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The band gap of alkali halides, alkaline-earth oxides, AloO3 and SiO> crystals has been calculated using the perturbed-ion model supple-
mented with some assumptions for the treatment of excited states. The gap is calculated in several ways: as a difference between one-electron
energy eigenvalues and as a difference between the total energies of appropriate electronic states of the crystal, both at the HF level and with
inclusion of Coulomb correlation effects. The results compare well with experimental band gap energies and with other theoretical calcula-
tions, suggesting that the picture of bonding and excitation given by the model can be useful in ionic materials.

Keywords: Cluster model; alkali halides; oxides: band gap

El salto de banda de cristales haluro alcalinos, 6xidos alcalinotérreos, AlaO3 y SiO2. se ha calculado utilizando el modelo del ion perturbado
complementado con algunas aproximaciones para el tratamiento de los estados excitados. El salto se calcula de varias maneras: como una
diferencia entre autovalores de energia monoelectrénicos y como una diferencia entre las energias totales de estados electrénicos cristalinos
apropiados, tanto al nivel HF como incluyendo los efectos de correlacién de Coulomb. Los resultados estin en buen acuerdo con las energias
de salto de banda experimentales y con otros cilculos tedricos, lo que sugiere que la vision que da el modelo del enlace y las excitaciones

puede ser util para materiales i6nicos.

Descriptores: Modelo de ciimulo; haluro alcalino: éxidos; salto de banda

PACS: 36.40.4d; 61.50.Lt; 71.20.Fi

1. Introduction

The increasing interest which is presently observed in lumi-
nescent materials is due to their numerous technological ap-
plications, namely, luminescent lighting and preparation of
lamp phosphors, nuclear spectroscopy, laser science, or the
construction of two-dimensional detectors for use in medical
screens and crystallography, to mention a few [1]. The cal-
culation of the properties of those materials requires a model
for the material and a computational model. The first one con-
cerns the modelling of the crystal of interest. The computa-
tional model concerns the level of theory used in the calcu-
lations. The calculation of the electronic properties of doped
ionic crystals (or crystals containing vacancies) at an ab initio
level is still a challenge for the computational methods nor-
mally used for crystalline solids or molecules. The reason in
the first case is the breaking of the translational symmetry by
the presence of the detect. This enters in conflict with Bloch’s
theorem, which is the basis of the solid state calculations. A
solution to this problem is to use a supercell geometry, in
which a cell simulating a small region of the crystal contain-
ing the defect is repeated periodically [2]. There is the danger

of interaction between the defects if the supercell is not large
enough. The use of molecular methods in real space requires
also a large number of atoms to be treated in a selfconsistent
way [3]. so the available techniques do not handle easily this
problem. Those molecular methods replace the whole crystal
by a cluster, but the role of the surface should not be over-
looked even for large clusters. An intermediate approach is
provided by embedded cluster models, in which the impurity
is surrounded by a small fraction of the crystalline environ-
ment, and the rest of the crystal is simply described by point
charges. This approach has been already applied to the prob-
lem of luminescent impurities [3]. Evidently, the description
by point charges only gives an approximate representation of
the bulk. In summary, a large number of atoms is needed for
simulating an ionic crystal containing an impurity, and even
in such a case the inherent problems of the cluster surface
and the description of the infinite bulk should be faced. Thus,
a model that gives a better description of the impurity-lattice
and cluster-lattice interactions is desirable. The ideas of the
theory of electronic separability (TES) developed by Huzi-
naga and coworkers [4-6] should be useful in this context.
The TES supplies a natural framework to develop accurate
schemes for dealing with the cluster-lattice interaction. The
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perturbed ion (PI) model [7], based on the TES, was devel-
oped for the study of ionic crystals or, more in general, for
crystals formed by atoms with closed shells, and has been
later extended to free clusters of the same materials [8, 9].

We plan to apply the PI model to study luminescent cen-
ters in ionic crystals. As a first step, we use the PI model
in this paper to calculate the band gap of pure alkali halide,
alkaline-earth oxide, Al O3 and SiO; crystals. All these ma-
terials are important in the field of luminescence and also
in other fields ranging from catalysis to magneto-optical de-
vices. The calculation of the energy band gap of these mate-
rials is important for several reasons: first of all, the impu-
rity levels of the doped crystals are located in the band gap
of the pure crystal. Furthermore, the gap is a very important
quantity in the first step of the scintillation process, namely,
absorption of radiation leading to formation of electron-hole
pairs. This step influences the global efficiency of the scintil-
lator. Last but not the least, it is also important from the the-
oretical point of view, as it gives information on the quality
of the model. Well known are the difficulties of density func-
tional theory to describe band gaps. A large body of work
exists on the calculation of the band gaps in these materi-
als using the traditional methods of band theory [10-24], and
we compare our results to a representative set of band calcu-
lations. Although we obtain a better global agreement with
experimental gaps than many ab initio band structure calcu-
lations, our intention here is not to compete with those well
established solid state methods. Instead, we only intend to
show that the PI model affords an accurate description of the
band gap within the framework of a cluster-like approach,
which is considered a convenient approach for the study of
doped crystals.

The structure of the paper is as follows: In Sect. 2 we
present the PI model for ionic crystals, showing how sev-
cral problems concerning the cluster approximation are cir-
cunvented. Since the PT model is originally formulated in a
Hartree-Fock (HF) framework, we also discuss the introduc-
tion of Coulomb correlation. Section 3 describes the calcula-
tion of the gap. Results are presented for the above mentioned
crystals and the trends obtained are discussed in comparison
with experiment and other calculations. Finally, Sect. 4 sum-
marizes our conclusions.

2. The perturbed ion model
2.1. Theory

The PI model has been developed for systems (pure crystals,
crystals with defects, or finite clusters) formed by weakly cor-
related one-center electronic groups, the prototypical systems
being ionic crystals, like the alkali halides, formed by closed-
shell ions. Therefore, according to the theory of electronic
separability [4-G], the wavefunction of the system can be ex-
pressed as an antisymmetrized product of the local wavefunc-
tions describing each group. If these local wavefunctions sat-
isly strong-orthogonality conditions [25, 26], the total energy

is the sum of intragroup, or net energies, and intergroup, or
interaction energies:
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where the R and S sums run through local groups. All the
contributions 10 Egystem due to a group A can be collected in
an effective energy defined as
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but it should be noted that Eqygiem is not a simple sum of
the effective energies since the interaction energics are then
counted twice. So the additive energy of a group A is defined
as
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and then the total energy of a system formed by a groups of
type A, b groups of type B, etc, can be written
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In practice, for ionic crystals the local groups will be identi-
fied with the closed-shell ions.

Group wavefunctions are obtained by minimizing their
effective energies if strong orthogonality conditions are sat-
isfied among the group wavefunctions. This restricted varia-
tional procedure can be successive and iteratively applied to
all the different groups, in order to determine fully consistent
group wavefunctions and the best system wavefunction com-
patible with the initial assumption of separability. When the
wavefunction of a particular group is being determined, the
wavefunctions of all the other groups are considered frozen.

The effective energies can be expressed as expectation
values of appropriate effective Hamiltonians. For group A
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The group-wavefunction 14 is a Slater determinant. The first
term in Eq. (5), namely (4| HZ|1ba), collects the energy
associated to the electronic cloud of group A, and the sec-
ond term gives the interaction between the nucleus A, of
charge Z*, and the Hartree potential of groups S(# A).
BRig = 11?,1 - ﬁ_ﬂ indicates the distance between the two
nuclei. The effective Hamiltonian H/} can be written as a
sum of several terms
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with 1;4 = |7} — Ral and 7 = | — |. The ¢ and j-
summations run over the N4 electrons of group A. The first
three terms in the Hamiltonian represent the electronic kinetic
energy, the interaction between the electrons and the nucleus
and the interelectronic repulsion (those three terms refer ex-
clusively to group A). On the other hand, the terms containing
the S-summation account for the interaction with the frozen
urnu]w S. This interaction separates itself in two parts. First,
V(1) represents the effective potential energy of an electron
(of group A) in the mean field of the group 5:

(i) = = 2% +VE@) + VR (D)

VEG) + VE (), (7)

where the three terms in H(;‘, are the electron-nucleus, the
classical electron-electron and the exchange parts of the po-
tential energy (the sum of the first two terms is the Hartree
potential V7). Second, the strong orthogonality between the
orbitals of the active group A and those of the other groups §
is enforced in H.i by means of the projection operator 2 ().
For systems formed by closed shell ions, this operator takes

the form [27]
PS(i) —Z|u H=2¢) (o], (8)

UES

where g runs over all occupied one-electron orbitals ¢, (with
orbital energies ¢, ) of group S.

We now deal mlh the explicit form of I IJ] For the
closed-shell ions considered here the Hartree pd[l of this po-
tential is given by

s el =
Vi) =—-2°r g + /p (7)ry drs, 9)
where 7 () is the electron density of the ion. It is physically
and computationally convenient to separate this electrostatic
potential into classical and nonclassical (nc) terms such that:

VE(Fis) = —g°rid + V3(Fis), (10)

where ¢ is the net charge of the ion, and V] represents the
deviation of 177 from a point charge potential duc to the finite
extension of the electronic density of the ion. This operator
can be effectively computed using the Silverstone expansion
ol a function in a displaced center [28, 29].

The exchange operator V¢ can be written as the nondiag-
onal spectral resolution [27]
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S) are products of spherical harmonics Y, and
primitive radial functions for the S ion, @ and b run over the
Slater-type orbitals (STO) of  symmetry, and A(/, ab, S) are
the elements of the matrix

=8 K8 (12)

where & and A~ are the overlap and the exchange matrices for
the S ion in the {|alm, S)} basis. Full details can be found in
the original paper by Luana and Pueyo [T].

As indicated above. when the effective Hamiltonian of
an active group A is being diagonalized, all the other groups
§ are considered frozen. Selfconsistency is achieved follow-
ing an iterative scheme. At each iteration all the inequivalent
ions are successively treated as active groups, and the orbital
wavefunctions and eigenvalues of the frozen groups are taken
from the previous iteration. The iterations are continued until
convergence is achieved.,

Some [eatures of the PI model are worth mentioning here
In the cluster approaches the solid is partitioned into a “clus-
ter region” and “‘the rest of the crystal”. The physical and
mathematical description of both entities should be accurate
enough, as well as their interrelations. Frecuently. the c¢lus-
ter has been solved using precise quantum-mechanical meth-
ods while the environment has been simulated by using point
charges [30], but more accurate descriptions of the environ-
ment surrounding the active cluster are necessary in order
to account properly for cluster-lattice interactions [31]. Be-
sides, the election of the cluster size is also a delicate prob-
lem, because surface effects at the cluster boundary may af-
fect the results. In the PI model, the “cluster”
its minimum size, a single ion, and cluster-lattice interac-
tions are described selfconsistently in the framework of the
TES [4, 5]. The cluster approximation can be rigourously for-
mulated within the TES, as cluster-lattice orthogonality is a
fundamental requirement of that theory. Another feature of
the PI model is that it does not invoke the LCAO approxima-
tion. The one-center character of the model leads to a large
computational saving with respect to any multi-center cluster
approach. The PI model just described has been formulated
at the Hartree-Fock level. Now we turn to the introduction of
Coulomb correlation.

is reduced to

2.2. Introduction of correlation in the PI model. The
Coulomb hole model

The seminal idea of separability is to find electronic groups
such that intergroup correlations play a minor role [32]. In-
traatomic correlation, on the other hand, contributes signif-
icantly to the band gap energy of ionic crystals and has
to be included. To take into account intraatomic correlation
we have used the Coulomb-Hartree-Fock (CHF) model pro-
posed by Clementi [33, 34]. In the CHF model, the coulomb-
repulsion integrals are modified by introducing a spherical
hole around cach electron in which the other electrons do not
penetrate. The radius of this coulomb hole for a particular
integral depends on the overlaps between the functions in-
volved, aside from other factors. Two parameters can scale
the hole, and their values were chosen to match the empirical
correlation energies of He and Ne. Details of the CHF model
can be consulted in Clementi’s papers [33, 34].
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From the point of view of the PI calculations, the CHF
model is convenient for several reasons: (a) it is computation-
ally simple; (b) it can be implemented easily in the Roothaan-
Bagus SCF (self consistent field) formalism [35]; (¢} it repro-
duces within a few parts per cent the empirical correlation en-
ergy for the ground state of free atoms [33. 34]; (d) it is size
consistent; and (e) the CHF correlation energy depends on
the radial density of the ions, thus incorporating correlation
effects upon the formation of the solid.

There are two ways o implement the CHF model. With-
out going into more detail, we have used the unrelaxed CHF
approximation, in which the Pl wavefunctions calculated at
the HI level are kept fixed and the correlation energy is sim-
ply added to the HF energies. Since the coulomb repulsion
integrals are reduced by the effect of the hole, the corrected
energies of the ions are smaller than their corresponding orig-
inal PI values. The good performance of the CHF model in
accounting lor intraatomic correlation can be appreciated in
the reviews of refs. [36, 37].

2.3. Basis set

The localized atomic-like orbitals used to describe each ion in
the crystal are expanded in a large basis set of STO's [38, 39]
because of their superior performance (their precision being
near numerical-hartree-fock). An extension of the basis was
required for the description of bromides. From an analysis
of preliminary calculations we have reasons to think that the
basis set used for Br may not be the most appropriate to
describe this anton in the crystalline environment. Here we
have decided to enlarge the basis set for Bro by adding one
Sp-polarization function. The exponent of the 5p-STO was
adjusted by minimizing the total energy of the correspond-
ing crystal. We have found that upon inclusion of the 5p-
STO. the 4p-orbital of Br™ experiences a small contraction
with respect 1o the 4p-orbital in the absence of the polariza-
tion function. This very small effect is responsible for the im-
provement of the crystal energy. Within the TES, the portion
of the total energy represented by the projection energy is
sensitive to the quality of the basis set in the tail region. Fur-
ther discussion on the influence of basis sets on the results is
provided in Sect. 3.

3. Calculation of energy gaps

Following the work of Poole er al. [20]. the gap is rigorously
defined as the difference between the threshold energy E; and
the electronic atfinity y\ of the cristal:

A[;p,ﬂp:L"lk\- (13)

The threshold energy is the energy needed to remove an elec-
tron from the top ol the valence band (VB). whereas the elec-
tronic alfinity is defined as the energy of an electron at the
bottom of the conduction band (CB), referred to the vacuum

level. Ttis important to be aware of this definition, because if

the hole in the VB and the electron in the CB were allowed to
interact (electron-hole pair), strictly we would be describing
instead an excitonic level.

The problem for a cluster model when trying to obtain
band gap energies using Eq. (13) is the calculation of the
electronic affinity \, as it i1s necessary to deal with an elec-
tron in a delocalized state at the bottom of the conduction
band [40]. The PI model is not an exception in this respect.
Due to the one-center character ol the model, we have to cen-
ter the electron wave function on a lattice site. Besides, the
strong ion-lattice orthogonality required by the TES would
force the electron to be localized on a given ion, leading to an
incorrect representation of a conduction band state. We can,
however, give an approximate description of this state by re-
laxing the orthogonality requirements (see below). For ionic
malerials the experimental values of y are small (only a few
tenths of eV [20,41]) compared to E; and our approxima-
tion gives values for \ within the correct order of magnitude.
Besides, typical errors in measured gaps are ~ 0.5 eV.

We have calculated the band gap energy in two differ-
ent ways. The first one identifies the gap with the difference
between the energy eigenvalues corresponding to the lowest
unoccupied molecular orbital (LUMO) and the highest occu-
pied molecular orbital (HOMO) obtained in the PI model al
the HF level, that is, we approximate the threshold energy
E; by the HOMO and the electronic alfinity y by the LUMO
(with opposite signs):

AE, = ¢(LUMO) — ¢(HOMO). (14)

This encrgy difference overestimates the gap, as is the case
of typical HF band theory calculations [22]. The second way
is a ASCF calculation.

3.1. LUMO-HOMO difference

The orbital energy of the HOMO level is a quantity readily
obtained in the PI model. For a given alkali halide crystal it
corresponds to the eigenvalue of the outermost occupied p-
orbital of the anion. To obtain the LUMO we can simulate a
neutral alkali atom, A", as an impurity in the ficld created by
the pure crystal (A" © A7 X 7). Then, the LUMO is identi-
fied with the outermost occupied orbital of the neutral alkali
impurity. As stated above, when the calculation is performed
within the strict framework of the PI model, the localized ba-
sis and the condition ol strong orthogonalization between the
orbitals in neighboring sites would lead to an unphysical lo-
calization of this electron on the alkali site. A better descrip-
tion ol the LUMO is achieved by freezing the crystal around
the A" impurity (that is the wave functions of the surrounding
ions) and removing the pieces V¢ (i) and P° (i) out of the ef-
fective Hamiltonian for the impurity. It has to be stressed that
our calculation describes the LUMO as an occupied orbital
centered on an alkali atom. To allow for the delocalization
ol this orbital over a substantial region of the c¢rystal, the ba-
sis set used for the impurity (taken from Bunge and Barri-
entos [42] for Li. Na, K. Rb, and from McLean [39] for Cs)
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has been enlarged by adding some diffuse s-type STO func-
tions, assuming that their exponents form a geometric pro-
aression [43]. For the ratio of the geometric progression we
took the ratio between the exponents of the two outermost s-
orbitals of the original basis set, and we enlarged successively
the basis set with one. two and three STO’s. The calculated
LUMO eigenvalue converges fast as the basis set is enlarged.
In fact, by adding a fourth diffuse function, the LUMO en-
ergy changed by ~ 10~* eV only. With the basis chosen,
the electron in the LUMO orbital of alkali halides spreads
over a range of about 32 coordination cells from its center.
By removing the pieces V¢ (i) and P3(i) from the effective
hamiltonian for the impurity, our calculation of the LUMO
becomes rather similar to the method used in some embed-
ded cluster models, in which the metal impurity, with an extra
clectron added. is surrounded by a set of point charges cho-
sen and optimized to represent the Madelung potential [44].
The difference between the two procedures is that in our cal-
culation we employ the complete charge distribution of the
crystal and not ionic point charges.

The calculation is similar for the oxide crystals. €650 18
the eigenvalue of the highest occupied anionic orbital in the
pure crystal, and €, .., 18 obtained by simulating a metal (or
silicon) cation with an electron added in its external s shell
as an impurity in the pure crystal. Unlike the case of alkali
halides, in the oxides the metal (or Si) cation remains charged
(Bet, Mg*, Ca™, Srt, Bat, AIP*, Si**) after addition of
that clectron. The Clementi-Roetti [38] basis for the cations,
enlarged by some diffuse functions, were used to simulate the
delocalization of the LUMO orbital.

The magnitude of the LUMO eigenvalue is always a small
quantity (the largest value is 0.4 eV for Si**:Si0,). Our re-
sults concerning the affinity level agree with those obtained
lor MgO by Bagus er al. [40] in the sense that this level bears
no simple connection with cationic s-orbitals. In all cases
it was irrelevant to center the electron wave function on a
cationic or an anionic site, the only important issue was fo
allow for the necessary delocalization of the electron. The
number of point-charge shells included in our calculation to
converge the Madelung term is about 190, and the picture that
arises is that the electron becomes as delocalized as possible,
the same conclusion reached by Bagus er al. [40].

Results for the calculated band gaps of twenty al-
kali halide crystals are compared in Table 1 with experi-
ment [22.41.45] and with other calculations. In a similar
way, Table II shows the results for seven oxide crystals,
also compared with experiment [46-49] and other theoreti-
cal results [24, 50]. Typical errors in the experimental gaps
are 0.2-0.5 eV [22]. Our calculations were performed using
the experimental geometries and lattice constants of the per-
fect crystals [51,52]. The calculated (LUMO-HOMO) gaps
display the experimental trends: a decrease of the band gap
by moving down the periodic table along the cation column

when the anion is fixed (the experimental gaps for Br and

I-cryvstals show some exceptions to this trend), and also a de-
crease by moving down the anion column when the cation is

TABLE I. Band gaps of alkali halide crystals calculated by different
theoretical methods, compared Lo experimental values [22, 41, 45].
Aeyr(LUMO - HOMO) is a difference of one-particle orbital en-
ergy eigenvalues. ASCF refers to a difference between the energies
of the crystal in appropriate electronic states (see text). Kunz [22]
performed band structure calculations for the solid and CI repre-
sents a configuration-interaction cluster calculation [53]. All ener-
gies are given in eV.
Aeuy
(LUMO-HOMO)
Crystal | This  Refl. HF CHF Ref.|Kunz CI |Exp.
work  [33] [53] 53]
LiF| 149 16.1 123 141 122 14.0 14.2
NaF| 13.6 14.7 10.1 126 116| 120 119|115
KF| 124 13.3 10.5 11.8 106 109 11.6/10.8
RbF| 12.0 12.7 93 107 10 11.0- 11.3]10.3
CsF| 116 8.7 105 9.9
Li€l| 112 13.0 1G:15 915 104 973 9.4
NaCl| 108 122 96 85 98| 10.0 89| 9.0
KCI| 99 11.2 87 76 92| 100 88| 87
RbC'l 9.6 10.8 82 74 90| 103 87| &

CsCl 9.0 7.8 67

ASCF Others

wh

‘e

LiBr| 109 12.0 10,5 82 96| B84 7.6
NaBr| 0.5 1.4 98 7.0 90( 100 79 7.1
KBr| 9.7 105 91 65 86/ 87 79| 74
RbBr| 94 102 88 62 82 71 78 72
CsBr 8.9 83 54 7.3
Lil|] 1.0 11.0 95 74 88 6.4
Nal 97 10.5 9.0 6.9 8.4 6.9 6.0
Kl 89 9.7 84 63 79 70| 6.1
Rbl 8.7 9.4 g0 59 77 69| 58
Csl 83 T 56 6.2

fixed. For the alkali halides, we obtain a general overestima-
tion ol the gap, with errors which increase with the size of
the ions involved. The same trends are observed in a calcu-
lation by Berrondo and Rivas-Silva [53] using a model of a
cluster embedded in a background of point-like ions. Berron-
do’s calculation was performed at the HF level and the gap,
obtained as the difference of LUMO and HOMO orbital en-
ergies, is given in Table I. The error in the present approx-
imate calculation is, however, about 1 ¢V smaller than in
Berrondo’s calculation. On the other hand, for oxide crystals,
the (LUMO-HOMO) calculation yields excellent agreement
with experiment. At this level of theory, correlation and or-
bital relaxation effects are not yet taken into account, so this
exceptional agreement has to be considered as resulting from
a subtle cancellation of errors.
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TABLE I1. Band gaps of seven oxides calculated from several the-
oretical methods. compared to experimental values. Aeyy is a
(LUMO-HOMO) difference of one-particle orbital energy eigen-
values. ASCF refers to a difference between the energies of the
crystal in appropriate electronic states (see text). Also included are
the ab initio band structure calculations of Pandey et al. [24] and
the ab initio valence bond cluster model results of Lorda et al. [50].
All energics are given ineV.

Crystal Aepr ASCF(HF) ASCF(CHF) Pandey Lorda Exp.

BeO 10,29 849 10.84 10.6 7

MgO 79| 5.80 7.99 821 109 7.09°

CaO 7.14 508 7.01 7.73 g0 708

SrO  6.15 3.86 5577 il 62 S

BaD 492 276 4.62 4.8 48"

$i0: 917 676 8.67 ~
Al:O; 896 693 9.23 R

“ Ref. 46. b Ref. 47, “ Ref. 48, * Ref. 49.

3.2. ASCF calculation

The energy gap of an N-electron system is rigorously defined
within the ASCF method as

ABpy =(En-1 — Ex) — (Eny — En+1), (15)
where En is the ground state energy [54]. This is, evidently,
equivalent to Eq. (13). For the alkali halide crystals we can
write

By = En_1 — En

— [illnsl:xl(j\rﬂ c A % ‘\-7') o El r_\'sl:nl(-’1+-\vi)~ (l'()}

X = Ex— Engi
= ‘L"«r\'\l;il(-;q;-\'..-) o EC:‘,\-'E:I-:\l(V\” : 'L1+‘Y_)a (|7)

associated to the two independent processes of removing an
clectron from a halogen anion and of placing an electron in
a state at the bottom of the conduction band, respectively.
Eirstal (X" : AT X7) represents the cnergy of the crys-
tal with a single neutral halogen impurity and Ecrysqa(AY
ATX ) that of a crystal with a “neutralized™ alkali ion
(although the neutralizing electron is in a fully delocalized
state). Finally Eepysia1(AT X 7) is the energy of the perfect
crystal. The geometry of these “doped” crystals is that of the
perfect crystal. according to the Franck-Condon principle.
The electronic orbitals of the ions surrounding the neutral
impurities (in fact, of all ions in the crystal) were kept frozen
in the same electronic states as in the pure crystal. This is
not strictly necessary for the case X? : AT X~ but we have

found from test calculations that the electronic relaxation of

the cations surrounding the neutral halogen atom is indeed
negligible. For the case of A% : AT X~ freezing of the elec-
tronic clouds of the surrounding shells of ions is convenient in
view of the treatment of the impurity (see below). With these
assumptions the energies £ and y reduce to a difference of
effective energies [55)]

Ei=Eg(X’:ATX )—Eg(X~:4TX") (18)

\ = Eeg(AT 1 ATX ™) — Eg(A” : ATX ™) (19)

where the effective energies of X~ and A™ refer, evidently,
to ions of the perfect crystal. Again, as in the discussion of
the HOMO-LUMO gap in Sect. 3.1 above, we have enlarged
the basis set to be able to describe an electronic state for-
mally centered on an alkali site although delocalized over a
region corresponding to many shells of neighbours. Applying
the same argument to alkaline-earth oxides, the equivalent of
Eqs. (18) and (19) are

Ei = Ea(0™ : A*T0? ) — B (D% : A2TO%) (200

p= B (AP 1 A2H0%) — Bug(At: A2Y0R), @)

and related expressions can be easily written for the SiO» and
Al, Oy crystals.

The main contribution to AF,,, comes from E;, and
\ only provides a small correction. The largest value of y,
which is ~ 0.5 eV is found for SiO,. This magnitude is con-
sistent with the energy difference between the vacuum level
and the lowest conduction band state measured by photoe-
mission spectroscopy [41]. That energy difference is gener-
ally smaller than | eV, and in most cases much lower.

The gaps obtained by this ASCF calculation are given in
Tables I and I1. Two sets of results are included: the first one
corresponds to calculations at the Hartree-Fock level, and the
second includes correlation via the CHF model. The gaps ob-
tained for alkali halides are smaller than those calculated by
substracting LUMO and HOMO eigenvalues, a fact that im-
proves the agreement with experiment, in particular for cases
involving heavy halogens. The improvement arises from or-
bital relaxation in response to the removal of one electron
from the anion. The relaxation of the orbitals of the halogen
atom is included now in the calculation of E,, but not in the
calculation of the HOMO level in Sect. 3.1. This effect of a
higher sensitivity of the anions (as compared Lo cations) to or-
bital relaxation effects was also found in our previous works
on clusters [8,9]. For oxides, improvement with respect to
the LUMO-HOMO difference of Eq. (14) is only found after
including correlation.

The electron density of the cations is very localized and
practically does not change when the delocalized electron is
centered on those cations. Furthermore, the delocalized elec-
tron does not interact with itself. This means that correlation
gives a negligible contribution to y, so one can concentrate
on the contribution ol correlation to E,;. The difference be-
tween ASCEF(HF) and ASCF(CHF) in Tables I and 1I comes
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from this source. We can appreciate in Table I that the cor-
relation correction improves the gap for most alkali halides,
with KE, KCI, RbCI and CsCI as the only exceptions. Fur-
thermore, it is worth noting that this correction changes the
magnitude of the gaps in the correct direction, namely. in-
creasing the gap energy for fluorides, which have HF gaps
below the experimental values, and decreasing the gap for
the rest of the erystals, which show (except KCI, RbCI and
CsCly HE gaps larger than the experimental ones. In sum-
mary. the global trends remain the same as in the HF cal-
culations, but the quantitative agreement improves with the
inclusion of correlation effects. The same can be said of the
oxide crystals. where inclusion of correlation reinstates the
initial agreement found in the (LUMO-HOMO) calculation.
These results lead us to conclude that correlation corrections
are important for a quantitative comparison with experiment,
although the general trends are reproduced at the HF level.

The band gaps obtained by Kunz [22] for twelve al-
kali halide crystals and by Pandey et al. [24] for three ox-
ides from band structure calculations are given for compar-
ison in Tables T and I, Energy band calculations at the HF
level overestimate the band gap with errors of a few ¢V (see
Ref. 22); notice that this is a LUMO-HOMO-type of estima-
tion. Kunz [22. 24] then introduced coulomb correlation by
updating a method described by Pantelides er al. [56]. Corre-
lation elfects lowered the magnitude of the gap, bringing the
results (included in Tables T and 1) in good agreement with
experiment. Comparing with the results obtained by Kunz,
we can see that our CHF results are slightly better, except
for a few crystals (NaF, KF, RbBr), and that Kunz calcula-
tions are less successtul in reproducing the general trends.
We have just mentioned that HE band structure calculations
overestimate the gap by a sizable amount. On the other hand
our ASCF calculations at the HF level do not seem to be
much altected by this problem. We ascribe this to clectronic
relaxation effects.

In Table 1, we also include the results of Berrondo and
Rivas-Silva |53]. obtained as the difference between the total
cnergies of the lowest electronic exeited state and the ground
state 0! a cluster simulating a piece ol the ionic crystal, em-
bedded in a system of point charges. These calculations were
performed at the HF level and, evidently, include electronic
relaxation, so in Table T the corresponding results have been
classitied under the ASCF category. Berrondo’s calculations
include in addition relativistic effects. A comparison with the
present ASCF(HFE) results shows rather similar gaps. In the
same paper Berrondo and Rivas-Silva have obtained the gap
by identifying this one with the excitation energy obtained in
a Configuration Interaction (CI) calculation, again within a
cluster model. in this case a bare cluster without surrounding
point charges. As a consequence of the introduction ol cor-
relation, the CI calculations give an improvement of the cal-
culated gaps for chlorides, bromides and iodides. In the case
ol fluorides, where some of the ASCF(HFE) gaps obtained by
Berrondo are below the experimental values, the CI caleula-
tion leads to an increase of the gaps. So turning from ASCF

56 A, AGUADO ¢f al.

to Cl seems to work in the right direction, although for fluo-
rides this results in a worsening of the magnitude of the gap.
The errors in the CT gaps are not larger than 1 eV. This is also
the case for our ASCFE calculations including correlation, ex-
cept for NaF, KCl and RhCl. for which the erroris 1.1 eV, and
for CsCl and CsBr, where the errors are 1.6 eV and 1.9 eV re-
spectively. The computer time required by our calculations is,
however, much smaller.

Included in Table [T are the theoretical results obtained by
Lorda er al |50] for alkaline-carth oxides. They used a model
of a linear triastomic M-0O-M cluster (M = metal, O = oxygen)
embedded in a Madelung field representing the crystal. The
ab initio wavefunction was written as a linear combination
ol Slater determinants, cach one corresponding to a resonat-
ing valence bond structure. In that way a valence bond wave
lunction is obtained which is explicitely correlated from the
outset, in the sense that it is not an eigenfunction of a hamil-
tonian which can be written as a sum of monoelectronic oper-
ators (for details, consult chapter 7 of Ref. 32). In order to in-
clude external correlation effects they used standard second-
order perturbation techniques. This external correlation is de-
fined as the energy contribution ol those Slater determinants
not explicitely included in the valence bond model space. The
vap was then calculated as an energy difference between ap-
propriate resonating valence bond components. Our results
are also in better agreement with experiment in this case. Ac-
tually, the first excitation energies calculated by Lorda et al.
should not be identified with the band gap energies, but with
localized excitations. This point was emphasized when we
vave the definition of the band gap energy above.

Density functional theory (DFT) [57] has also been used
to calculate band gaps in ionic crystals. The DFET one-particle
eigenvalues have no formal justification as quasi-particle en-
ergies although in practice these eigenvalues have been used
1o discuss the spectra ol solids, The DFT band gaps (usu-
ally calculated emplovine the local density approximation
for exchange and correlation effects) give values typically
30--50 % less than the gaps observed in the optical spectra.
A rigorous formulation requires the calculation of the quasi-
particle band structure. This has been done by Hybertsen and
Louie [58] by using the so-called GW approximation to the
self-energy [59]. These authors have obtained a gap of 9.1 ¢V
lor LiCL

4. Conclusions

A preliminary requirement for the treatment of luminescent
impuritics in jonic crystals is an accurate description of the
band gap. Consequently, we have carried out a series of
approximate calculations of the band gap for twenty alkali
halide and seven oxide erystals. Two different preseriptions
have been used: the first one is a dilference between the en-
ergies of the LUMO and HOMO orbitals of the crystal, and
the second is a ASCF calculation based on subtracting total
energies. For this purpose the Perturbed lon (P1) model has
been used, supplemented with some additional assumptions
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1o deal with the state corresponding to one electron at the
bottom of the conduction band. Correlation effects have been
taken into account by a model introduced by Clementi.
Overall we have obtained a good description of the en-
ergy gaps with a very modest computational effort. The gaps
show a reasonable agreement with experiment, and also com-
pare well (in many cases favorably) with previous theoretical
works. The results support the validity of the P1 model and
the additional assumptions employed to simulate the physi-
cal situation. Further improvement of some particular points

(as the modelling of the delocalized electron at the bottom of

the conduction band, the treatment of electronic correlation,

and the introduction of relativistic effects for heavy atoms)
are expected to improve further the results.
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