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Parametric identification of the non-linear model of a Blumlein Ns-laser
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In this work we propose a non-linear model of the Blumlein circuit for the excitation of a No-laser that produces a high order integro-
differential equations system, when each of the two discharges (the spark gap and the laser chamber) taking place in the circuit are simulated
by an inductance and a resistance connected in series. The inductance and the resistance of each discharge are considered current dependent
and their time behavior is found by means of a parametric identification method based in the measured voltages in the charge capacitors. A
Runge-Kutta method 1o solve the integral terms and a Gauss-Seidel algorithm for the parametric identification were used.
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En este trabajo se propone un modelo no lineal del circuito Blumlein para la excitacion de un liser de N3, el cual produce un sistema de
ecuaciones integro-diferenciales de alto orden, cuando la descarga de interruptor de chispa (spark gap) v de la camara de descarga ldser
s simulan cada uno por medio de una inductancia y una resistencia conectadas en serie. Estas inductancias y resistencias se consideran
dependientes de las corrientes respectivas, que a su vez dependen del tiempo. Las dependencias temporales se encuentran usando un método
de identificacién paramétrica basado en los voltajes medidos cn los capacitores de carga. Los términos integrales se resuelven usando el
método de Runge-Kutta y la identificacién paramétrica se hace usando el algoritmo de Gauss-Seidel.

Descriptores: Lasers; deschargas el éctricas: identificacion paramétrica

PACS: 42.55

1. Introduction

For the pulsed excitation of N3, a well known circuit is the
Blumlein arrangement (Fig. 1). Its role is to produce a very
intense uniform glow discharge across the laser head during a
very short time. The Blumlein circuit consist of two common
non-linear elements, a spark gap whose function is to fire the
circuit and the laser chamber where the laser discharge takes
place. Besides, in order to charge the circuit a coil L paral-
lel to the laser head is used. Traditionally it is supposed that
when the spark gap fires, the impedance jwL shows so high
values, in relation to the other elements, that it is possible
to eliminate it from the analysis. So, the circuit is reduced
to two loops, which follow a fourth order differential equa-
tions for any voltage and current in the circuit, when each
discharge taking place in the circuit is simulated by an induc-
tance and a resistance connected in series, whose values are
considered time independent. By fitting the analytical solu-
tion of these equations to the experimental circuit voltages, it
been possible to find out the average values of the resistances
and the inductances used to simulate the spark gap and the
laser chamber.

The application of such values to the analysis of the
equivalent circuit follows some discrepancies between ex-
perimental and theoretical voltage forms. So, to have better
aproximations it is necessary to know the transient evolution
ol these resistances and inductances [1-3]. Until 1977 [4] the
transient evolution of the resistance and inductance in a pulse

discharge had been very scarcely studied. And till now all the
proposals to know them are based on the fitting of the mea-
sured voltage through the discharge to the voltage solution
obtained from the equivalent circuit [4. 5]. Recently, Perse-
phonis et al. [6] solved the integrodifferential equations of
the Blumlein circuit for the excitation of a N3 laser through a
time-varying linear model, particularly they consider the cur-
rent equations for the laser and the spark gap as linear during
very shorts time intervals. Because they use discret compo-
pents that are interconnected through wires in their exper-
iment they could measure the currents with a fast risetime
current viewing resistor. From the experimental currents they
obtain their first and second derivatives numerically, which
substituted at four very closed adyacent time instants (con-
sidering that during this short time intervals the resistances
and inductances are constant) produce four algebraic equa-
tions for the unknown inductances and resistances at the cor-
responding time interval. Repeating the same procedure for
other time intervals and scanning the entire time region of
both discharges, the time evolution of their equivalent resis-
tance and inductance can be obtained. In our Blumlein cir-
cuit, built on a double-sided cooper circuit board [7], we use
flat capacitors closely connected to the laser head, the cur-
rents arising here flow along sheets (capacitor plates) rather
than along wires. So we use a longitudinal coil [8], which
introduces no modification at all in the laser arrangement, to
measure the current in the laser head. The current in the spark
gap, which was fixed in the middle of a capacitor [7]. was
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FIGURE 1. Schematic diagram of a Blumlein N, laser.

impossible to be measured. The voltages in the circuit are eas-
ier to measure, so we write the equation of the voltages for the
equivalent circuit. Through a fifth order dependence with the
current of the values of the resistance and inductance in the
laser head and spark gap loops, the integro-differential equa-
tions of the system are solved through a parametric identifica-
tion method based in the measured voltages in the capacitors
(', and C'y. A Runge-Kutta method to solve the integral terms
and a Gauss-Seidel algorithm [3] for the parametric identifi-
cation were used.

2. Theoretical considerations

Figure | shows a schematic diagram of the Blumlein circuit.
The circuit is composed of a spark gap (S.G.), the laser head,
two capacitors and a coil L. When high voltage is applied,
both capacitors are equally charged until the breakdown volt-
age across S.G. is reached. At this potential, the S.G. fires and
(', begin to discharge very fast through S. G., so does (; , but
through L and S.G. in a slower way. A very fast rising high
voltage difference appears across the laser head until the laser
breakdown voltage is reached and the discharge takes place.
Figure 2 shows the voltages V and V5 in the capacitors ('
and (5. The mechanical construction of the laser is reported
elsewhere [T].

The voltages Vi and V, were measured with two equal
high voltages probes (Tektronix P6015) combined with a
300 Mhz bandwidth oscilloscope (Tektronix 2440). The volt-
age in the laser head (Fig. 5) is the voltage difference V; — V3
which was automatically given by the oscilloscope and is the

average of 16 discharges. The current in the laser chamber

(Fig. 5) was measured with a home build linear coil [8] and
also registered in the oscilloscope. Stable operation of the
laser was achieved at voltages ranging from 6 to 12 KV, pres-
sures between 60 and 130 hPa and frequencies up to 20 Hz.
The pulse-to-pulse fluctuations of the laser head voltage were
fewer than 5%.
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FIGURE 2. From top to bottom: -Voltage appearing in C1(Vei);
-voltage in C2(Cca).

To analyze the circuit, each discharge taking place in the cir-
cuit is simulated by a non-linear inductance and resistance
connected in series (Fig. 3). Ry and L; stand for the induc-
tance and a resistance associated with the laser head loop, re-
spectively, and R, and L, stand for the analogous parameters
of the spark gap loop.

Because the laser and the spark gap change from a non-
conducting state to a short circuit, the time dependence of R;
and R, is obvious. The changes in both discharges are due
to the change in the electron and ion concentrations, which
produce a time and space dependence of their resistivities.
As we have in our analysis the currents as state variables, we
take R, and R as current dependent, where we are consid-
ering Ity (or Ry) as the resistance in the laser loop (or S.G.
loop). We propose a form of power series for B, (1)

Such expansion gives

Ry = fr,(I) = Ry pI? + Ry IP7

+ Rip2 {2+ ..+ Rl + Rig, (1)
R'_‘ — ,l‘rl‘l’:(-[g) = [‘,'J‘,u"'-ji+ R‘.’.,‘J -l]'_il_l

+ R all ™% ... +Bsilid Bop. )

With the time change of the spatial distribution of a discharge
are related changes in the spatial distribution of the current
density .J = (7, 1). So the inductance of the discharge, that is
function of the dimensions of the conduction volume, is also
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F1GURE 3. Equivalent circuit for the different operation steps of the
Blumlein circuit (a) 0 < t < tg, (b)t <t < tpiN.
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a time dependent function. If J = (7,t) is not known, then
it is not possible to find out the induced magnetic density B,
and the inductance L in the discharge can not be calculated.

However we know that the induced electromotive force
by the time variation of the current intensity in a loop is given
by

dt

where @ = L [ is the induced magnetic flux in the loop. Be-
cause L and I are time functions, the induced electromotive
force can be written as

(3)

s S, @
dt
In our analysis we are considering the currents in the circuil
as state variables, so we take Ly and L as current dependent.
Besides, if we are considering Ly (L-) as the inductance
in the laser loop (S.G. loop), we can propose a form of power
expansion for Ly (L2). Such expansion gives

Ly = .flf.|[11] ] Ll.p]f Gl [ll,,wl[]pil
+ LIAI’*QIIP_E + ...+ L1l + Lo, (5)
Ly = !fj(‘rl) = LE,pI-; =+ L'_J,ﬁ_l.{.",2171

4+ Loy alP 2 4. .+ Ly s+ Lag. (6)

The differential equations governing the performance of the
circuit are given as follows:

2.1. The first step (0 < t < tp)

At t = 0 the S.G. fires and at ¢ = tp the laser head fires.
Through this step, the equivalent circuit showing the opera-
tion of the system is shown in Fig. 3a. The equations govern-
ing its performance are given as follows:

d(L-_)I-_)}

ty
L, i . i
RJIQ+T+a'./([g—Jrll)('”":-“_rh:n:{], 7)

0

tp

tp -

1 1 1 f

L— +—‘r_/[]l(”+ === / (L = I2) di + Vili=o
di 1. &
0 0

+ Vali=o =0. (8)

2.2. The second step (tp <t < tpIN)

At tpin the glow discharge in the laser head gets in the break
down. Through this step the equivalent circuit showing the
operation of the system is shown in Fig. 3b. The equations
governing its performance are given as follows:

d(L, 1,

) 1 /, _
I + — I+ L) dt + V=
R\L+ 7 c ., (1) 11) dt + Vile=tg

1

tEIN
+ c / (I} + 1 — L) dt + Valg=¢, =0, (9)
2 .Jip

ff[“ 1 it

L e L + L) dt + Vili=tg
7 c (1 1)« =t
1 RN
Jr‘—/ (_]|+lr|]7[;g) (H-i-"'g‘f;,n“:(], (10)
Csz Jig
] 515 1 "AFIN
R313+M+—‘-/ (I, — I, — I,)dt
dt '

sy

+ Valt=ty = 0. (11)

3. Parametric identification

The parametric identification is accomplished through a com-
parison of the values in the real process and the theoretical
model. To do that it is necessary to consider n experimental
voltage values for Vi*(tx) and for V5*(tx) (A = 1,2,...n),
satisfaying Eqgs. (7) = (11). We have then,

1!
4'—/ (r\f]+[||}r!f+r1(()). (125
0

Vi C

ot
Vs = i / (Iy — aly — Iy ) dt + Va(0),  (13)
(2.(1
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where

0<t< itp
tp <t <lIpN

for (14)

0
o=
1

and t i can be obtained from the evaluation of the equation

for

1 [ie
Vo =(Vi —Va) et = & [ Iy dt + Vilico
1.Jo

1 ‘tp
-,

where [, and I}, are calculated from Egs. (7) and (8), through
a Runge-Kutta method, until Eq. (15) is satisfied for the ex-
perimental value of V. As parameter identification index we

|

(Is = I11) dt — Vali—o, (15)

567

propose
n 1 £ . 2
J= }g [F‘T /0 (t’.l‘]I + IU_)(H oI ‘f’1 (U) - "-1‘ (f_i\):|

NE
Cs

To use Eq. (16) we need the values of Ry, R», Ly, Lo, Cy,
C’,. The last ones are established by design, but Ry, R», L,
L, are the non-measurable, non linear resistance and induc-
tance of the laser and spark gap, respectively. We consider
them as a p order functions of their current (1)(2) and (5)(6).

The problem is then reduced to the determination of the
4 x (p + 1) parameters £} ;, Ry ;, Ly i, L2, fori =0, 1, 2,
3.+, p that made the value of the Eq. (16) a minimum. In
other words we have to obtain,

0

a8 2
/ (Iy—echy — Io1 )}t + V5 (0)— V;(r.*.)] } (16)

n 1 th ) 2 1 s 2
min Z [—[(ah + 1) dt+ V) (O)fvl"‘(f;‘.)]-l- [—] Ug—aII—I“)df+1:’.~,(())V.;(t;\.)] + (17)
R}("l}-""’:(’?)-L](‘!!)-I-L’(IE)k=1 Cl. 0 CQ 0
The currents I, I, and I}, are obtained from the following equations:
dl, R]-P”}+Rl-ﬁfl”i_l+"'+RI‘III+RL(] /‘fm L
| — + ' L +—— I+ L)dt + —Vi|i=
a ot B, 1 BiC: Jy (1, 11)¢ B, 1e=0
1 LN 1
- L+ I - Ldt+ —VWali—| =0, (18
B:C, ‘/“ (L 11 2) B, 2%_0] . (18)
({]H 1 /.Il.l;\l 1 ) 1 /-PFL\' il )
— 1 Iy)dt + =Vi|j—g + — oly + 1 — L) dt + =Vali—g =0, 19
it LGy J, (ady + fyy)dt + 7 1lt=0 e, /. (aly + Iy = Ip)dt + 7 2t=0 =0, (19)
dly RypIf + Ryp a5+ -4 Raals + Ry 1 [rm 1
e - = . —I. I —aly — Iy))dt + —Vali—o =0, 20
P B, o - BaCs Jo (o — ¥y 1) '|‘B2 5lt=0 =0 (20)
where
By =(p+ 1]L1‘1,]{' +]'J‘-'i-r41.)*1~ II{FI 1 (P - l)L].p—EI;Jml + -4 2Ly L) + L]‘(). 21
B = (p+ ].)Lg”u.[i'; k pLg,p_][;_l +(p— 1)L2!‘;f21-i]72 =t s 2L3’113 =+ Lz_u. (22)

4. Proposed algorithim

The following methods are among the most commonly used
in parametric identification: cyclic change of the param-
eter values or coordinate descent method or Gauss-Seidel
method; fastest gradient method; fastest start method; shot
or Newton-Raphson method; stochastic change of the param-
eter values.

We have used an algorithm [3] based on the Gauss-Seidel
method [9, 10], which consists of changing the value of only
one parameter of the Eqgs. (1)(2) and (5)(6), holding the other
(p — 1) as constants, until the minimal value of the opti-
mization index Eq. (16) for this parameter is obtained. The
changes in the parameter values are carried out using an in-
creasing or decreasing constant. All the other parameters are

treated similarly until a first cycle is completed. A second or
more cycles could be done, always with smaller increasing or
decreasing constant, until the increasing or decreasing con-
stant is lower than a minimal predetermined value. This min-
imal predetermined constant gives the accuracy of the calcu-
lated values. Because the solution of the Eq. (17) needs the
solution of the currents in the circuit, each time the paramet-
ric identification is done, the current values are obtained solv-
ing the mathematical model given by Eqs. (18)—(22), with the
resistance and inductance values calculated from Egs. (1)(2)
and (5)(6). The algorithm was written in FORTRAN and a
PC Pentium (200 Mhz) was used. The solution take a max-
imal of 8 hours and is dependent on the initial values of the
declared parameters.
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TABLE . Calculated parameter for the fifth order functions used to represent ;. /25, L, and Ls.

i 5 4 3 2 | 0
Ry, 0 2.72x1071° [.34x 10~ 8.05x107° 6.94x107° 1.880
Ra 0 —7.30x10"1¢ 2.05x107 M —2i63%1078 —4.42%10~"° 1.401
Ly 0 0 0 1.78%107 16 —7.48x107 13 1.46x10~°
Lo ; 0 0 0 120510725 7.15x10~ "3 1.66%10 %
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FIGURE 4. Time behavior of the resitance and inductance of the
spark gap (Ra. L») and of the laser (Ry, L1) A -laser pulse

5. Results and conclusions

While the Persephonis et al. model [6] is a time-varying lin-
car model, we introduced here a non-linear one, where the
time varying circuit parameters are represented as current
functions. The solution of this model produce not only the
temporal behavior but the current behavior of these parame-
ters. As a future work it is necessary to investigate if such
knowledge can bring out some information about the laser
and spark gap discharge. The model could be used in the anal-
ysis of other discharge circuits and only needs the measured
voltages.

In our study we have considered only the first 60 ns of
the discharge, but after laser emission the laser discharge
changes into an arc discharge, changing their inductance and
resistance drastically. Because this discharge period of time
is not interesting for laser emission it has not been analyzed.
From the experimental voltage (Fig. 2) we chose 26 values
for calculation (see [14]). After processing with Vi, ty, for
k= 1,2,...26, we obtained the parameter values of the
Eqs.(1),(2),(5) and (6) shown in Table I. Figure 4 shows the
time behavior of the resistance and inductance of each dis-
charge in the circuit. Finally, Fig. 5 shows the laser voltage
and the laser current behavior obtained with the parameter

20 40 60
time{nseg]

-3000
00 20 %o
time{nseg)

FIGURE 5. Experimental and simulated voltage and current across
the laser head A-laser pulse.

from Table I and the equations of the circuit. The calculated
laser voltage and current in Fig. 5 and the experimental ones
show a good fit. Similar time variations of Ry, R, L, and
Ly in a Blumlein N» laser were obtained by Persephonis et
al. [6G].

Following our considerations about Ry, Ko, Ly, Ly (sce
Egs. (1), (2), (5) and (6)) and our experimental arrangement,
we could think that the constant values Ry o, R20, L0 and
L3 o should be given by the discrete elements of the circuit,
ie. (1. Cy and the mechanical parts of the laser and the
spark gap. But then, from Fig. 4, we see that the resistance
both discharges should oscillate between positive and nega-
tive values, what is physically impossible.

Statical values of the inductances of € and C> can be
calculated as follows:

Lo, = G128 ; (23)

where C'y = 3nF and Zj is given by [11]:

e
S

376.7
Ty = {‘;—J +0.8825 + 0.1645
= ? <or

Ep

¢

==
= L4516+ In (5 +ﬂ_g;4)]} =0.7249, (24)
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where: w = C; width =38 cm, h = C; thick = 1.59 mm,
2, = () dielectric permitivity = 4.6. So L, = 1.57 nH,
which is in the order of L, g .

For Le, [12]

W= e =85 25
L(,._, — 2(1_'2 =8.5 HH, ( )
where jt = jip, € = 4.629, and C, = 3nF.
From the spark gap geometry, and considering it as a
coaxial cable

b s 2200 2 . G, (26)
2r d

where: | = spark gap lenght = 4 cm, d = external diameter
of the spark gap electrodes = 1.4 cm, D = internal diameter
of the spark gap chamber= 4cm. So L, + Ls . = 16.9nH,
which is in the order of L, g.

We conclude that L, g and L, ( are just the inductances
given by the construction parameters of the laser arrange-
ment, being the time dependent part of L; and L» the induc-
tances of the discharges, (i.e. Liaser = Ly oI+ Ly 111 + L1 g
and Ls.¢. = Laali.+ Ly Ir + Ly g, see Table I). For the
statical values of the resistance of €7 and Cy we have to
consider only the resistive effect of their cooper electrodes
and the dielectric losses equivalent resistances of each ca-
pacitor. However this values are small enough when they are
compared with Ry 5 and Rag (e.g. Re, = (2pc l/A +
Zotand =~ 0.0145Q, where pc, = 1.78 x 10~ Qcm,
I = 27em, A = 30 um x 38cn, tand = 0.019 [13] and

zo = 0.724 Q). We conclude then that the values of R; and
Ry as a function of the time given in Fig. 4 are correspondent
to the ones of the laser discharge and the spark gap discharge.

The physical meaning of all the elements used in our
aproximation, see Eqs. (1), (2), (5), and (6) and Table I (ex-
cept Ly and L ), is beyond the scope of this work. The
temporal behavior of the parameters given in Fig. 4 is dis-
cussed in a qualitative way by Persephonis et al. [6], arguing
avalanche multiplication and Laplace forces.

In Fig. 4 are drawn (pointed lines) the average values we
reported in reference [14], where we used a linear equation
system in our analysis. We can see that such values are in the
range of the obtained in this work. Our new model fit in a
better way the measured voltages and with a good confidence
the experimental current in the laser (Fig. 5) Comparing our
results with the Persephonis [6] ones, we see that our calcu-
lated inductances I, and L, in the circuit are lower. We can
explain that if we consider that our arrangement is a com-
pact one built on a doubled-sided cooper circuit board, while
Persephonis e al. use comercial ceramic capacitors in par-
allel connected. The conexions in the circuit through cables
are responsible for their higher inductances. Our calculated
resistances Ry and /7, are higher than the Persephonis ones.
For the spark gap we use one which works with overvoltages
at atmospheric pressure, while Persephonis ef al. use a trig-
gered pressurized one. For the laser we use a non-preionized
laser discharge, while Persephonis et al. use a corona preion-
ized one, having in that way lower resistive discharges.
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