-
ture directed world line » must be positive and without loss
of generality we can set » = 1 (which is equivalent to making
/i = ¢ as above). Substituting S = W — 2% into Eq. (4) one
obtains

Lowaw
Jat Jud

1 oo 0i OW
=i =i ’W S

and making use of Egs. (9) one finds that this equation can be
written as

| W g0\ (O goi ) _ ]
ol i I sl i = = 2 l l
2( 900y ((’),r’ i oo Oxd oo 2 Wl

which is the HJ equation for the Hamiltonian

e Joi goj
h= :;[—!lnu)!lu (Pl + &) (1’;: Ey &) (12)
2 oo Goo

it h = 1/2. The Hamiltonian (12) coincides with that of a
non-relativistic charged particle in a magnetic field with vec-
tor potential proportional to goi/goo in a three-dimensional
space with metric tensor do® = (goo) *(g0igo; —
Goodi; ) dt dal - whose components form the inverse matrix
of [(—goo)g™]; however, I is not conjugate to the “true” time
(or a constant multiple of it) in all cases. In fact, denoting by

|

7 the fictitious “time” conjugate to lu, from Egs. (12) and (9)
we obtain

drt  ah . i ( _
T B f—.fanrf'“'(P_; + &) =(~g00) (9" p; — g")-
i ()f)i Joo
(13)
Comparison with Eq. (8) shows that
dat 1 dat
e (—g00) (9™ pr — !IUU}FW‘ (14)

i cdt = (—guo)(¢"*pr — ¢"")dr; in particular, if the space-
time is static, we can take 7 = ¢f. Making use of Egs. (9) and
(13) one can verily that the da' /d7 are the components of a

unit vector with respect Lo the metric do”

((]o;!.;'l_),, = !Im)!h_;'} di da!
(*ym))-‘z (an rf’r

o Goi q
(—g00)g” (Pf + L) (ﬂ_, + &) =1. (15)
Joo Yoo

Thus, the orbits determined by the Hamiltonian (12) are
those of a non-relativistic charged particle in a magnetic
field with vector potential proportional to gn;/gnn in a three-
dimensional space with metric do?. On the other hand, if
there exists a function &£(x') such that go;/goo = A&/ 0x?,
then the magnetic field mentioned above would vanish, which
means that the components g, can be eliminated by a suit-
able coordinate transformation and the space-time is actually
static (in fact, if go,/goo = OE/Ox*, then ds® = goo (dz®)? +
2g0;i da® dat + gijdatda? = goo(dx® + d€)* + (gij —
goiga; [ goa) dr' da’; hence, by replacing z° by 2 + £ one
shows that the space-time is static). It can be shown that
9i; — Yoigoj/yon is a positive-delinite metric, which is in-
duced by the space-time metric g3 on the three-dimensional
space orthogonal to the timelike direction d/dx" [8] (see also
Ref. 9).
Clearly, the Hamiltonian (12) can be derived from the La-
grangian

l,f.'lin.ffo,;—.ffn'm.(lu il gt Joi 4!
3" :

1
=

- - & :
2 (—gon)*? oo

! 1 = . -
where ©' = da'/dr, and the Euler—Lagrange equations for
L coincide with those for the Lagrangian [see Eq. (15)]

Al iy
[({ft).ﬁu_; =5 .fll'no.fh‘,)-" ! ] ! goi 4!

(—gon) Joo

L-] =

which, in turn, are the conditions for

(x3)

/‘{-"’-" [(go:90; — googiy)(da [N (da? JAN)]'" + goi(da’ /dA)
: (—!;'clu)

A\ (16)
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{0 have a stationary value among the curves joining the points
with coordinates () and (2%). Since 0 = gag dx® da? =
guo (d2®)2 + 2g0; de’ dx® + gij do* da? for a light ray, the
(wh)
(z})
principle also holds in this case.

It is easy to see that, actually, the preceding results are
also valid il the space-time is conformally stationary [4]. i.e.,
if there exists a coordinate system such that the metric is of
the form ¢2 ¢, 3. where ¢ is some non-vanishing function and
9o/ 02" = 0, since the factors o2 and ¢ drop out from
Eq. (4) and from the condition (,bggmjd.r“rf.r” = 0. For in-
stance, the metric of the Friedmann-Robertson-Walker cos-
mological models can be written in the form

integral (16) is just ¢ [ dt, thus showing that Fermat's

ds’=RZe" D [—dt* + dr’® + €2(r)(d8? + sin* 0dp?)], (17)

where Ry is a constant, a depends only on t and £(r) is equal
(o 1. sinr or sinh r. Clearly, the metric (17) is conformally
stationary (in fact, conformally static). Taking ¢* = R e®!")
and (g,5) = diag(—1.1, €, &> sin* #), Eq. (12) corresponds
to the Hamiltonian of a non-relativistic free particle in a
three-dimensional space of constant curvature,

As in Ref. 4, we can go in the opposite direction, giv-
ing a magnetic field and the metric of a three-dimensional
space and then finding a space-time metric for which the
light rays follow the orbits of a charged particle in the given
magnetic field and the given three-dimensional space. For ex-
ample, the Hamiltonian of a particle of unit mass and unit
electric charge in flat three-dimensional space, subject to the
magnetic field of a monopole, written in cartesian coordi-
nates, has the form (12) with [(—goo)g"] = diag(1,1, 1) and

go:/goo = — A; /e, where A4, is a vector potential for the field
of a magnetic monopole, e.g.,
u,—%,0
ity = BB (18)
riLi'—z)

J: is the magnetic charge of the monopole and + =
gas) 3 =2 T = A —
vV +y% + 22 Hence, [(goo) " (g0igo; — googij)] =

diag(1,1.1); and

) 0 A2
ds™ = (—=goo) | — ((f.r” + ) r,'l'.f")
oo /

it (Ut‘m)fﬂ(ﬂomm — GooYij) da* dx?

G

i 1 - 9 ) 9
- ((.’.r'” ——A; (I.r:‘) +dr”+ dy” +d="
.

= (—9o0)

9

k
= (=goo)| - ((‘rl! + —(£1 + cos H)dnp)
%

+dr? +02(d0® +sin® 0de?) |, (19)

with the factor (—gop) unspecified, in accordance with the
conformal invariance of the null geodesics. Thus, as in the
case of the orbits of a charged particle in the field of a mag-
netic monopole, a light ray in a space-time with metric (19)
lics on a cone with its vertex at »» = 0 in such a way that the
ray becomes a straight line when the cone is unfolded. Choos-
ing —goo = 1, one can readily verify that the metric (19) is
equivalent to the Taub-NUT solution of the Einstein vacuum
ficld equations (see, ¢.g., Ref. 10)

ds? = —U~Vdr® + (202U (dy + cos 8 dp)?

+ (12 + 1*)(d6? + sin? B dp?),
where

2(mr + %)

U=-1
+ .,.'.2+12

,
to first order in [, when m = 0, making the identifications
cdt £ (k/c)dp = 21 di and 21 = k/c. Further examples are
given in Ref. 4.

In the case of particles with non-zero rest mass we have
some similar results. In place of Eq. (4) we now have

(as ) L i (98 as
s — =—
2 J | 4 dx? dxt
N 1, (0S8 as c? 20)
L i
77 dxt dad 2’ (2

which can be written in the form 9.S/dt+h(x*, 0S/dx') = 0,
with

, {'
h(x',pi) = P {f/“'m

—\/ (4% g% — g% g )pip; — .f/““r.“z} . @D

On the other hand, in a stationary space-time, in coordinates
such that dg, ;/dx" = 0, Eq. (20) admits solutions of the
form S(z%, 2') = W(«') — z2° /e, where = is a positive con-
stant (assuming that the world line is directed to the future)
and

1 oW aw ¢

! - _; = 7 i A B o e e
2‘} c* orv ¢ 2" At Oz 5
or, equivalently,

. IW € go AW e qgo;
—(—goo)g” | =— + = Joi N 4 B
8 it ¢ goo Ol ¢ 900

r'2 =2

#* 5(*510(1) =g (22)
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which is the HJ equation for the Hamiltonian

1 > £ Goi € Goj
h = 5(—goo ”(H*—— j et
2( )9 | € goo Pi € goo
r

¥ E(—gou) (23)

b

with h = £2/(2¢?) [¢f Eq. (12)]. This Hamiltonian can
be interpreted as that of a non-relativistic charged parti-
cle in a magnetic field with vector potential proportional to
9oi/goo and an electric field with scalar potential proportional
to (—goo) in a three-dimensional space with metric tensor
do® = (goo) "%(g0ig0; — 900gi;) dx* dz? . In the present case
the “time” parameter, 7, conjugate to R is related to the proper
time of the particle, A, by means of dr = d\/(—gou). By
contrast with the Hamiltonian (12), a Hamiltonian of the form
(23) determines the space-time metric g,z up to a constant
factor. Comparison of Egs. (12) and (23) shows that when g
1s constant, the orbits of test particles with zero or non-zero
rest mass differ only in the values of the “electric charge” and
of the “energy”.

3. Kepler problem

An alternative to the usual form of the HJ equation is given

by
as 05
H(_%aput) +a—01 (24)

where the coordinates ¢' appearing in the Hamiltonian
H(q',pi,t) are replaced by —9.5/08p;. Equation (24) can be
derived from the usual HJ equation (1) taking into account
that the coordinate transformation g* = —p,. p; — ¢' leaves
Hamilton’s equations invariant (L.e., is a canonical transfor-
mation). In the case of the Kepler problem, the Hamiltonian
can be expressed as

OWN® | (OWNT | (OWN® M] (
(5]3&:) +(5’Py) +(ap:) _[ &

2 2 2
D: 05+ P k
=2 - (25)

2M f1€2+y2+22,

where k is a positive constant and from Eq. (24), writing
S = W(p;) — Et, one obtains

H

p +p; +p}
2M

(amf*)2+ (8W)2+ (aw)g *1/2_E o
Op. apy Op. -

Now, following Refs. 5 and 11 and assuming E < 0
(bounded motion), the vector p = (p;,py.p-) will be re-

placed by a point (u, uy, u., u,) on the unit sphere in four
dimensions by means of the stereographic projection, i.e.,

Ugyy Uy, Uy
p = pp Uz tiusts) e L 27)
— Uy
where
po=vV-2ME. (28)

By expressing the unit vector (u.,uy,u.,u,) in terms
of spherical coordinates in the form (siny sin@ cos g,
sin y sin @ sin ¢, sin y cos#, cos ), one finds that

2
.+ 4 = [

X [dxz + sin® x(d#® + sin® @ d¢2)]

which corresponds to the well-known fact that the stereo-
graphic projection is a conformal transformation (note that
dx?* + sin”® x(d#? + sin® A d¢?) is the standard metric of the
unit sphere). Hence

ax sin” x a0 sin?@ \ 9o

and making use of Eqs. (27) and (28) it follows that Eq. (26) amounts to

1 (01)+ 1 (Bl)+
2 dx sin® y ae

which is the HJ equation corresponding to the Hamiltonian

2

1], I 5 B
h==|ps+— P+ —— |, 31
T3 |:p\ sin” y (pﬂ 511129):| GH

if h = 3(MFk/po)®. Equation (31) is the Hamiltonian of a
free particle of unit mass on the unit sphere in four dimen-
sions, S* (or of a free spherical top; note, however, that the
configuration space of the top, which can be identified with

1 /ow\?| 1/ Mk\*
—s— ZEL - — X 3
3111“9(3(;‘3)]] 2(110) =B

the group SO(3), corresponds to §* with antipodal points
identified). The orbits of the Hamiltonian (31), which is of
the form 1 g% p;p;. where (%) corresponds to the standard
metric of S*, are the geodesics of S$? [¢f Eq. (3)], i.e.. great
circles, which, under the stereographic projection (27) are
mapped onto circles lying on planes passing through the ori-
gin in p space [12].
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The explicit invariance of the Hamiltonian (31) under the
group of rotations in four dimensions, SO(4), shows that the
Hamiltonian (25) for £ < 0 is invariant under this group. In
a similar way, making use of the coordinate transformation
p = u/|u|? one finds that Eq. (26) with E = 0 is equivalent
to the HJ equation for a free particle in three-dimensional
space and, in the case where £/ > 0, taking

(Uzs Uy, uz)
=v2ME : 32
P = (32)
with
vltul+ul-ul=1, (33)

one finds that Eq. (26) is equivalent to the HJ equation for a
free particle on the hyperboloid (33) in Minkowski space (cf.
Ref. 12,

4. Jacobi’s principle

The result of the preceding section is analogous to Jacobi’s
principle, according to which the orbits of a conservative sys-
tem, with forces derivable from a velocity-independent po-
tential energy, are the geodesics of a suitably defined metric.
Jacobi’s principle can also be easily derived making use of
the HT equation. The HJ equation for a system described by
the time-independent Hamiltonian

1. .
H=39"pip; + V(g*) (34)

(heret,7,...=1,...,n) leads to
1 . 0Waw
29 dq* dq’ (33)

[see Eq. (2)] hence,

1 i oW aw (36)
2WE-V) o o )
Equation (36) is the HJ equation for the Hamiltonian
h (37)

— s

with h = 1, whose orbits, and, hence, those of (34), are the
geodesics of the metric

(E —V)gi; dq' dg’ . (38)

5. Concluding remarks

The examples considered here show that, even without a
change of coordinates, the orbits of a given time-independent
dynamical system can be determined by a huge variety of
distinct Hamiltonians, which allows us to find relationships
between different dynamical systems.
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