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The hodograph of the Kepler-Coulomb problem, that is, the path traced by its velocity vector. is shown to be a circle and then it is used
lo investigate the properties of the motion. We obtain the configuration space orbits of the problem starting from initial conditions given
using nothing more than the methods of synthetic geometry so close to Newton's approach. The method works with elliptic. parabolic and
hyperbolic orbits: it can even be used to derive Rutherford's relation from which the scattering cross section can be easily evaluated. We
think our discussion is both interesting and useful inasmuch as it serves to relate the initial conditions with the corresponding trajectories in
a purely geometrical way uncovering in the process some interesting connections seldom discussed in standard treatments.
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Demostramos que la hodégrafa del problema de Kepler-Coulomb, esto es, la trayectoria que sigue su vector velocidad. es una circunferencia
y la usamos para establecer geométricamente otras propiedades del movimiento. Obtenemos la relacion entre la hodograta y la orbita en
el espacio de las configuraciones para el problema de Kepler-Coulomb, partiendo de condiciones iniciales dadas y empleando nada mds
que los métodos de la geometria sintética tan caros a Newton. El método que proponemos incluye, tanto a las orbitas elipticas como a las
parabélicas e hiperbélicas, y puede también usarse para deducir la relacion de Rutherford: la que es la relacion clave para obtener la seccion
clicaz de dispersién. Pensamos que nuestro enfoque es tanto interesante como ttil, ya que permite trazar las trayectorias usando solo métodos

geométricos y, ademds, reconocer algunas relaciones que no son evidentes en los tratamientos mds usuales.

Deseriptores: Métodos geométricos; el problema de Kepler-Coulomb: el espacio de velocidades

PACS: 03.20:+i: 95.10.C

1. Introduction

We have been analysing an approach to solve the Kepler-
Coulomb problem employing the properties of its hodograph
and its relationship to their orbits [1-4]. Please recall that
hodographis the name given to the path traced by the velocity
vector of a system in velocity space. In this work we purport

to express all our arguments in geometric terms in a sort of

Newtonian fashion. The hodograph as a mean towards under-
standing the dynamics of a system was introduced by Hamil-
ton [5]—he even invented the term—during the last century.
Hamilton was able to show that the hodograph under an in-
verse squared centre of force [5-7] or, as we call ithere, in the
Kepler-Coulomb problem is always a circle. It is curious 1o
notice that Hamilton proved that, in a way. the ancient Greek
astronomers were right, the motion of planets around the sun
is indeed circular, they just got wrong the space since the
hodograph inhabits velocity rather than configuration space.
However, even if one knows that the Kepler-Coulomb hodo-
eraph is circular in shape, it is natural to wonder how can
that circle be related with the well-known orbits in configura-

tion space. Let us note that the problem is easily solved in an
analytical treatment since we can use the polar angular coor-
dinate in the plane of the orbit, #, for relating the trajectory in
v-space with the trajectory in r-space [2—4]. Furthermore, let
us point out that the problem posed has been alrcady solved
geometrically, since there exist beautiful methods developed
by Maxwell [G] and by Feynman [8] to solve it.

In this work we discuss a—we expect—novel geometric
approach to the relationship between the hodograph and the
orbit of the Kepler-Coulomb problem. We begin establishing
the circular shape of the problem’s hodograph using standard
analytical methods and then rework the path from the hodo-
graph to the orbit using techniques that—we think—are akin
to those in the Principia [9]. In our view, this geometric ap-
proach uncovers the geometrical beauty associated with the
physics ol the problem which no doubt contributed to the at-
traction felt towards it by many people trough the centuries,
from the ancient Mayan astronomers to their modern counter-
parts. We do think this type of approach contributes (o a bet-
ter understanding of the interplay between the geometry and
the physical properties of the solution to the Kepler-Coulomb
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problem. It is to be noted that, mostly, the constructions pre-
sented here require no more than straight edge and compass
to be realized. But, before embarking in the discussion, let us
convene that the trajectory in configuration space be always
called the orbit whereas the trajectory in velocity space be
always called the hodograph.

2. The hodograph of the Kepler-Coulomb prob-
lem

The equation of motion of a particle interacting with an in-
verse squared centre of force is
m% — —T%é,\\ (1)

where 11, v, v and &, are, respectively, the mass of the parti-
cle, a constant characterizing the interaction strenght (which
is positive if the interaction is attractive or negative if it is
repulsive), the velocity vector, and the unit vector in the ra-
dial direction in configuration space. In the Kepler-Coulomb
problem, described by Eq. (1), the energy £ and the angular
momentum L = mr x v = mrzgé; = Leé. are conserved
(we choose the direction of L as z-axis). The motion is thus
seen to be confined to a plane orthogonal to L. In this orbital
plane we may choose a polar coordinate system with unit vec-
tors &, and &5 = €. x é&,, for describing the motion. Given
this information, showing that the hodograph is a circle is not
difficult, this has been done by Fano and Fano [10] using a
nice but not completely geometrical approach. As posing and
solving dynamical problems in geometrical terms is, how-
ever, very unfamiliar to modern readers, we have decided to
start the discussion using conventional differential equation
techniques: according to this, we begin by giving standard
proof of the hodograph’s main properties [2]:

I we multiply (1) times L, the equation of motion be-
comes

dv 18 5 Fee i
Im—= ——_)(.'nr“)ﬂ)e,‘ = ameéy, (2)
dt e
where we used ég = —Fjé?.. From (2), it must be clear that

the Hamilton vector [2, 11]
(4 4
h=v-—6 (3)
L
is a constant of motion in the Kepler-Coulomb problem. As
can be seen in this equation, the Hamilton vector is always

parallel to the velocity at pericentre v,, [4,12]. The magni-
tude of the Hamilton vector

L=

increases when the energy £ increases or when the magni-
tude of the angular momentum L decreases. Moreover, as
follows from (3), the velocity lays in a circular arc with ra-
dius Ry, = o/ L and whose centre is at the tip of h in veloc-
ity space. The Coulomb-Kepler hodograph is a circle whose

centre is at the tip of h and, therclore, the Hamilton vec-
tor defines a dynamical symmetry axis of the hodograph—
dynamical symmelry in the sense that it is not only a geomet-
rical property, the interaction intervenes directly; for com-
parison note that the rest of the diameters are just geometric
symmetry axes. This property of the hodograph shows that
the orbit has also a dynamical symmetry axis; such axis is
found by geometric means in Sect. 3 below.

As the hodograph is a closed curve—at least when it hap-
pens o be the whole circle, fe., in precisely the case of
bounded orbits—then all the bounded orbits of the problem
have to be necessarily periodic. How are other features of the
hodograph related to the properties of the orbit? As we ex-
hibit below in Sects. 4.1 to 4.5, the geometric shape and the
bounded or unbounded nature of the orbits change according
to where the v-space origin is positioned in relation to the
hodograph. Many of these features are discussed in modern
language for the case of an attractive interaction in [2] and
for the scattering case in [3, 4].

3. From the initial conditions to the hodograph

If we are given the position ry and the velocity vy at a
certain time #g, how can we construct the Hamilton vector
and the hodograph? In this section we show how this can
be done using a very simple geometrical construction. Be-
fore beginning with the geomelrical construction, we first
need to calculate the lenght of the angular momentum vector:
L = mroug sind, where 0 < § < 7 is the angle between the
initial position and velocity. But, L is just the arca of the rect-
angle spanned by r and the component of v orthogonal to
ry imes i, that s, itis twice the areal velocity of Kepler sec-
ond law. We also need the ‘length” ), = a/L—remember
that this ratio has really dimensions of velocity.

To understand the geometrical construction that follows
it is convenient to keep Fig. | in sight. Let the point Q be
the position of the centre of force. Draw the line segment QR
corresponding to the initial position ry (in fact, this is always
the name given to the line segment representing the initial
position in all the discussions that follow). Extend the seg-
ment QR up to an arbitrary point O—this just corresponds to
choosing the origin in velocity space. From the v-space ori-
gin O, draw the line segment OP corresponding to vq (OP is
always the name of the line segment representing the initial
velocity in all the discussions that follow) and draw, perpen-
dicular to QR, a line segment OO’ of lenght R, —that is, we
are drawing —av/ L & (recall that we defined &5 = é. x &,,
where é. = L/L). Notice that the previous construction as-
sumes both an attractive interaction and all the conventions
mentioned. To analyse a repulsive interaction the point O
had to be chosen in the opposite direction (i.e., in such case
we should draw +a /L ég).

Using the parallelogram rule, sum OP to OO (o get the
point C. The line segment OC represents the Hamilton vector.
Having obtained h, to get the hodograph draw, with centre at
C, acircle of radius 17),: this represents the hodograph.
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FIGURE |. The geometrical procedure for obtaining the Hamilton
vector and the hodograph from given initial conditions rp and v
is illustrated. O labels the origin of coordinates in velocity space or
v-origin and Q labels the location of the centre of force. To draw
the segment OO, corresponding to —&gar/ L, we assumed that L
points outside the plane of the paper. The Hamilton vector is the
line segment OC, the circle X'PX centered at C is the hodograph.
The straight line segments QS and SX correspond, respectively, to
the dynamical symmetry axis of the orbit and of the hodograph.
The discussion related to this figure can be found in Sect. 3.

The above geometrical construction besides giving h and
the hodograph tell us about the bounded or unbounded nature
of the orbit. It is only a matter of noticing whether O is lo-
cated inside the circle of the hodograph or not; if it is inside,
the orbit is bounded and the energy has to be negative, if not,
the orbit is unbounded and the energy is positive. Figure |
illustrates a case in which O is inside, that is, a motion with
E < 0. What about the case £ = 0?7 As il is easy (o sce
from (4), or just from the continuity of the descriptions, this
case only happens when O sits precisely on the circle, that is,
when h = R), = o/ L [2].

It is also easy to obtain the dynamical symmetry axis of

the orbit from the given initial conditions. We just need to
draw the line segment QS, which is a line perpendicular to
OC passing through the centre of force Q. This follows from
the paralellism of h and the velocity at pericentre v;,. The line
QS so drawn, is the orbit’s dynamical symmetry axis. Nolice
also that v, can be drawn by simply prolonguing the segment
OC until it intersects the hodograph. This intercept is marked
X in Fig. 1. If, as happens in Fig. 1, there are two intersec-
tions with the hodograph and not just one, the velocity space
origin O is, necessarily, inside the hodograph, that is, the en-
ergy is necessarily negative. The second intercept, labeled X’
in Fig. 1, defines the segment OX’ corresponding to the ve-
locity at the apocentre of the orbit, that is. to the point on the
orbit farthest from the centre of force and therefore with the
least magnitude. A such point obviously does not exist in the
E > 0 case when O is outside the hodograph.

In all the Sect. 4, we assume that the symmetry axis
has been drawn as described before the geometric discus-
sion begins, The just found dynamical symmetry axis cor-
responds to the direction of the Laplace-Runge-Lenz vector
A = h x L |13, 14] which always points towards the peri-
centre of the orbit.

4. From the hodograph to the orbit

In this section we show how given the hodograph, con-
structed from the initial conditions as explained in Sect. 3,
the orbit in configuration space can be obtained and all its
geometrical properties established.

4.1. The case of an attractive interaction with the
v-origin inside the hodograph

Let us assume that the origin of coordinates in velocity space
is within the circle of the hodograph; this 1s the case whose
realization from initial conditions was previously discussed
in Sect. 3 and was illustrated in Fig. 1. Please refer to Fig. 2
for the schematic representation of the geometric steps that
follow and as an aside note that every single step can be ac-
complished using only straight edge and compass.

The points Q, R, O, O, P and C in Fig. 2 have exactly the
same meaning as in Fig. 1, that is, they serve to construct the
Hamilton vector OC and the hodograph centered at C given
the initial conditions ro (the straight line QR) and vq (the
straight line OP), and the vector —é&y Ry, (the straight line
00’). In fact, we will always assume this meaning for the
labeling of points in Figs. 2-5, in Fig. 6 the naming of points
is similar excepting that O is not found to be necessary.

To locate any point in the orbit, extend the straight linc
PO until it again intercepts the hodograph at point T (see
Fig. 2a). Trace a perpendicular to CT passing through the
point R, this line intercepts the symmetry axis (constructed
as in Sect. 3) at the very important point Q°. To locate the
point on the orbit corresponding to any given point on the
hodograph, let us notice that we have already one such pair
of points, the initial conditions: the points R and P. Let us
choose another point P* on the hodograph: to begin, draw the
straight line OP’, extend it until it intersects the hodograph
at point 7. Draw two straight lines perpendicular to CP’ and
to C'T’ passing through Q and Q' respectively; we assert that
this two perpendiculars meet at the required point R on the
orbit, as was the case with the perpendiculars to the straight
segments CP and CT, related to the initial conditions and
meeting at /7. To draw the complete orbit, we have to repeat
the same procedure starting from cach and every point on the
hodograph, in this way drawing, point by point, the whole
orbit—which is shown as the gray curve which includes the
points R and R” in Fig. 2a.

What are the properties of the just constructed orbit? The
easiest way to answer this question is by establishing the
orbital shape. To do this, let us first draw the circular arc
Q'W centered al R with a radius equal to the lenght of RQ)'.
This arc intercepts the straight line QO at the point W (see
Fig. 2b). Next, trace the circular arc WW’ centered at Q with
radius QW. Tt is now easy to see, just by noticing that the
shaded triangles AP'T'C and AW'Q'R" are both isosceles
and similar to each other (this happens by construction), that
the point R” on the orbit is at the same distance from the arc
WW? than from the point Q. We can see thus that the radius
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FIGURE 2a. The procedure for reconstructing the orbit when the
hodograph encompass the v-origin is illustrated. The meaning of
the points marked Q, R, O, O", P and C is illustrated. Notice that
the orbit is indeed closed; furthermore, notice that despite appear-
ances the point S does not necessarily correspond to the vertex of
the ellipse. For the detailed discussion of this case see the Sect. 4.1.

FIGURE 2b. To demonstrate the orbit is indeed an ellipse we need
to recognize that the two shaded isosceles triangles AQ'R"W’ and
ACP'T are similar to each other.

of the circular arc WW” is the sum of the lenghts of QR’ and
()R’ and, therefore, that in the case E < 0 the orbit is neces-
sarily an ellipse with major axis 2a equal to the lenght of the
line segment QW. The auxiliary point Q" is thus one of the
foci of the ellipse, the other one coinciding with the centre of
force Q. The line QS can be seen to be the symmetry axis of
the ellipse as we have anticipated. In fact, the eccentricity of
the ellipse is easily calculated as ¢ = h/ R, = OC/CP [2].
Thus, the famous Laplace-Runge-Lenz vector can be drawn
as a straight line segment of lenght ave parallel to SQ—as the
segment labeled A in Fig. 2a illustrates. It is to be noted that
the circle WW’W?” can be identified with the circle used by
Maxwell and by Feynman in their respective discussions of
the Kepler-Coulomb problem [6, 8].

FIGURE 3. The procedure for reconstructing the orbit when the
v-origin is precisely on the hodograph is illustrated. For the sake
of convenience, let us first translate the whole hodograph from its
original place centered at C to a new location centered at Q (the
centre of force). All references to points on the hodograph are to be
understood at its displaced location. To demonstrate that the orbit is
a parabola we only need to recognize that the two shaded isosceles
triangles AQP'O and AR'QW' are similar to each other. Notice
that the straight line segment SW'W corresponds to the auxiliary
circle of the previous figure. Thus, from this point of view, the di-
rectrix is just a degenerate circle with infinite radius. See the dis-
cussion in Sect. 4.2,

4.2. The case of an attractive interaction with the
v-origin on the hodograph

Let us now assume that the origin of coordinates in velocity
space happens to be precisely on the circle of the hodograph,
as shown in Fig. 3. The symmetry axis QS, as described in
Sect. 3, is the line perpendicular to OC which passes through
the point Q. For the construction, we also need the auxiliary
line SW, paralell to OC and whose distance from the initial
point R (RW) is-equal to the lenght of the segment QR.

To construct the orbit, we first, just for the sake of con-
venience, translate the centre of the hodograph to the point
Q. That is, the hodograph’s centre is relocated to coincide
with the centre of force. See Fig. 3. All references to points
on the hodograph from now on, assume this new location for
it. Let us choose an arbitrary point 7’ on the hodograph and
draw the straight line segments OP’ (the velocity) and QP
(i.e., the vector &y R;,). Draw a perpendicular to OP” passing
through Q and intercepting the auxiliary line SW at the point
W’. Erect W'R’ perpendicular to SW and trace QR’ perpen-
dicular to QP’ passing through Q. This line intercepts W/R’
at R’, a pointon the orbit. We assert that any point constructed
in this way belongs to a parabola which thus corresponds to
the shape of the orbit in the case in which the v-origin sits on
the hodograph, that is, in the £ = 0 case. In fact, the asser-
tion can be checked just by noting that the initial conditions
are related in exactly the same way as we did in the previous
section.

Rev. Mex. Fis. 44 (6) (1998) 604-610
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The proof that the orbit is a parabola is similar to that
given for the elliptic case of Subsect. 4.1, based as it is on
the similarity of the shaded isosceles triangles AQP'O and
AR'QW" in Fig. 3 (please remember that we are always re-
ferring to points in the displaced (continuous) hodograph).
This similarity is enough to show that the lenghts of QR’ and
of R'W" are the same, thus establising the orbit as the locus
of points equidistant from both the point Q and the straight
line SW. Therefore, Q is seen to be the focus and the segment
SW the directrix of the parabola. Notice that the directrix is
defined by the direction of the Hamilton vector h, being thus
also parallel to the velocity at pericentre CX (v,). Notice also
that both the hodograph and the orbit exhibit that the speed at
pericentre (the lenght of CX, vp) Is always greater than any
other speed in the problem.

4.3. The case of an attractive interaction with the v-
origin outside the hodograph

Let us now assume that the origin of coordinates in velocity
space O is outside the circle of the hodograph as shown in
Fig. 4. The Hamilton vector is OC and the hodograph is the
circle centered at C with radius CP. A very important dif-
ference with the cases of Subsects. 4.1 and 4.2, is that here
the hodograph is not the whole circle since, in this case, this
is the only way ol guaranteeing that every point in the orbit
came {rom just one and only one point, i.e., every point corre-
sponds to just one velocity. In this way we also guarantee that
every other speed v is always less than the speed at pericentre
v, [3,4]. This implies that, in the attractive case considered
here, the hodograph is the arc of the circle ‘farthest’ from
the origin—shown as a continuous line in Fig. 4a. As in the
previous two subsections, the symmetry axis QS, is the line
perpendicular to OC and passing through the centre of force
Q as illustrated in Fig. 4a.

For constructing the orbit, we first need to locate the aux-
iliary point Q" (Fig. 4a). To locate Q" first trace the straight
line CT. were T is the unphysical intercept of the hodograph
with the line OP, then erect on R a perpendicular to CT. The
intercept of this last line with the symmetry axis QS is pre-
cisely the auxiliary point Q'. With these geometric data we
can begin the construction of the orbit.

Let us select any point P7 on the hodograph, trace the
straight lines CP’ and CT’. Erect perpendiculars to them
passing through Q and Q°, respectively, the intersection of
these lines is another point R” on the orbit. It is now obvious
that for constructing the whole orbit you have to repeat this
procedure over and over again, starting from each point on
the hodograph, you can check that the initial conditions are
related by this same procedure. The asymptotic velocities and
the speed at infinity are also easy to obtain. To this end just
trace, starting from the v-origin O, the straight line segments,
OB and OB’ tangent to the hodograph. These segments
correspond, respectively, to the asymptotic velocities v_
and v (as follows from angular momentum conservation),

FIGURE 4a. The procedure for reconstructing the orbit when the
v-origin is outside the hodograph is illustrated. The points P and P’
on the hodograph correspond to the points R and R™ on the orbit.
See Sect. 4.3

FIGURE 4b. To demonstrate that the orbit is an hyperbola whose
internal focus coincides with the centre of force. we only need
to recognize that the two shaded isosceles triangles ACP'T and
AR'QW are similar to each other.

therefore, as can be seen in Fig. 4b, their common lenght is
the sought after speed vo = /h? — R;.

We are just left with the task of establishing the shape of
the orbit. To this end, trace the circular arc QW centered at
R with radius QR, this arc intercepts the segment Q'R at the
point W. (See Fig. 4b.) Next, trace a circle centered at the
auxiliary point Q" and radius Q'W. Given the similarity of
the two shaded isosceles triangles A CP'T and AR'QW’,
we can assert that any point R™ is at the same distance from Q
and from the circle WW™ (shown as a continuous dark circle
in Fig. 4b), where W" is the intercept of this last circle with
Q)'R’. From the fact that any point on the orbit is at the same
distance from the point Q and from the circle WW’, we can
establish that the difference between the distances from R’ to
Q and from R" to ", is equal to the radius of the circle WW’
and, therefore, it is a constant. But this is precisely the defi-
nition of an hyperbola, which is thus the shape of the orbit in
the E' > 0 attractive case. This is illustrated in Fig. 4b.

Rev. Mex. Fis. 44 (6) (1998) 604610
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FIGURE 5. The procedure for reconstructing the orbit starting with
finite initial conditions. Here we consider the case when the v-
origin is outside the hodograph and the interaction is repulsive. The
two shaded triangles are important for the discussion in Sect. 4.4

4.4. The case of a repulsive interaction

In the previous sections we have been addressing the con-
struction of orbits in the case of an attractive interaction in
Eq. (1), i.e., the case with & > 0; however, the sign of « does
not really matter for the shape of the hodograph, it is always
a circie. But, as we already know [13], there are nevertheless
differences in the kind of motions in configuration space that
are allowed. How can we understand such differences starting
from just the hodograph? Finding a sort of geometric answer
to this question is one of the purposes of this section.

Notice that, in the case at hand and as shown in Fig. 5,
both points O and P are on the same side of the straight line
seement QR therefore the length of OC (the Hamilton vec-
tor h) is greater than OP (the initial velocity vi) and that
00 (the hodograph radius is less than OP, this means that
the origin of coordinates in velocity space is always outside
the circle of the hodograph. That is, whenever ov < 0 and
since v - &9 could not be negative nor vanish, the only possi-
bility for the v-space origin is to be outside the hodograph. In
the “modern’ language of classical mechanics, it a < 0 then
the only possibie motions have a necessarily positive energy.

The points Q, R, O, O', P, T and C in Fig. 5 have exactly
the same meaning as in the previous Figs. 1 to 4, that is, they
serve (o construct the Hamilton vector OC and the hodograph
centered at C, given the initial conditions ry, the straight line
W and vq. the straight line OP, and the vector —eg Ry,
represented by the straight line OO’ This case is similar to
that of Sect. 4.3 since the hodograph is not the whole circle;
this can be argued using essentially the same argument as in
that section [2—1]. In the repulsive case considered here the
hodograph is the circular arc “closer” to the origin—which is
shown as a continuous line in Fig. 5. As in the previous sub-
sections, the symmetry axis QS is the line perpendicular to
OC and passing through the centre of force Q.

To find the orbital shape we need the auxiliary point Q’,
which is the intercept of a perpendicular to CT going through

FIGURE 6. The Rutherford relation between £ and L can be simply
obtained from the hodograph as we illustrate in this figure. We also
exhibit the procedure for reconstructing the orbit in a scattering sit-

uation. We consider the case when both the v-origin is outside the
hodograph (i.c.. the case £/ > 0) and the interaction is repulsive
(i.e., ev < (). For a briefl discussion see Sect. 4.5. A complete dis-
cussion from the point of view of velocity space can be found in
Ref. 4.

R with the symmetry axis QS. Now is just a matter of choos-
ing an arbitrary point P* on the hodograph, and prolonguing
the straight line segment OP until it again meet the hodo-
graph at point T". Trace the straight line segments CP’ and
CT' and erect perpendicular segments going through Q and
Q. respectively. The intercept of these perpendiculars is the
corresponding point R” on the orbit. Repeating the procedure
for every point on the hodograph we can obtain the whole or-
bit. The orbit is again, as in Sect. 4.4, an hyperbola with foci
Q and Q’, as can be shown by considering that any point on
the orbit is at the same distance from the fixed point Q" and
from the auxiliary circle WW' centered at Q, defined as in
Sect. 4.4, The complete argument uses the similar isosceles
triangles ACP"T" and AR"W'(Q)' and essentially repeats the
argument of the previous section.

4.5. The Rutherford problem

Let us pick the point Q as the location of the repulsive cen-
tre of force. To describe geometrically a scattering situation,
we have basically the same situation of Sects. 4.3 and 4.4,
the only difference being that here we are given the velocity
V_ e, Le., the velocity evaluated at a time in “the infinitely
distant past” and the impact parameter b, not the velocity and
the position at a certain finite time £. See Fig. 6. With the data

just mentioned and from the location of the centre of force Q,

draw the line segment OK parallel to v . starting from the
arbitrary point O but passing at a distance b off the centre of
force.

If on OIC we choose the segment OB to represent v_ ..,
the point O would have been implicitly selected to play the
role of the v-origin. Then, from the point B, erect a perpen-
dicular straight line segment, of lenght R, up to the point C.
Next, centered at C draw a circle with radius CB, a part of
this circle is the hodograph of the problem. If we draw the

Rev. Mex. Fis. 44 (6) (1998) 604-610
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tangent to the circle OB/, this represents the asymptotic out-
going velocily at infinity v ; the hodograph is thus the cir-
cular arc BPB” and the Hamilton vector is the line segment
OC bisecting the angle ZB'OB. This angle is usually called
the deflection angle £. In fact, the right triangle AOBC gives
immediately the Rutherford relation between /2 and L

= == X (5)

which can be used as the starting point to derive the fa-
mous Rutherford scattering formula [3, 8, 13]. See also Ref. 4

where the Rutherford problem is discussed taking a velocity
space point of view from the start.

5. Conclusions

We have exhibited that the orbits of the Kepler-Coulomb
problem can be obtained and classified (basically in terms of
the energy) starting from the hodograph and using techniques
of synthetic geometry requiring no more than straight edge
and compass. We have exhibited that the Hamilton vector is
crucial for deciding geometrically if the orbits are bounded
or not and, furthermore, that with its help, we can draw point
by point any orbit whatsoever. On the other hand, speaking
on the purely geometrical content of the paper, we have man-
aged to offer an admittedly not very systematic proof of an
clementary but not widely known geometric result, namely,
that the conic sections can be defined as the locus of points

equidistant from both a fixed point and a fixed circle. The
geometric method can be further justified as in [15].

We have learnt a lot in trying to do mechanics using the
nowadays non-standard methods of Newton. We hope that
this article may convey to the readers the aesthetic pleasures
we discovered in the geometric structure of Newton’s me-
chanics. We think these considerations are enough to jus-
tify the approach presented in this article which exhibit the
enormous power of geometric reasoning in classical mechan-
ics [16]. However, we have to emphasize that Newton's ge-
ometric methods go far beyond the simple results obtained
here; it has been discovered, for example, that the Principia
contains, among other things, astonishing geometric proofs
of deep results on the properties of Abelian integrals [17].
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