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Making use of the fact that certain submanifolds of the phase space of the four-dimensional isotropic harmonic oscillator can be identified
with the phase space of the Kepler problem with an interaction with the field of a magnetic monopole and a centrifugal potential if the energy
is negative, the solution of this problem in classical and quantum mechanics is obtained. Similar results for the case where the energy is equal

1o zero are also given.

Keywords: Kepler problem; Kustaanheimo-Stiefel transformation; magnetic monopole

Usando el hecho de que ciertas subvariedades del espacio fase del oscilador arménico isétropo en cuatro dimensiones se pueden identificar
con el espacio fase del problema de Kepler con una interaccién con el campo de un monopolo magnético y un potencial centrifugo si la
energia es negativa, se obtiene la solucién de este problema en la mecdnica cldsica y en la mecinica cudntica. Se presentan resultados

similares para el caso en el que la energia es igual a cero.

Descriptores: Problema de Kepler; transformacién de Kustaanheimo-Stiefel; monopolo magnético

PACS: 03.20.+41; 03.65.-w

1. Introduction

The Kepler problem, in classical or quantum mechanics and
in any number of dimensions, is known to be related to other
simple or interesting problems (see, e.g., Refs. 1-5). In par-
ticular, by means of the complex mapping w = z2, the Ke-
pler problem in two dimensions can be related to tht two-
dimensional isotropic harmonic oscillator (see, e.g., Rels. 2,
3, 6-9) and, similarly, making use of the Kustaanheimo-
Stiefel transformation, the Kepler problem in three dimen-
sions can be shown to be equivalent to the four-dimensional
isotropic harmonic oscillator (FIHO) with a constraint (see
e.g..Refs. 10 and 11, and the references cited therein). It turns
out that, in the same way, the FIHO can be related to the
Kepler problem with a magnetic monopole field and a cen-
trifugal potential (proportional to the square of the magnetic
charge). This latter problem (sometimes called the MIC-
Kepler problem) was studied by McIntosh and Cisneros [12],
who were interested in spherically symmetric systems in the
presence of a magnetic monopole field. Making use of vecto-
rial methods, they showed that by adding to the potential 1/»
and the field of a magnetic monopole, a repulsive centrifugal
potential of the appropriate strength, the orbits are plane, as
well as confined to the surface of a cone. The corresponding
Schrodinger equation was also solved by separation of vari-
ables in spherical coordinates, finding that, if the magnetic
charge of the monopole does not vanish, the ground state is

degenerate. In Ref. 5, it was shown that the MIC-Kepler prob-
lem can be related to a “conformal” Kepler problem in four
dimensions, which was introduced to associate the FIHO to
the three-dimensional Kepler problem (c¢f. also Ref. 13).

In this paper, the relationship between the FIHO and the
Kepler problem in three dimensions is reviewed, showing that
the solution of the Kepler problem with negative or zero en-
ergy, with or without the monopole field and the centrifu-
¢al potential, can be casily obtained from the solution of the
FIHO (in classical or quantum mechanics) and that a dynam-
ical symmetry group for the Kepler problem can be derived
from one of the FIHO (see also Ref. 5). In Sect. 2, the solu-
tion of the Kepler problem in classical mechanics with neg-
ative energy, including the monopole field and the centrifu-
gal potential, is derived from the much simpler solution of
the FIHO. We find the analogs of some well-known proper-
ties of the solution of the ordinary Kepler problem, some of
which were already given in Ref. 12. We also show that the
constants of motion that generate the SU(4) dynamical sym-
metry of the FIHO give rise to the angular momentum and
the Hermann-Bernoulli-Laplace-Runge-Lenz vector (usually
known as the Runge-Lenz vector), or their analogs when the
magnetic charge is not zero (c¢f. also Ref. 5). In Sect. 3, the
solution of the Kepler problem in quantum mechanics with
negative energy, in the presence ot the magnetic monopole
is derived from the solution of the quantum FIHO. The solu-
tion so obtained turns out to be separable in parabolic coordi-
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nates, which, when the magnetic charge is zero, agrees with
the well-known fact that the hydrogen atom admits separable
solutions in parabolic coordinates. Section 4 contains similar
results to those given in Sects. 2 and 3 for the case where the
energy of the Kepler problem is equal to zero.

2. The four-dimensional isotropic harmonic os-
cillator and the Kustaanheimo-Stiefel trans-
formation

Making use of the complex [our-component vector

U ipy + Mwu,
c— | V2| | e+ Mwus 1)
W = vy | T | ips + Mwus

o " \ips + Mwuy

the Hamiltonian function of the four-dimensional isotropic
harmonic oscillator (FIHO)

1 2 2 2 2
H = m(pl +])3 +])3 +p4)

Muw?
=

(ui +u3 +u3 +13), (2
can be expressed as

1
H=_—yly, 3
STV ”
and the Poisson brackets ameng the components of 1) and
their complex conjugates are

{$i,9;} = 0= {¥, 95},

(i, ¥} = ~2iMwé;;  4,7=1,2,3,4. (@)

Let v be a constant (complex) 4 x 4 matrix, the function
f = v'ay is real if and only if o is Hermitian, a! = a.
By virtue of Eq. (4), the Poisson bracket of the function
f = tay with g = ¢t 8y, where 3 is another 4 x 4 matrix,
is given by

{f,9} = —2iMwyi[a, Bl (5)

Since the Hamiltonian (3) is given by H = (1/2M )yt I,
where [ is the 4 x 4 unit matrix and any matrix commutes
with 7, Eq. (5) implies that any function f = »Tae) is a con-
stant of the motion:

{f,H} = —iwvi[a, Iy = 0. (6)

Thus, if o is any Hermitian constant 4 x 4 matrix, t;‘)*n-t;.' isa
real-valued constant of the motion.

As is well known, any constant of the motion is the gen-
crating function of a one-parameter group of canonical trans-
formations that leave the Hamiltonian invariant. In order to
find explicitly the canonical transformations generated by the
functions of the form v''av), for @ Hermitian, we recall that

any function of the coordinates and momenta, G, is the gen-
erating function of a one-parameter group of transformations,
parameterized by a variable s, in such a way that the rate of
change of an arbitrary function f under the transformations
generated by (7 is given by

4 (1.6 @)

('1.\'

Thus, from Eqs. (4) and (7). it follows that under the trans-
formations generated by /'),

: = — 2iMwa, (8)
ds
hence
W(s) = exp( — 2iMwsa)(0). (9)
If we further assume that o is traceless, [/ =

exp (—2iMwsa) is a unitary matrix with determinant +1,
i.e., U belongs to the group SU(4). Thus, SU(4) is a dynam-
ical symmetry group of the FIHO. If the trace of « is not re-
stricted, then U is an element of U(4), which is also a dynami-
cal symmetry group of the FIHO; SU(4) is associated with the
quadratic constants of the motion apart from the Hamiltonian
itself. (Recalling that H corresponds to (1/2M)I, Eq. (9)
with @ = (1/2M)I gives the time evolution of the FIHO,
with the parameter s being the time.)

Now we introduce the four variables z, y, z, w, defined
by

= 2(uyug + usty), y = 2{uug — usuy),

P

2 ) 3 2 (5]
T =wuj+u; —uz—uy, w=arctan —, (10)
u

1
then if p,., py, p-., p. denote the momenta conjugate to these
coordinates, by differentiating Egs. (10) one finds that

pedx + pydy + podz + pdw =
prdug + padus + padug + pyduy

with
Uz
uj +u’

U P
2 27
uy + uj

1= 2(uzp, + wapy +uips) —
P2 = 2(uspe — ugpy + uap:) +

P = 2(”11)1- — Uy — uzp:),
Pa = 2(02ps + w1y — wps), (1n

where p;, p2, p3, ps are the momenta conjugate to uy, us,
ug, ug. The Kustaanheimo-Stiefel transformation is usually
defined as the relation between the u; and =z, y, = given
above (see, €.g., Refs. 10 and 11); the extra coordinate, w,
can be defined in many other ways. It may be noticed that
the replacement of the coordinate w by w + &(x.y, z) leaves
pw unchanged while (py,p,.p:) = (pz.py,p:) + PuVE,
which corresponds to the effect of a gauge transformation
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[see Eq. (34), below]. By means of straightforward computa-
tions, from Eqgs. (10) and (11), one finds that

o

2

2= 9 + 2% = (0 + ul +ud +ud)?, (12)
- - - - ; : 2 2P2
Py + 03+ 13 +pi = 4r(p; +py +p3) +
4p,,
YDy~ 13
5 WPz —zpy)  (13)

and

K =uips — uspy + usps — u4ps = py.  (14)

Clearly, I is a constant of the motion, being the sum of two
components of the angular momentum; alternatively, making
use of Eq. (1), it may be noticed that K = (1/2Mw)y !y,
where ~ is the 4 x 4 Hermitian matrix [see Eq. (6)]

o _[o2 0
L 0 a

and a5 1s one of the Pauli matrices.

(15)

2.1. The Kepler problem with negative energy

Substituting Egs. (12)-(14) into the Hamiltonian of the FIHO
[Eq. (2)] one obtains

- 2r(pl +pl+pl)  Mur
B M 2
K= 2K
Pz — TPy ), 16
i L
therefore, if E > 0, by defining
H-E MW
= R 17
we find that
1 (H - E)
il = ;(}H = Td’r. (KS)
Hence,
- pr+pp+p: E K2
'S T oM 4 " AMr(r + 2)
K

— e e Ty (lg
+ 2Mr(r + z) (ypz — xpy) )

and, restricted to the (six-dimensional) submanifold H = E,
I = const., from Eq. (17) we have

Mw?
hsz:, (20)
and, according to Eq. (18),
dh = La!H, 210
4r

which means that the “time parameter”, T, conjugate to h, is
related to the time, t, of the FTHO by

dr = 4rdt = 4(u} + u3 + ul + u}) dt (22)

since, by virtue of Hamilton’s equations we have, e.g.,

de  Oh 1 0H _1dx
dr ~ Op., 4rdp, 4rdt’
dp,  O0h  10H _1dp,
dr ~  dx 4rdx  4r dt

(Note that the difference between the transformations for the
coordinates and the velocities given in Ref. 11 follows from
the difference between the time parameters used in the FIHO
and the Kepler problem; the “explanation” given in Ref. 11,
asserting that the coordinate transformation equations should
not be used to determine the velocity transformation equa-
tions, makes no sense.)

If I =0, Eq. (19) coincides with the Hamiltonian of the
(three-dimensional) Kepler problem,

pi+pi+pd &k

2M r’ @3
with a negative energy,
o Muw?
B e (24)
[Eq. (20)], if we make the identification
k= E (25)
4

Thus, on the submanifold of the phase space defined by
H = E, K = 0, the dynamics of the FIHO reproduces that
of the Kepler problem with negative energy. Since H and /X
are constants of the motion, any orbit starting at a point of the
submanifold H = E, I = const., remains on that submani-
fold.

The properties of the orbits for the Kepler problem with
negative energy can be easily derived using the fact that the
FIHO is equivalent to four independent one-dimensional har-
monic oscillators and the orbits in the configuration space are
ellipses centered at the origin. In order to simplify the analy-
sis, we shall consider an orbit of the FTHO lying on the plane
us = ug = 0 in such a way that the axes of the orbit coincide
with the u; and w5 axes. Thus, assuming that

u; = ay coswt, U3 = agsinwt, (26)

with a; < a3, we have py = —Mwa;sinwt, p3 =
Muwas coswt, ps = pg = 0, hence ' = 0 and the Hamilto-
nian H [Eq. (2)] has the constant value

Muw?

E = 2% (a2 + a}). 27

Substituting u» = 0 = uy into Egs. (10) we obtain x =
% ug, 2 = u? — uj (which is essentially the relationship be-
tween cartesian and parabolic coordinates on the plane) and
y = 0 = w. Then, from Eqgs. (26) we obtain
@ = ayas sin 2wt,
a% = df n a"f =+ (!.'_‘3;
TR 2

cos 2wt, (28)
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which are parametric equations of an ellipse with one focus at
the origin, of eccentricity e = (a3 — a?)/(a} + a3), semimi-
nor axis b = a;az and semimajor axis a = (a? + a3)/2, or,
making use of Egs. (24), (25), and (27) one finds that
E k

a= 35 ="5 (29)
which is the well-known fact that the energy depends only on
the length of the major axis of the orbit. By suitably choosing
the constant of integration, Egs. (22) and (26) yield

(Jf b= a% : i

= T—(Zwt — esin 2wt), (30)

which relates the time parameter of the Kepler problem, 7,
with the eccentric anomaly 2wt (see, e.g., Ref. 14).

The relationship between the coordinates wuy, uz, u3, g,
P1yP2a D3y Pa> and 2, Y, 2,0, Py, Py, Pz, Paos given by Egs. (10)
and (11) is two to one; the points (uq, w2, Uz, g, P1,P2,P3,
pa) and (—uj, —us, —uz, —U4, —P1, —P2, —P3, —D4) have
the same coordinates (v, y, 2, W, Pz, Py, Pz, Pw ). Among other
things, this fact implies that a complete cycle of the FIHO on
the submanifold H = E, ' = 0, corresponds to two com-
plete cycles of the Kepler problem, hence, according to Eq.
(22), the period in the Kepler problem is given by

2w
Piopter: =2 / ('u.';’ +ud +ud +ul)di. (31)
Jo
On the other hand, the solution of the equations of motion
of the FIHO is given by u; = a; cos(wt + ¢;), where the
a; and the ¢; are constants. Then the momenta are given
by pi = Mdu;/dt = —Muwa;sin(wt + ¢;), hence, E =
(Mw?/2)(ai + a3 + a3 + aj). Since the mean value of cos?
over a complete period is 1/2, using Eqs. (31), (25) and (24)
we find

4 ;
2 1 s 4nE  2mkMV/2
- — EJit T Y —.
Ticopter = 2 w 2 ;ui T OMwd T (=2e)3/2° (32)
which, taking into account Eq. (29), amounts to the relation
- 4 M
Tl‘icpler = _k__a:}, (33)

which corresponds to Kepler's third law.
2.2. The MIC-Kepler problem

When K is a constant different from zero, one can express
Eq. (19) in the form

1 g .\ E fiea
h=— 1 R (R i N
zm(p c) & T EME ()

where p = (p., py. p- ), cis the speed of light, ¢ is a constant
interpretable as an electric charge and

= B (gt ad)
T g2 rir+2)
is a vector potential for the magnetic field of a monopole at
the origin of magnetic charge

; (35)

g i, (36)

Then, Eq. (34) can be interpreted as the Hamiltonian of a
(nonrelativistic) particle of mass M and electric charge ¢ in
the field of a magnetic monopole superimposed to the central
potential

oy = k(e 1
“”'*’+(T)2Mﬂ' 37

As in the case of the Kepler problem (/X' = 0), the or-
bits determined by the Hamiltonian (34) can be obtained
from the solution of the equations of motion of the FIHO.
By suitably choosing the coordinate axes, we can assume
that u; = apcoswt, us = azsinwt, uz = pagsinwt,
ug = jray coswt, where aq, a, and g are arbitrary constants.
Then one finds that

Mw? L
E= [.—;U(l + i) (a] + a3),
K=Mw(l- ;f"’)a](r-_). (38)

and substituting the expressions given above into Eqgs. (10)
we obtain

x = 2payay sin(2wt),
y = pf(a? + a3) cos(2wt) + al — al], (39)

B 1— g
==

(@} — a3) cos(2wt) + a] + a3,

which are parametric equations of the intersection of the cone

5 2
9 9 L[ 2
Pyt = ( - _‘ﬂ._,) 2 (40)

(1= %) (ai = a3)y — 2u(a} + a3)z

and the plane

+4p(l — p)ajas =0 (41)
thus, also in the case where I\ is different from zero, the orbit
is an ellipse, but the plane of this ellipse does not contain the
origin. It is easy to see that Eq. (32) also holds in the present

case and making use of Egs. (36), and (38)-(4 1) one finds that
the semimajor axis of the orbit (39) is given by

22 (2037
M\e
—2e

[cf Eq. (29)] thus, again, the value of the Hamiltonian de-

pends only on the semimajor axis of the ellipse

V(2Mka)? + (q9/c)* = (qg/c)?
4Ma? '

a =

(42)

&=

(43)
2.3. Constants of the motion

The transformations (9) generated by a 4 x 4 Hermitian ma-
trix a leave the hypersurface /# = F invariant, but only those
Hermitian matrices o commuting with ~ [Eq. (15)] leave the
submanifold /f = E, ' = const., invariant. It is easy to see
that all the Hermitian 4 x 4 matrices that commute with 7 are
lincar combinations with real coefficients of I, 5 and the six
Hermitian traceless matrices
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_ (0 o2 -

we (S 3) m=(
_(0 L _( 0
M=n Bl 9=\ ig

where I is the unit 2 x 2 matrix. A straightforward compu-
tation shows that the matrices (44) satisfy the commutation
relations of a basis of the Lie algebra of the rotation group in
four dimensions SO(4),

[Ai; A7l = —2iegn A,
[@i, ;] = —2igqjr A,
I/\i,aj} = —‘Zie,-,kak. (45)
Thus, the functions
1
L; = —»——-‘fﬁ,\i?’!,
{= T iMw
are constants of the motion [Eq. (6)] which have a vanish-
ing Poisson bracket with I\ [Eq. (5)]; therefore, the functions
(46) generate canonical transformations that leave the sub-
manifold H = E, ' = const., invariant and are constants of
the motion for the Kepler problem, when K = 0, or for the

Hamiltonian (34), when I{ # 0. From Eqgs. (5), (45) and (46)
one readily finds that

{L:, L Y =€suls,
{L;; R} =EipR,
{R;‘.RJ}Z(—:Z_‘ZTE)E,;JL-L;\-, (47)

where we have made use of Eq. (24) (¢f. also Ref. 5).

Making use of Egs. (1), (10), (20), (25), (44) and (46) one
finds that on the submanifoid H = E, K = 0, the functions
L; are the components of the angular momentum L = r x p
and the ?; are the components of the Hermann-Bernoulli-
Laplace-Runge-Lenz (HBLRL) vector

B il (48)

r

= égfﬂaigf.’ (46)

In an analogous manner, making use of the relation p =
Mv + (q/c)A, one finds that, when I # 0, the conserved
quantities L; and I?; are the components of the vectors
L=rxMv-2Z (49)
E P
and

Mkr

R=Myv % [rx Mv — q_yf] _
cr

(50)

(Note that v amounts to dr/dr.)

As is well known, in the case of the Kepler problem, the
orbit is plane and orthogonal to the angular momentum vec-
tor L. The HBLRL vector R lies in the plane of the orbit
and points to the point of the orbit closest to the origin. When
I # 0 (ie., g # 0), the orbit is also plane and is the inter-
section of a plane normal to

iU-_g = 13 0
), w=(2 5. w»
N = MiL - ¥R, (51)
1

with L and R given by Egs. (49) and (50), respectively, and a
cone whose axis is the vector L. The half-angle of the cone,
#, is given by

a9

c|L|
and the center of the orbit is at the point R/(2Me¢). [These
properties can be derived by considering the orbit (39).]

The vector h = (L x R)/L? is also a constant of the mo-
tion, analogous to the Hamilton vector of the ordinary Kepler
problem (see, e.g., Ref. 10). From Egs. (49) and (50) one
finds that

cosfd = — (52)

qggMr-v M3k r-v
h:ﬂu’v+£——_,—L— = (rv— r),

e ds w L? r
therefore, taking into account the equality v-L = —(qg/c)(r-

v/r), which follows from Eq. (49), the component of the ve-
locity orthogonal to L, givenby v, = v — (v - L/L?)L,
is

o B 223,

hence

M
|Mv, —h|= ‘L___,\/L2 — (qg/c)?, (53)

which means that the vector M v describes a circle. Thus,
the hodograph is the ellipse determined by the intersection
of the cylinder (53) and the plane orthogonal to N passing
through the origin. Only if N and L are parallel, the hodo-
graph is a circle (which happens when g = 0 or when L and
R are parallel). Finally, it may be noticed that
a9

?»

L-R=Mk (54)

3. Solution of the Schridinger equation with
negative energy

The (time-independent) Schrodinger equation for the FIHO
can be written as

f.'.2 o2 N 52 N 03 & 82 ;
2M \Qui  Ou3  Oui  Oul
Mw? " 5 o
+ ——(uf + u; +uz +ug)¥ = E¥  (55)

or, in terms of the coordinates wx, y, z and w defined by
Egs. (10),

Rev. Mex. Fis. 45 (1) (1999) 1-8
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n? 1 920 1
+

oM v 27‘(?" + z) Ow?
where V = (8/dx, /0y, 8/0z). Since w is an ignorable co-
ordinate, we can look for separable solutions of Eq. (56) of
the form

iKw/h

¥(z,y,2,w) = ¥(z,y,2)e (57)

where I\ is a constant, ¢ satisfies the equation
= ;
q.\" E K2 Muw?
v—(—{A) Y=t ot =~ (58)

1 (h
2M (T 8Mr 8
[cf. Eq. (34)] and A is the vector potential of a magnetic
monopole given by Eq. (35). Equation (58) is the Schrodinger
equation for a charged particle in the field of a magnetic
monopole of charge ¢ = (cK/2¢) [Eq. (36)] and the cen-
tral field (37). Taking into account that —ih0/dw amounts to
—il(u 0/ Ouy — u20/0uy + uzd/Ouy — ugd/Gus), e, is
the sum of two components of the FIHO angular momentum,
its eigenvalues, I¥', must be of the form NN, where NV is an
integer and, therefore, from Eq. (36), one obtains the Dirac
quantization condition
2 . W (59)
c 2
When I = 0, Eq. (58) reduces to the Schrédinger equation
for the hydrogen atom.

It is convenient to consider the FIHO as two two-
dimensional isotropic harmonic oscillators of the same fre-
quency, one with coordinates u, us and the other with coor-
dinates w3, uq4; then, the condition
hov

——= KW
1 dw

[Eq. (57)] means that the sum of the angular momenta of
these two two-dimensional oscillators is equal to I{. On the
other hand, the energy eigenvalues of a two-dimensional
isotropic harmonic oscillator are of the form (2s + 1)hw,
with s = 0,3,1,..., while the eigenvalues of its angular
momentum are given by 2mh, withm = —s,—s+1,... ;s
(see, e.g., Ref. 15); hence m can be an integer if and only if
s is an integer. The common (unnormalized) eigenfunctions
of the angular momentum and of the Hamiltonian of the two-
dimensional isotropic harmonic oscillator expressed in polar
coordinates are of the form

(60)

2ime L2|”1|

s—|m|

( Muwp?

h
where L denotes the associated Laguerre polynomials (the
subscript n corresponds to the degree of the polynomial L¥).
Thus, the energy eigenvalues of the FIHO can be expressed
as

Yun (9, 8) = e~ Mer /R gt g ). (61

E = 2(sy + s2 + 1)hw, (62)

r{r + z)

o 9\ ov] Mo E
(s +3) 3] + 50 5 50

where s; and sp are two indcpcndcnt quantum numbers
that can take the values 0, §,1,... , and the constraint (60)
amounts to

2(my +ma)h = K, (63)

where ml and m» can take the values m; = —sq, —sl o
(u.l,u.d,u;;,u,.) ‘m(l (—u.l, u_;, —ugy, —u‘,) have the same
coordinates x, y, z (and w) [see Eqs. (10)], the single-valued
solutions of Eq. (58) correspond to the even solutions of
Eq. (55); hence, in order to have single-valued solutions of
Eq. (58), m; and m» must be both integers or half-integers,
in such a way that m; + m» will always be an integer, and,
therefore s, and s are both integers or half-integers and
s1 + $» is an integer greater than, or equal to, zero. Letting
n = 51 + s2 + 1, and making use again of the identifications
(24) and (25), from Eq. (62) we obtain

JNVIA'?'
2h3n2’

(64)

o

Bith= L 2w

In the case where ' = 0 (hydrogen atom without mag-
netic monopole), Eq. (63) gives ms = —my, which does
not impose further restrictions on n and Eq. (64) is just the
well-known expression for the energy levels of the hydro-
gen atom. Since the wave functions of the FIHO can be ob-
tained by multiplying the wave functions of the two equiva-
lent two-dimensional isotropic harmonic oscillators, the wave
functions of the hydrogen atom can be easily obtained us-
ing Eq. (61). To that end, we write u; + ius = pre'®t and
ug + iug = pae'?; then, from Egs. (10) we find that

x = 2p1pycos(fy —6y),
y = 2pp2sin(b; — 6,),

; 5

z=pi =P (65)
which coincides with the relationship between the cartesian
coordinates x, y. z and the parabolic coordinates pi, pa,
#, — #;, and taking into account that m» = —m; from
Eq. (61) we obtain

 Pp— e—n(nf+n§)/‘-’(mpi)zpmg]eznn?(era;)
2|ma]| 2|ma| 2

Lbl—lnl) ( )L Q—ng](n‘oz)‘ (66)

with K = Mw/h = 2Mk/(h*n) [see Eqs. (24) and

(64)], which agrees with the solution of the hydrogen atom
in parabolic coordinates. (See, e.g., Ref. 16; note that the
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parabolic coordinates used there, ¢, 7 and ¢, correspond 10
2p3, 2p% and #, — 0y, respectively.)

When I5 is different from zero, condition (63) restricts
the values of n appearing in Eq. (64). For instance, the low-
est admissible nonzero value of |I| is 2% (i.e., [qg| = he).
Taking I{ = 2h, Eq. (63) implies that m; + my = 1,
and the smallest value of s; + s» compatible with this con-
straint is 1; in fact there arc three possible combinations of
($1, 82,11, m2) such that my + ma = land 5; + 52 = 1
[namely: (1,0,1,0), (0,1,0,1) and (3. 3. 3. )], which means
that the lowest energy level corresponds to n = 2 and is
threefold degenerate. In a similar manner, one finds that if
I = Nh, where | N| is an even integer, the lowest value of n
is |V|/2 + 1 and the degeneracy of the corresponding energy
level is |N| + 1.

The solutions of Eq. (58), with the monopole ficld
present, can be obtained again making use of Eqs. (57) and
(61), taking into account that, according to Egs. (10), w = 6,
and, now, m; = (N/2) — m» [Eq. (63)], thus

J—K(p'f+p§)/2 p\].\'f'lmgl ,f’-‘).l,”?l e'.’.im-g(l’]g—ﬂl)

Vsysama = €
[N —=2ms| 3 |2ma2] 2
sl—lz\'/"_’——mﬂ(-h'pl) Ls;—\mﬂ(hp!)- {(]7)
with & = 2Mk/(h*n). The solutions of the Schrodinger

equation (58) were obtained directly by separation of vari-
ables in spherical coordinates in Ref. 12. Thus, as in the case
of the hydrogen atom, Eq. (58) is separable in spherical and
parabolic coordinates.

4. Solution of the MIC-Kepler problem with
Zero energy

The results of the preceding two sections can be extended 1o
the cases where = is positive or equal to zero, which, accord-
ing to Eq. (24), correspond to w? < Qorw? = 0, respectively.
In the latter case, Eq. (2) is the Hamiltonian of a free particle
in four dimensions and the orbits in configuration space are
straight lines. By suitably choosing the coordinate axes, we
can assume that

wy = byt, s = b,

ug = fba, ta= byt (68)

where by, by and g are arbitrary constants, then substituting
into Eq. (2), with w = 0, and Eq. (14) one finds that the val-
ues of H and I¥" are

E

M —
?(l + pbi,
K = M(u® = 1)bybs (69)

and from Egs. (10) it follows that

x = 4pub bst,
y = 2u(bjt® — b3),
z = (1= p?)(bit? + b3), (70)

which are parametric equations of the parabola given by the
intersection of the plane

(p® = 1)y + 2pz + 4p(p? = 1)b3 =0

Buy &8
24yt = (1 :’tﬂj) 22, (72)

Thus, as in the cases where ¢ is different from zero, the orbit
lies on a cone whose axis is L, is plane and only if ' = 0
(i.e., j = 1) the origin lies on the plane of the orbit. The vec-
tors L and R given by Eqgs. (49) and (50) are conserved and
the vector N defined by Eq. (51) is normal to the plane of the
orbit.

In a similar way, if we set w? = 0 in Eq. (55), we obtain
the time-independent Schrodinger equation for a free parti-
cle in four dimensions, which corresponds to the Schrodinger
equation for a charged particle in the field of a magnetic
monopole and the central field (37) with zero energy [see
Eq. (58)]. Proceeding as in the previous section, we shall
make use of the fact that the separable eigenfunctions of the
Hamiltonian of a free particle in two dimensions, in polar co-
ordinates, are of the form

YEm(p,0) = Jom (VZME p/h)e™? (73)

(71)

and the cone

where J5,,, is a Bessel function and m is an integer or half-
integer [¢f Eq. (61)]. Hence, Eq. (55) with w = 0 admits
solutions of the form ¢, m, (p1,81)VE,ms. (p2, #2), where
Fy + Es = E,m and m» are both integers or half-integers
and uy +1uy = ,r;;r_"""". Uy + 1y = pgei‘q”.Therel'Ore, taking
into account Eqs. (57) and (63) we conclude that

Vkama — '].\' —2ma {"' 11 )J'_EHL-: (-'1'-'3/3'_’ )(J‘.!ng(ﬂ;: i (74}

where |N| is an even integer (N = K/h), ki + K5 =
8:1[!"/&2 [see Eq. (25)], is asolution of the Schridinger equa-
tion (58) with zero energy.

5. Concluding remarks

As we have shown, certain submanifolds of the FIHO phase
space correspond to the phase spaces of MIC-Kepler prob-
lems with different values of the parameters appearing in
the potentials (35) and (37). Another remarkable fact is that
a similar relationship also holds regarding the Schrédinger
equation. The fact that the interaction with a magnetic
monopole, which involves the gauge-dependent vector po-
tential, can be derived from a Hamiltonian with a potential
energy that depends on the coordinates only [see Eq. (2)], al-
lows us to avoid the difficulties related to the dependence of
the canonical momenta on the choice of gauge (cf. Ref. 12).
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