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Oblique impact of rolling spheres: a generalization of billiard-ball collisions
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A model for the inelastic collision of spheres rolling on a horizontal plane with arbitrary spins about horizontal and vertical axes is presented.
This formulation includes an account of frictional forces acting between the spheres at impact. As a result, the scattering angles just after the
collision and when the rolling motion is reestablished can be expressed as a function of the friction and restitution coefficients and the impact
angle. A procedure is obtained to determine whether or not sliding takes place at the points of contact during impact. Theory is in agreement
with experimental data for different materials, including billiard balls.

Keywords: Impact; friction; restitution

Se presenta un modelo para la descripcion del choque entre esferas que ruedan sobre un plano horizontal con rotaciones arbitrarias en torno a
ejes vertical y horizontales incorporando el efecto de las fuerzas de rozamiento durante el impacto. Como resultado, se obtienen los dngulos
de desviacion de las esferds inmediatamente después de la colisién y cudndo se alcanza nuevamente el régimen de rodadura pura en funcion
de los coeficientes de rozamiento y restitucion y del dngulo de impacto. Se discuten los casos en que existe y no existe deslizamiento entre
los puntos de contacto de las esferas durante el choque. Los datos experimentales para esferas de distintos materiales, incluyendo bolas de

billar, se hallan en buen acuerdo con la teoria.

Descriprores: Choque: rozamiento; restitucion

PACS: 05.50.Kw

1. Introduction

Collisions between rolling spheres and, in particular, billiard-
ball collisions are frequently mentioned in texts to illustrate
the application of classical laws of conservation. However,
the detailed analysis of all the factors influencing the ob-
served posteollision trajectories in rolling ball collisions is
rarely accounted for. First of all, the impact event can be con-
sidered as clastic or inelastic, whether tangential forces are
taken into account or not. Secondly, the paths of the balls af-
ler the impact are curved by effect of the friction between the
halls and the supporting surface.

Figure | illustrates the collision between a rolling cue ball
and a stationary object ball. Immediately after the impact, the
balls move in directions that form postcollision angles, ; (or
4,7 3 = 1,2) with the initial direction of the cue ball. The mo-
tion of the balls is then a combination of rolling and sliding
so that this friction with the supporting surface causes each
sphere to describe a curved path until it rolls without slip-
ping in a straight line. Then, the balls move in directions that
define postransition angles 3; (or ¢;).

A limited number of approaches have been published:
Bayes and Scott [1] studied billiard-ball collisions on a low-
friction surface to prevent curved trajectories after impact.
These authors assumed inelasticity and absence of tangen-
tial forces during the impact event. In 1968, Armstrong dis-
cussed [2] the head-on impact of rolling spheres taking into
account the friction between them, but assuming the impact

to be perfectly elastic. In 1988, Wallace and Schroeder [3]
formulated the oblique impact of a cue ball in pure rolling
motion against a stationary object ball assuming elastic-
ity and absence of tangential forces at impact. On the ba-
sis of the Wallace and Schroeder model, Onoda [4] devel-
oped some practical rules for billiard games. More recently,
Beltran [5, 6] has presented a geometrical method for teach-
ing collisions on the basis of the elastic frictionless model.

The scope of these models is limited by the prescription
of initial pure rolling motion and the assumption of neglige-
able frictional effects at impact. As described qualitatively by
Walker [7], the frictionless model is unable to explain the ob-
served postcollision paths in billiard games when: (a) a cue
ball hits an object ball that is already touching another ob-
ject ball (the two object balls are said to be frozen); (b) a cue
ball with left or right pivoting angular velocity (or “English”
spin) rebounds from the rail. Thus, Jiménez [8, 9] discussed
friction effects on billiard-ball collisions while Salazar and
Sanchez-Lavega [10] and De la Torre [11] have studied the
conditions that determine the motion of a billiard ball being
tapped by a rod emphasizing the effect of friction on the kine-
matic state of the ball after the hit.

To study these impact events it is convenient to describe
the motion of a billiard ball as being two simultaneous spins,
one about a horizontal axis (topspin or backspin; “follow” or
“drawn”, respectively, in billiard terminology), and another
about a vertical axis (left and right “English™ in billiard ter-
minology [12, 13]).



FIGURE 1. Schematic diagram of a cue ball and an object ball col-
lision including postcollision and postransition angles. Solid lines
represent the real curved paths of the balls and dotted lines cor-
respond to the direction of the balls immediately after the impact.

As schematized in Fig. 2, for the impact of a rolling ball
against a rigid cushion, tangential forces acting throughout
the impact must be necessarily included to explain the ob-
served differences in the rebound angle, and, in particular, to
explain the fact that for sufficiently large backspin pivotment,
the ball may be projected backwards after the collision.

The purpose of the current paper is to offer a solution to
the collision problem in the most general situation in which
the cue ball has arbitrary values of inital rotation and pivot-
ment (English) spins, /) by considering simultaneously the in-
elasticity of the impact and effects associated with frictional
forces acting during the impact event; /i) including an account
of subsequent friction with the supporting surface.

The approach presented here is an extension of prior stud-
ies on the frontal impact of rolling spheres [14] and oblique
pendulum [15] and disc [16] collisions that are based on
the general algorithms of Brach [17] and Kane and Levin-
son [18]. These authors emphasize the existence of two pos-
sible regimes of impact derived from the account of tangen-
tial forces: with and without sliding between the contacting
surfaces. Collisions with sliding are recently described in de-
tail by Keller [19]. Description of billiard ball collisions is
complicated by the fact that impulsive forces act, during the
impact event, not only between the balls but also between
the balls and the supporting surface. Accordingly, we assume
explicitly with regard to the impact event that [17-19]:
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FIGURE 2. Rebound paths for the collisions of a rolling ball against
a rigid vertical surface for various initial pivoting angular velocities
expressed by the values of the quotient 12820 /vg sin ¢, It is assumed
that the impact is perfectly elastic and occurs without sliding at the
point of contact.

FIGURE 3. Impact of a rolling sphere against a rigid vertical sur-
face band and scheme for frictional forces developed during the
duration of the impact.

a) Asrepresented in Fig. 3 for the impact with a rigid bar-
rier, the impulsive forces acting throughout the impact
can be described as a normal retarding force (F},) plus
a tangential force (F}). For convenience, the tangential
force will be divided into two components, Fy , F;_.

b) Tangential forces at impact will be treated as frictional
forces inserting the coefficients of static (jio) and ki-
netic (1) friction. Then, when sliding exists at the con-
tacting points during the collision, the friction force is
Ji times the normal retarding force: F; = jfF),.

¢) The normal impulsive force (N) in Fig. 3 ensures that
the ball moves along the horizontal supporting surface.

d

Eventually, additional impulsive {rictional forces Fy
acting between the spheres and the supporting hori-
zontal surface appear. As can be deduced from Fig. 3,
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under sliding conditions, Fy equals ¢/ N, ' being the
coefficient of friction between the spheres and the sup-
porting surface and N the corresponding normal im-
pulsive force. The magnitude of Fy will be in general
largely less than F}, (For a head-on impact with a verti-
cal surface, N = uF, and Fy = p'uF,). To simplify,
effects associated with impulsive friction with the sup-
porting surface will be neglected.
e) The impact is regarded as inelastic, inelasticity being
expressed in terms of the coefficient of restitution, e.
Coefficients of restitution and friction will be consid-
ered as constants dependent on the materials of which
the balls are made, but not on their radii or velocities.
In general, relative tangential motion always exists dur-
ing the time interval of contact between colliding bod-
ies. However, under certain conditions, friction can be
high enough to make this motion cease during the dura-
tion of impact and so no sliding takes place at collision.

In both cases, it is assumed that the direction of the im-
pulsive tangential force is that of the relative tangential
velocity of the contacting points of the spheres at the
beginning of impact.

i)
—

For postransition angles we depart from the formulation
developed by Hopkins and Patterson [20], for the path of a
bowling ball, further applied by Wallace and Schroeder [3],
and Salazar and Sdnchez-Lavega [10], for the study of the
motion of a ball after being struck by a tapering rod. It should
be noted that the functional form of the frictional force deter-
mines the precise nature of the curved path; however, the final
direction of motion is completely independent of the nature
of frictional force.

As a result of this analysis, one obtain a set of velocity-
independent equations that relates the postcollision and pos-
transition angles with the coefficients of restitution and fric-
tion and the ratio of masses. The model presented here con-
tains the foregoing formulations as asymptotical cases [1-9].

In the experimental section these relationships are tested
using a single experiment suitable for undergraduate labora-
tories.

2. Two-sphere collisions with sliding
2.1. Postcollision angles

Let us consider the oblique collision of a cue ball with an
identical object ball which is initially placed at rest on a rough
horizontal plane. Here, we consider the general case in which
the cue sphere rolls and slips with arbitrary center-of-mass
velocity, vy, and arbitrary angular velocity, wo, perpendicular
to the linear velocity. In addition, an arbitrary pivoting rota-
tion around a vertical axis (“English™) with angular velocity
2y is superimposed on the rolling and slipping motion of the
cue ball.

As schematized in Fig. 1, a normal-tangential coordinate
system is chosen such that the line through the ball centers is

the normal (x) axis. The tangential axis (y) is perpendicular
to the normal axis and lies in the plane of velocities. Con-
servation of momentum along the tangential and normal axes
gives, respectively,

My Vo SIN Y = mq v Sindy + movs Sin dy, (1)
M1 COS Y = MUy COSdy + Mot COS da, (2)

where v;(j = 1, 2) represents the horizontal velocites imme-
diately after collision, and m; the masses of the spheres. v
represents the impact angle and 4, denotes the postcollision
angles defined with respect to the line of centers, as shown in
Fig. .

The inelasticity of impact is expressed in terms of the co-
efficient of restitution, e, defined as the negative ratio of the
relative velocities before and after the impact [11]. Thus,

Us €08 8y — U1 COS &) = evg cos . (3)

Combining these above equations, and introducing the ra-
tio of the masses, M = (my /m2), gives

M l+e .
tand, = (l i ) tany — ( i ) tands. (4)

M—e M—e

The effect of frictional forces at impact can be ratio-
nalized by considering the simple case of the rebound of a
rolling ball with a vertical rough surface, depicted in Figs.
2 and 3. Consider a ball with radius R that is thrown with
an initial forward spin at the point of contact with rotational
velocity R {2 opposite to the horizontal translational veloc-
ity component (vg sin ) of the ball. If the spin rate is high
enough (R > vgsini) the horizontal component of fric-
tion force will act in the forward direction. In this case, there
will be a gain in horizontal velocity and a decrease in pivoting
angular velocity (Fig. 2a). When the spin rate equals the hor-
izontal translational velocity component (R Qg = vy sin))
of the ball, there is no horizontal friction force acting on the
sphere (Fig. 2b). When (R Qg < wg sint), the friction force
acts in the backward direction (Fig. 2c¢), and, finally, if the
ball is projected with a backspin then the friction force op-
poses both the translational and rotational motions. Conse-
quently, a ball projected forward with backspin will lose con-
siderable speed on the collision and may even bounce back-
wards (Fig. 2d).

Similarly, a vertical frictional force arises at the point of
contact which alters the horizontal angular velocity of the
sphere. For the two-sphere collision schematized in Fig. 1,
action of frictional forces must cause not only a change in
the horizontal and vertical angular velocitites, but also a de-
viation of the object ball from the line joining the centers of
the spheres at impact.

Assuming that the direction of the resulting tangential
force is that of the relative tangential velocity of the contact-
ing points of the spheres at the beginning of impact, the angle
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of inclination of the frictional force (see Fig. 3), o, will be
derived from the quotient between the horizontal and vertical
components of friction force:

vosiny + R
i o e S (3)
R wp COS '?!,1’

It sliding occurs between the points of contact, and the
slip direction remains constant throughout the collision, the
frictional impulse is the coefficient of friction times the mag-
nitude of the normal impulse, i.e.,

ny (vgsin gy — vy sindy) = pmy sina(vy cos

— vy cosdy), (6)

M2Us SIN O3 = (ITa Vg SIN 0 COS da. (7)
Equation (7) reduces to
tandy, = psino. (8)

And, then, Eq. (4) becomes,

] l1+4e
tand; = (lh:r_vi) tany — p ( -"|J+FP) sina. (9

These equations express the postcollision angles as a
function of the impact angle which can be experimentally
tested. The model of Bayes and Scott [1] corresponds to
Rwo/vg = 1, Q = 0, in the limiting case in which 1 = 0.
For the ideal elastic (e = 1) frictionless (i = 0) case, Eq. (9)
leads to s = 1 and, a; + oo = 90°; i.e., reduces to the well
known 90° angle rule.

Posteollision velocities can be expressed in terms of the
initial velocity and the impact angle as:

M —
o ( e) cos 1, (10)

Ul

A4+ M
Uy = Vo [Hin-z,-,’! ==l (11_:1;4) sin o cos ‘q‘!] ; (1)
Vo = UgM (%) cos i, (12)
vy = vopM (11_:_{]) sin g cos . (13)

Changes in topspin or backspin are caused by vertical
component of tangential forces whereas changes in the rota-
tion of pivotment (right or left “English™) are due to their hor-
izontal components. The angular velocities for the spinning
rotation of the balls just after impact can be derived from the
law of angular momentum, by considering the momentums
of the frictional forces acting between the spheres at impact.
In differential form: [;dQ; = pRsinom;dvj,, ljdw;, =
pRcosam;dv,, Iidw;, = 0. As aresult

5 1 +e
Rwyy = Rwg cos — gl‘nu;‘lf ( T {[) cosacost, (14)

Rwiz = Rwy sin v, (15)
Ruws, = giroﬂ./\’f (%) Ccosa cos ), (16)
Rws, =0, (17)
Ry = ROy — g“”’” (%) sin o cos ), (18)
R, = fg.'v(,;n.h' (11_:—{) sin g cos 1. (19)

2.2. Postransition angles

As previously mentioned, vertical frictional forces must pro-
duce a change in the angular velocity of the spheres in such
a way that their motion immediately after the impact will be
a combination of rolling and sliding. Thus, friction with the
supporting surface creates a torque about the center of gravity
of the ball so that both the translational and rotational motions
of the balls change until the rolling motion is established. The
components of the linear velocity when the pure rolling mo-
tion oceurs, v, , v;,, verify v], = Rwj,, and v}, = Ruw;y.
The law of angular momentum corresponding to the
torque of the friction force with the supporting surface, can
be applied independently to motion in both the x and y direc-

tions. Then, integrating the equations [; dw;, = —Rin; dvj,
and I; dw;, = —Rin, dvj, . yields, for the components of the

velocities when pure rolling motion occurs, vy () = 1,2):

Rwiy + = Vje, (20)

vi, = = Rwia + 5 vjy. (21

=1 B =1 b2
ES NS S )

Combining the equations for the linear and angular veloc-
ities after impact [Eqs. (10)—(19)]. the velocity-independent
expressions of the postransition angles, 3; (or 1);), can be

Ay 1 fr v f NP * .
derived from tand; = v}, /v7

tand; = tan(B; +¥) =

[ o}

(1+ M) (I.’ + %) tan ¢ — %/r(l +e)sing

= = 5 22
D l)
(1+M)E+ 3(3.[ —e) — 3;5(1 +e)cosa
tan ¥ = tan(y) — 3y) = LEL (23)
1 - pcoso

where & = Rwq/vg. These equations reduce again to that
of the frictionless model [3] by inserting M = 1, e = 1,
= 0,09 = 0, and & = 1. In this case, Eq. (23) yields
3y = as = ¥ Le., the ball after being initially at rest then
moves along the line of centers at impact
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3. Two-sphere collisions without sliding
3.1. Postcollision angles

For high values of the frictional impulse, however, relative
tangential motion should cease during the time interval of
impact. If sliding ceases during contact, the horizontal and
vertical components of the tangential velocities of the contact
points of both spheres, must be equal immediately after the
collision [17. 18)]. For the horizontal velocities this requires:

0y sind; + ROy = vy sindy + RO, (24)

Combining Eqgs. (4), (6), (7), and (24), we arrive at the
following condition of no slipping,

5.
RQg — Svosiny =

— vy sindy — —vy sind;. (25)

o
o

§
§

From Egs. (1), (2). (3), (5), and (25), we obtain,

9
T
. 1+ M 7
tand, = T tan ¢ — 3 '_ = tana. (26)
2
=k
tan ds = —— tana. 27
1+

Equations (8), (9), (26), and (27), are valid for arbitrary
values of the masses and velocities of the balls and for ar-
hitrary spinning rotation. The postcollision angles «; can
casily be obtained from this set of equations by inserting the
relationships §; = 7 — (o + ), and d> = 1) — .

This situation is quite similar to the familiar problem of

a block slipping along a slanted plane. In general, for small
impact angles collisions without sliding occur and then the
tangential impulsive forces are (2k/7)(1 + ¢) cos o times the
normal forces. The beginning of slipping takes place at a lim-
iting impact angle, 11, where tangential forces reach their
maximum value, F} = gk, For ¢ > i, tangential impul-
sive forces remain constant and equal to p times the normal
forces.

The critical impact angle, o, where no sliding occurs at
impact can be obtained inserting the static cofficient of fric-
tion. 1o, into Eq. (8) and comparing it with Eq. (27):

COS Y, = (28)
This equation reduces to tanyy, = 2/Tup(l + ¢) when
the cue ball is initially in pure rolling motion without piv-
oting spin. Interestingly, in all cases g, is independent of the
masses of the balls.

3.2. Postransition angles

As in the case of collisions with sliding, linear and angular
velocities just after the impact can be expressed as a func-
tion of impact angle and the initial velocity of the cue ball.

For vy, V9. Rwi g, and Rway,, Eqs. (10), (12), (15), and (17)
hold, whereas for the other velocities the following equations

apply:
2 k
Uiy = o [sin i = = (m) tan o cos u“] : (29)
2 k
Uay = ?L‘U;W (l e ‘”) tan o cos ), (30)
5 k
Rwiy = Rwgcosy) — ;m (1 r M) cos ), (31)
R c v k ; (32)
way = oM Cos 1, :
A AU T 7 R
2 ke
ROy = ROy — —vg | ——— | tano cos v, (33)
i 1+ M
RO St — )a 08 (34)
g = lini = | ilig 0S4, 3
2 =10 T N0 COS U

Inserting the equations for the linear and angular veloc-
ities after impact into Egs. (20) and (21), a second set of
velocity-independent expressions of the postransition angles,
31, 3>, can be derived:

2 2
[(1+ A’W)[l - ;k] tany — —tano
5 7

tan(3; + ) = 5 5
M-—e+-(1+Mk-=k
) i

kte
tan(y — ) = ﬂ— (36)

(1+e)—k

| =1

L)

4. Impact with a rigid barrier
4.1. Postcollision angles

The case in which a rolling ball strikes a rigid vertical sur-
face is schematized in Fig. 4. As before, we assume that the
direction of tangential force is that of the relative tangential
velocity of the contacting points of the spheres at the begin-
ning of impact. So, for collisions with sliding it is possible
write

veosd = evg cos ), (37)
vp Siny — vsind = pvo(l + e) cosysing, (38)

where v is the horizontal velocity of the mass center of the
ball after impact.
Combining Eqgs. (37) and (38) gives

tand = }tan Y — i—l(l + €)sina. (39)
When friction is sulficient to produce collision without slid-
ing, the following condition holds: R{lcosty) = wvsind.
Then,
. I 2
tand = - tany) — FI; tan a. (40)
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FIGURE 4. Postcollision and postransition angles in the rebound of
a rolling ball against a rigid vertical surface.

4.2. Postransition angles

A similar treatment to that previously developed [Eqs. (20)-
(23)] leads. for linear velocities at the instant at which
pure rolling motion is reestablished, to v} = (2/7)Rw, +
(5/T)vsind, and vy = (5/7)vcosd — (2/7) Rw,. From the
above set of equations, the postransition angles for collisions
with sliding are obtained:

;tan Y — pu(l +e)sino
tand = 2 3 (41)

2
e — —+u(l+e)cosa
]

and, for collisions without sliding,

5
+ ktany — —ktana
i

A

I

tand = (42)

5. Experimental

Experiments of collisions of a cue ball, i) with a stationary
object ball, and, i) with a vertical surface were carried out on
a laboratory bench and, eventually, a regulation billiard table.
The velocity of the cue ball was adjusted to 0.80 £ 0.10 m/s
using a slanted track. In all cases, the distance from the edge
of the track to the object ball was great enough to ensure pure
rolling motion of the cue ball before impact. In addition to
regulation billiard balls, brass and steel spheres of 2.50 cm
diameter were used.

The angles of impact, postcollision and postransition
were determined from the photographs obtained with a cam-
era placed in cenital position. Conventional light sources led
to satisfactory angle measurements. Alternatively, the trajec-
tories of the balls were recorded with the help of a carbon
paper with comparable results. Accuracy in the angle mea-
surements is estimated as =£1°.

To check our predictions concerning the influence of the
initial spin conditions, subsequent series of experiments were

60 80
@, deg.

FIGURE 5. Plots of the postcollision cue ball angle (o)) versus the
impact angle (y») for collisions between: A: billiard spheres; B:
brass spheres. Lines correspond to theoretical values from Eqgs. (9)
and (26) inserting e = 0.97, u = 0.07 and e = 0.65, u = 0.15,
for billiard balls and brass spheres, respectively. Inset represents
the theoreticid representations.

performed. These experiments measured the angles of im-
pact and rebound of a ball striking a vertical wooden surface

iii) after being struck by auxiliary cue ball, and, iv) after
a prior impact with an auxiliary vertical surface. As a result
of the first impact, the cue ball acquires an English spin con-
ditioning postcollision and postransition angles in the second
impact. Different series of data were then obtained by vary-
ing the angle of impact with the auxiliary ball or with the
auxiliary plane, resulting in selected values of angular veloc-
ity or pivotment.

6. Results and discussion
6.1. Rolling ball collisions

Qualitatively, the current model makes some specific predic-
tions in contrast with the elastic {rictionless model:
a) The 907 angle rule does not apply, for both postransti-
tion angles and postcollision angles.
b) The direction of motion of ball 2 after impact diverges
from the line joining the centers at collision.
c) After collision, not only the trajectory of ball 1, but
also that of ball 2 is curved.

Experimental data confirms all these predictions and
shows a satisfactory agreement with quantitative predictions
in our experimental conditions. The dependence of the post-
collision and postransition angles upon the impact angle for
steel and brass spheres is shown in Figs. 5, 6 and 7. In all
these figures, points denote experimentally determined val-
ues while the solid lines indicate the anticipated theoretical
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FIGURE 6. Plots of the postransition angle (/3;) versus the impact
angle () for collisions between: A: steel spheres; B: brass spheres.
Lines correspond to theoretical values from Eqgs. (22) and (35) in-
serting e = 0.95, 4 = 0.15 and e = 0.65, ¢ = 0.15, for billiard
balls and brass spheres, respectively. Inset represents the theoretical
representations.
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FIGURE 7. Plots of 2 vs. 1 for the collisions between A: Llwo brass
spheres; B: two regulation billiard balls. Points: experimental data.
Solid lines represent the theoretical values from Egs. (8) and (27)
inserting A: e = 0.65 and ¢ = 0.15: B: ¢ = 0.97 and p = 0.07.

dependence. Insets in these figures show the theoretical de-
pendence for cach one of the corresponding representations.
The “jumps™ that separate these portions from each other oc-
cur because the static and kinetic friction coefficients differ
from each other. When the calculations are performed with
cqual values of the two friction coefficients, these disconti-
nuities disappear, but discontinuities in slope remain at points

of transition from collisions involving sliding at the instant of

separation to those not involving sliding at this instant.

For all postcollision and postransition angles, an excellent
agreement was found between theory and experiment insert-
ing into theoretical equations the values ¢ = 0.95, ¢ = 0.15
for steel spheres, and, ¢ = 0.65, ¢ = 0.15 for brass spheres.
For collisions between two billiard balls, the values ¢ = 0.97
and g = 0.07 provided the best fit of the experimental data
with theory. These parameter values correspond to collisions
with slipping for all impact angles. This factis directly deri-

i)
deg.
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FIGURE 8. Plots of the rebound angle, §, versus the impact angle
for collisions of a steel ball with a vertical wooden surface. Ini-
tial pivotment spin imparted by a prior impact. Experimental data
(squares) and theoretical values from Egs. (39) and (40) inserting
e = 0.60, . = 0.18. A: forward spin (R0 /vo = —0.30); B: no
initial spin (R 0 = 0); C: backspin (R Qo /ve = 0.30).

ved from the slow friction (compare curves A and B in Fig. 7)
coefficient between billiard balls. The e values are in agree-
ment with the values reported by Bayes and Scott [1].

It should be noted that. for these parameter values, equa-
tions of the vy and /4, angles for collisions with sliding yield
angle values almost identical than those calculated from the
no sliding equations and no direct estimates of the static coef-
ficient of friction values were obtained. Nevertheless, experi-
mental data limited them to values 20% above the kinetic co-
efficient in all cases. This can be seen in Fig. 7, which shows
experimental data for collisions between brass spheres, and
theoretical plots of 4y versus ¢ inserting e = 0.65, 1 = 0.15
and yip = 0.20 into Egs. (8), (27), and (28).

Confirming the consistency of the model, experimental
postransition angles for collisions between steel and brass
spheres agree well with the theoretically anticipated data
when the above values of the coefficients of restitution and
friction are inserted.

Theoretical equations for collisions with initial “English”
spin were confirmed by experiments in which a ball, initially
at rest, collides against a vertical surface after being struck
by an identical cue ball or after impact with an auxiliary
vertical surface. Comparison of theory with experiment re-
quires a suitable estimate of the angle o or the ratio R g /g,
which represents the initial forward or backward spin ac-
quired by the sphere. The ratio R 2y /ve can be calculated
from Eqs. (19) and (34), providing the value of the fixed an-
gle of impact and other parameters involved are known (¢
for collisions without sliding, and g and e for collisions with
sliding). Figure 8 represents the variation of the rebound an-
gle with the impact angle for the collisions of a steel sphere
against a wooden surface, the ball being impulsed by an aux-
iliary steel sphere colliding with an impact angle of ¢» = 45°.
The experimental results for negative (A), zero (B), and pos-
itive (C) spin agree well with the predictions of Egs. (40) and
(45) substituting ¢ = 0.60, x = 0.18, and the calculated val-
ues of 17 /vy equal to —0.30, 0 and +0.30, respectively.
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FIGURE 9. Schematic representations of postcollision paths for the
elastic (e = 1) frictionless (. = 0) impact (impact angle 45°) of a
cue ball against a stationary ball for selected k values.

7. Final considerations

It should be noted that the scope of the current model is lim-
ited by the confidence level of simplifying assumptions con-
cerning the constancy of the coelficients of restitution and

friction. Strictly, coefficients of restitution [21,22] and fric-
tion [23, 24] depend on several factors, the relative velocity
of contacting bodies in particular. In our experimental con-
ditions, an excellent fit between theoretical and experimen-
tal data was found, not only for collisions close to elasticity
with low friction (collisions between pairs of billiard or steel
balls), but also for collisions with relatively large friction and
inelasticity (collisions between brass spheres). This finding
supports the plausibility of the current formulation.

Furthermore, the current model enables us to justify
quantitatively some practical rules for billiard games [5-T]
Unusual postcollision paths can be predicted by varying the
Ruwo/vg and Ry /v ratios by conveniently adjusting the
impact point and orientation of the tapering rod. Figure 9
schematizes the predicted posteollision paths for the impact
of a cue ball against a stationary ball for selected Rwq/vq
values in the absence of initial pivoting angular velocity. Ob-
viously, a more realistic account of inelasticity and frictional
forces at impact would lead to a wide variety of postcolli-
sion paths. As an example. the rebound paths for a rolling
sphere striking a vertical surface so that the frictional forces
at impact are large enough to produce collision without slid-
ing represented in Fig. 2 for selected R /vy cos i) values.

To summarize, the model presented here makes possible
a satisfactory description of sphere collisions in two dimmen-
sions, allowing a direct estimate of the coefficients of restitu-
tion and friction, and provides an empirical criterion to dis-
cern between collisions with and without sliding.
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