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A dissipative Joule-Brayton cycle model
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In this paper we present an irreversible model of the Joule-Brayton cycle. As is well known, the gas-turbines follow approximately this
thermal cycle. Our model reproduces several characteristics of a real gas-turbine such as convex curves of power versus pressure ratio and
efficiency versus pressure ratio. Typical loop-shaped curves of power versus efficiency for real heat engines are also recovered. Our model is
based in a lumped friction-like term and in a parameter arising from the Clausius inequality. We also suggest a procedure for improving the
power and the efficiency of the cycle.
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En este articulo presentamos un medelo irreversible del ciclo de Joule-Brayton. Como es bien sabido, las turbinas de gas siguen aproximada-
mente este ciclo térmico. Nuestro modelo reproduce varias caracteristicas de turbinas reales, como son curvas convexas de potencia contra

razon de presion y eficiencia contra razon de presién. Curvas en forma de rizo. que son tipicas de maquinas reales, también son obtenidas.
Nuestro modelo estd basado en un término tipo friccién global y en un pardmetro que surge de la desigualdad de Clausis. También sugerimos

un procedimiento para mejorar la potencia y eficiencia del ciclo.
Descriptores: Ciclo térmico; endorreversibilidad: tiempo finito

PACS: 44.60.4+k: 44.90.+¢

1. Introduction

The development of the so-called finite-time thermodynam-
ics (FTT) has been very important for heat-engine analy-
sis [1-5]. As is well known, within the context of classical
equilibrium thermodynamics (CET) the models of thermal
engines usually lead to numerical values of typical perfor-
mance variables such as efficiency, far above of the corre-
sponding values for real engines. In fact, the CET-models for
thermal engines are the reversible limits (therefore with null
power output) of real engines. One of the aims of FTT has
been to provide more realistic models for thermal engines
(among many other physical systems). By means of FTT-
methods has been possible to elaborate models in good agree-
ment with experimental values of several process variables
of heat engines [6-9]. Recently, several authors [10-14] have
presented FTT-models of the Joule-Brayton cycle, which is
a thermal cycle approximately followed by gas turbines. In
these models (as in common engineering analysis), the main
irreversibility source is the fluid friction of gas against the
turbine blades and these losses are quantified by means of a
lumped parameter refered to as isentropic efficiency, which
measures the degree of departure of the adibatic branches
[rom a true reversible isentropic regime (see Fig. 1). In Fig. 1,
atemperature (1')-entropy (.5) diagram for the Joule-Brayton
cylee is depicted, and in Fig. 2, the corresponding pres-
sure (p)-volume (V') diagram is presented. For a closed gas-
turbine, its basic components are showed in Fig. 3. When the
internal irreversibilities of the Joule-Brayton cycle are taken
into account by means of the isentropic efficiencies of the tur-
bine and the compressor respectively (as in Ref. 10), many

realistic features of a gas-turbine are obtained. For example,
loop-shaped curves of power output (I?) versus efficiency (1))
are recovered, such as ocurrs in real gas turbines [10]. In the
present paper, we propose an alternative irreversible model
for a Joule-Brayton cycle, which also reproduces many re-
alistic features of real gas-turbines. Our model is very sim-
ple and pedagogical. In Sect. 2, we present the irreversible
model by means of a friction-like lumped parameter and we
obtain convex curves of power output and efficiency versus
some design paramelers as is common in real Joule-Brayton
engines [15]. We also obtain P vs. 7 loop-shaped curves. In
Sect. 3, we use a recent procedure for taking into account
internal losses through the Clausius inequality [16-18], and
we obtain an excellent agreement with typical efficiency val-
ues for real gas-turbines. Finally we suggest a procedure for
improving the power output and the efficiency of the Joule-
Brayton cycle.

2. The irreversible model

As it is depicted in Figs. 1 and 2, the Joule-Brayton cycle
have four branches: two isentropic and two isobaric ones. In
our model we take the heating process (2 — 3) and the cool-
ing process (4 —+ 1) proceeding at temporal constant ratios,
given by [19],

dT . :
— =y, (for process 2 — 3)
dt
and
dT :
= ke (for process 4 — 1), (1)
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FIGURE 1. Temperature-entropy diagram of the cycle.
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FIGURE 2. Pressure-volume diagram of the Joule-Brayton cycle.
Vi(i = 1,2,3,4) correspond to displacements x; (: = 1,2,3,4).
The relation between V; and x; is V; = Ax; where A is the cross
section.

where 1" is the absolute temperature, t the time and %y, ke, are
constants. Eqgs. (1) may be taken as mean heating and cooling
rates respectively. By integration of Egs. (1), we obtain the
heating and cooling times t;and {5 respectively,

=K, (T3 -Tz),
and

f-_):]\vg(T]—Tj). (2)

where Iy = 1/k; and K, = 1/k2 are new constants and T
(y = 1,2,3,4) are the temperatures of the states 1 o 4 re-
spectively. As it is usual in FTT-models, we take the adiabats
I = 2and 3 — 4 as instantancous processes, [.e. the internal
relaxation times in the adiabats are considered to be negligi-
bly short compared to the duration of the process [20]. Thus,
the period of the cycle is dominated by the nonadiabatic times
and is given by

112

by by = f\‘[ (T1 = T_:) = I‘;g (Y‘] = Tl) 4 (3)
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FIGURE 3. Basic components of the closed gas-turbine.
The net work of the cycle is given by the first law of thermo-
dynamics

Wror = |Q1] — @2, )
the heat fluxes Qqand () are indicated in Fig. 2, and are
given by

Q1 =Cpy (T3 = T2)
and

Qa =Cpy (Th — 1), (5)

where C'p, and C'p, are the heat capacities of the working
substance at the isobaric processes P’ and I’4 respectively.
By using Eq. (5) into Eq. (4). we obtain

Wrer = Cpy (13 — Tz) — €p, (Ta — Ty (6)

Dividing Eq. (6) by Eq. (3), we obtain a “reversible pow-
er’”, that is

(&) C L - Iy
B Wror _ H L — 15 7
'3 T; o T|
KNy + Ky
. - I3 - T,

If we use one of the adiabatic relations given by [15],
Tptt =77 = const,
with v = C'p/Cy (Cp and 'y are the heat capacities at
pressure and volume constants respectively), we can rewrite
Eq. (7) in the following form:
¢

= ~ =)/
o C'f'u —iC PaTp
= — e

Ny + [\gf';,

r v (8)

where r;, = Pp /P4 is the so-called pressure ratio [15]. It
we plot Eq. (8), we sec that power output [’; is a monoton-
ically increasing function of r, and this contradicts the ex-
perimental fact that Pp is a convex function of r,, [15]. The
function I = P(r,) can be converted in a convex function

Rev. Mex. Fis. 44 (6) (1998) 619-623



A DISSIPATIVE JOULE-BRAYTON CYCLE MODEL 621

if we take into account dissipative effects. This is accom-
plished by means of considering a generalized friction that
lumps all losses. We propaose this friction force proportional
to the velocity of the power stroke from state 2 up to state 4
(see Fig. 2). That is,

where i is a generalized friction coefficient that takes into
account the global losses [6, 9], and x is the instantaneous
displacement of the working fluid. Thus, the loss power by
this mechanism is

AW, da
> =7, 20 10
Pu dt T dt am
or
fz\? "
B ==n (%) = —pv®, (11)

If we take as an approximation the mean velocity between
states 2 and 4, we get

£y — L £y

= M s ST 21
Kt X (r ) (12)

where Afys ~ 7/2 (since we take adiabats as instantancous)
and r =V, /V, (see Fig. 2) is the expansion ratio, which can
be rewritten in terms of the pressure ratio r,, by means of the
adiabatic relation PV'7 = const. and the equation of state
of the working fluid (taken as a perfect gas, PV = aRT),
obtaining

27“.»/7)

o= 9r,€ (13)

where # = T3 /T, is the quotient between the maximun tem-
perature T5 and the minimun one 7. By means of Egs. (13)
and (12), Eq. (11) becomes

- [F}r}f*")’:"‘ = (14)
where b = yi(ry/Atys)?, x5 is given by the minimum vol-

ume V5. Once we obtain the dissipative power, we can get the
net power by means of Egs. (14) and (8),

('Pn - ('F’A"':’lij)jﬁ [(‘1_“’”."] )
e el D =g . (15
1 2'p

The temperature ratio # is determined by technological con-

straints [10]. The thermal efficiency of the cycle can be

immediately obtained as nn = P/(Q,/7), with ), =

C'py, (T3 — T). Then, by using Egs. (15) and (3) we have

=1-— _(:L.,.Ll—v)/w
Pg

b (ot = 1)

> 7 .(J_ !
= Cra ([\] -{-AZJP ﬂ’“’). (16)
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FIGURE 4. (a) Power and (b) efficiency versus pressure ratio curve.

Ifin Eq. (16), C'p, = Cp, and g = b = 0, we immedi-
ately obtain the thermal efficiency of the ideal Joule-Brayton
cycle, whichis = 1— r}, ~1/7 [21]. For the analysis of the
behavior of functions P = P(rp) [Eq. (15)] and n = n(r,)
[Eq. (16)], we take numerical values for the involved con-
stants from Refs. 6. 8,9, and |5, which are: b = 32.5 W, 5 =
14,6 = 1073/288 = 3.7, Cp, = Cp, = 0.418464 JK!
and K; =8.128 x 1078 sK~1, K3 = 1867 % 10~% sK.
With these values, we obtain the Figs. 4a and 4b which show
a convex behavior for both functions such as ocurrs in real-
ity. The values 7, = 19.5 and r, = 16.4 wich maximize
the power output and the efficiency respectively are typical
pressure-ratio values for real gas-turbines [15].

By means of Egs. (15) and (16), we obtain the loop-
shaped curve depicted in Fig. 5, which also is a charecteristic
of real gas turbines [12].

3. The nonendoreversible model
Since the FTT-pioneering work of Curzon and Ahlborn [22]

the so-called endoreversibility hypothesis has played a very
importantrole in FTT-analysis. This approximation consists
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FIGURE 5. Loop-shaped curve for normalized power against effi-
ciency.

in assuming that all irreversibilitics in a thermal engine for
example, can be ascribed to the couplings between the work-
ing fluid and its environment and is permitted that the work-
ing substance undergoes reversible transformations. As is
well known, the internal irreversibilities are of major impor-
tance. One manner to include them in a thermodynamical
analysis is by means of the Clausius inequality. Ozkaynak
et al. [19] and Chen [18] have recently proposed equivalent
approaches for a nonendoreversible FTT-Carnot cycle. These
authors go beyond the endoreversibility hypothesis by means
of a parameter defined as [19]

;ki;l1v
R= ——, 17)
‘A*-‘-"Zwl (
which has values in the interval 0 < R < 1; ASy, is

the change in the internal entropy along the hot isother-
mal branch and ASs, is the entropy change correspond-
ing to the cold isothermal compression. Evidently, in the
endorreversible limit # = 1. By means of parameter I,
the Clausius inequality for an internally irreversible cycle:
AS1w + ASy, < 0, becomes an equality

ASlu- =} HA.E‘:-_J,U = O (13)

Since the Joule-Brayton is formed by two adiabats and
two non-adiabats (as it is the Carnot cycle), we can define as
in the previous way a non-endoreversible factor given by

f= DS Cry wud e (TS/TE) (19)
|ASzw| — Cpy In(T3/Th) |

where T}, and T, are depicted in Fig. 1.

It is easy to show that
In (T/fl) - In(T3/Ts)
In (7,/Ty) — Wn(Ty/T1)

Thus, the parameter [? can be expressed as

(20)
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FIGURE 6. (a) Efficiency and (b) power versus pressure ralio curves
for several values of R.

Through the quotient C'p, /', we can introduce the pa-
rameter R in Eq. (16) for the efficiency and we get

) —y...",
Hge=1 - = r;,t W
blery T 1P .
" )[ 'y = ) ]\] + [\73?';,1 T W)
Py

This equation reduces to the reversible efficiency when
R = 1, a — 1and b = 0. If we take a typical value for
# = 3.7(T; = 1100 K and T\ = 300 K) [15] and the val-
ues for b, K1 K>, C'p,, Cp, given in the previous section,
we can see in Fig. 6a, that the efficiency is very sensitive to
parameter R. The same behavior is observed for the power
output which expressed in terms of 7, becomes

('“l {E - JI_I.Jl—ﬂj ]

B 7”—‘ —b [(.;.,.()3—ﬁr),«'"; — 1|5 (23)
K|+ 1\'31'5,17 V) ’

In Fig. 6b, we sce that also power output is very sensitive

to R. We wish to remark for example, that for /7 = 0.74 we

obtain = 0.17 which is a typical real value for a gas turbine
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etficiency [23]. In fact the parameter /7 may be manipulated
through its definition [Eq. (19)] for improving both efficiency
and power output of gas-turbines.

4. Conclusions

As is well known the CET-models of thermal engines are
the reversible limits of the real ones. Thus, the CET-models
are of null power output, due to reversible processes (as su-
cession of equilibrium states ) require a very long time to
proceed. A first contribution of FTT was to provide no-null
power models, that is, thermal cycles undergoing finite-time
processes. The FTT-models in general consider dissipative
terms and so positive entropy production. For this reason, the
FTT-models are more realistic than the CET ones. In stan-
dard thermodynamics textbooks only CET-models for ther-
mal engines are presented. For example in Ref. 15, when
the Joule- Brayton cycle is discussed only the reversible ef-

=
] — rf,l i

ficiency n = is calculated although the au-

thor remarks that the true thermal efficiency has a convex
behavior with an unique maximum point at certain pressure
ratio. In the present paper we propose a Joule-Brayton cy-
cle model that reproduces the real behavior of the efficiency
discussed by Haywood [15]. Our model considers dissipa-
tive effects through a nonendoreversibility parameter. Our re-
sults are consistents with typical values of r,, and 7 for gas-
turbines which are the devices that follow in an approximated
manner the Joule-Brayton cycle. Another important feature
of our model is that it shows the great sensitivity of power
and efficiency to the parameter 7. This result permits the sug-
gestion of a procedure for improving power and efficiency of
real gas-turbines.
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