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Adsorption of a hard sphere fluid into a quenched matrix of permeable species

L. Ibarra-Bracamontes' and O, Pizio”
Lnstituto de Fisica, Universidad Nacional Auténoma de México
2 Instituto de Quimica, Universidad Nacional Autdénoma de México
Coyoacdn 04510, México, D.F., Mexico

S. Sokolowski
Department of Modelling of Physico-Chemiical, Processes, Marie Curie-Sklodovwska University
Lublin 200-31, Poland

Recibido el 2 de julio de 1998 aceptado ¢l 4 de noviembre de 1998

We have studied a model of a hard sphere fluid adsorbed in a quenched matrix of disordered spheres. such that fluid species are able to
penetrate into the interior of obstacles. The surface of matrix particles is represented by the Gaussian barrier of the finite height and width.
The model has been studied using replica Ornstein-Zernike equations with the Percus-Yevick closure. We have discussed the structure of
the system and the adsorption isotherms dependent on the surface permeability, as well as on the matrix density and the diameter of matrix
particles.
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Hemos estudiado un modelo de esferas duras para un fluido absorbido en una matriz congelada de esferas desordenadas, tal que las especies
del fluido son capaces de penetrar en el interior de los obstdculos. La superficie de las particulas de matriz estd representada por una barrera
de tipo Gaussiana de altura y ancho finitos. El modelo ha sido estudiado usando ecuaciones de Ornstein-Zernike de réplicas con la cerradura
de Percus-Yevick. Se ha discutido la estructura del sistema y las isotermas de absorcion que dependen de la permeabilidad de la superficie

de la matriz, asi como de la densidad de la matriz y de los didmetros de las particulas de matriz.

Descriptores:

PACS: 61.25.-f; 61.20.-p

1. Introduction

The structural and thermodynamic properties of fluids con-
fined in random porous media are of interest in material sci-
ence, different branches of chemical physics, and in physics
and chemistry of interfaces. There has been much progress
in theoretical studies of quenched-annealed systems during
recent years. Computer simulations and the extension of
a liquid-state integral equations to quenched-annealed flu-
ids have been developed. Experimental studies of partly
quenched systems have focused on adsorption in microp-
orous media, on liquid-vapor and liquid-liquid separations.
Theoretical research in quenched-annealed continuous sys-
tems have been initiated by Madden and Glandt [1,2];
more recently Given and Stell have constructed exact replica
Ornstein-Zernike (ROZ) integral equations [3,4]. A sel
of approximations for these equations also has been pro-
posed [4, 5].

Majority of studies performed so far, have been restricted
to the description of quenched-annealed models with matrix
species modelled as spheres (either impermeable or freely
overlapping) [5-9]. In this note, however, we would like to
consider a model which involves permeable matrix species
that provide rigidly fixed disordered medium for adsorption
of fluid particles. Our basic assumption is that the surface of

matrix species is permeable, therefore the fluid-matrix inter-
face can be thought as a set of membranes. We do not refer
to a particular system proposing a simple model for fluid-
matrix interaction. In spite of structural principles similar for
many membranes, one of the most salient points to be made
about membranes is their remarkable diversity. We choose
the fluid-matrix potential as a finite width barrier of finite
height located at a certain distance from the center of a matrix
particle. The fluid-matrix interaction, together with the effect
of confinement determine “encapsulating™ efficiency of par-
tially permeable objects.

Our principal focus in this note is to investigate the depen-
dence of the fluid density on the chemical potential, i.e. the
adsorption isotherm, and the structure of an adsorbed fluid
in a microporous, rigidly fixed, medium of particles with
permeable cores. We apply the ROZ integral equations for
the structural properties and thermodynamics of the system
in question. Previously, there have been studies of partition-
ing of fluids through individual (single), simple and com-
plex, permeable barriers [10-16], but the adsorption into a
quenched matrix ol permeable particles, i.e. into a medium
of multiple barriers, has not been explored so far.

In the present work we are considering a hard sphere
fTuid in a microporous environment corresponding to a disor-
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dered matrix of hard spheres at dimensionless density pf, =
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N.a? /V. where the diameter of matrix particles is denoted

m
by o,,. The fluid is considered at density p} = pfarf:. How-
ever, without loss of generality, o is picked up as a lenght
unit in what follows, i.e., oy = 1 and p} = py. We assume
|

Gaussian shape of the repulsive fluid-matrix interaction. This
Gaussian finite barrier is characterized by its height A, and
by a halfwidth w. The barrier is located at o,,, /2. The fluid-
matrix, U, (r) /KT, interaction has been chosen in the form
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where a is the parameter determining decay of the Gaussian
type repulsive potential. In what follows, in order to describe
energetic aspects of the interaction between fluid species and
each of permeable particles, we introduce the dimensionless
temperature, T* = kT /A,ep, (k is the Botzmann constant and
T denotes temperature). A barrier of infinite height, i.e. im-
permeable, corresponds to 7% = 0.

In order to describe matrix structure, we solve common
Ornstein-Zernike equation

h mm — Cmm = PmCmm ® hmma (2)

(the r-dependencies here and below have been omitted for the
sake of brevity and @ denotes convolution) complemented by
the Percus-Yevick (PY) closure,

Cnnn(‘r) = {E‘XD [—!’3{;"””“(1')] = 1}
[1 i hmm(r) e Cmm(r)]' (3)

where U,m(r) is a hard sphere potential between matrix
particles. The pair correlation function of matrix species,
Ty (1) and the direct correlation function, ¢, (), become
available. The ROZ equations for the fluid-matrix and fluid-
fluid correlations are

."ff,,, —Cfm = PfCff & hfm,

hif—cpp=pmCrm @ hym + pregs @ hyy. (4)
The parameter p,,, above determines matrix density in units
of fluid particles diameter. The ROZ cquations have been
written in the form consistent with Madden-Glandt (MG) ap-
proximation [1-4], i.e. the blocking part of the direct corre-
lation function for fluid species has been assumed vanishing.
The reason is that in this study we use the PY closure which
belongs to a group of closures neglecting blocking term in
the function cs¢(r). We do not expect that other closures
would qualitatively influence our results. The PY approxi-

mation, which is successful for hard sphere models in hard
sphere martrices, reads

cpp(r) ={exp [=BUs(r)] = LH1 + hyp(r) = esp(r)},
('.fm(") :{exp [_ﬁ(jf'm("')] - 1}
[1 + l'.'«f:nn('f') - Cf??l(T')]: (5)

where Uy ¢(r) is a hard sphere potential between fluid parti-
cles and U, (1) has been given by Eq. (1). The ROZ Eq. (4),
in conjunction with Eq. (5), have been solved numerically by
direct iterations.

The structural properties in terms of the pair correlation
functions (the fluid-matrix function is of much interest for
the model with permeability) do not represent the only issue
of this study. The equilibrium between the bulk fluid and ad-
sorbed fluid occurs at constant chemical potential. Therefore,
we need to calculate the adsorption isotherms py( Bu/). The
chemical potential of a fluid adsorbed in a matrix is presented
as [6, 8],

'5“"{ (pf s .”m) - "il";r,i(pf) =+ 3.”;{.[ (f}f Pm )‘ (6)

where the ideal gas contribution has been approximated as
.ii}f'{,i(pf) = In(pys). The excess term is represented as a sum
of two contributions

Bl (s, pm) = Buly(ps =0, pm)

s .
= / dp’/ drege(r,p’), (D
Jo

where 3uf (py = 0.pm) is the chemical potential of ad-
sorbed fluid species at infinite dilution in a matrix. It cor-
responds to the second virial coefficient of the fluid-matrix
interaction

/J;t,fﬂj{pf: 0,pm) = —pm /dr {exp[-BUpm(r)] — 1}. (8)

The second term of Eq. (8) has been calculated by using
cyz(r) from the solution of the ROZ equations.

Let us proceed with the description of the results ob-
tained. We consider the models with ¢,,, = 5 and at o,,, = 4.
The parameters of Gaussian barriers are taken the following:
w = 0.5, a = 0.02. We discuss first the adsorption isotherms
for the case of a low density (highly “porous ™) matrix, ie.
at pr, = 0.1 and a high density matrix (low “porous”) at
Py = 0.6 with #,,, = 5 (Fig. 1). Worth mentioning that the
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FIGURE 1. The dependencies of the Huid density, py, in a matrix of
permeable disordered spheres on the fluid chemical potential Bul .
The matrix density is pmos, = 0.1 (upper solid line and symbols)
and 0.6 (lower solid line and symbols). The solid lines correspond
toT* = 2 x 10~2, whereas the symbols are for T* = 4 x 1072,
All the set of results is for the model with o.,, = 5.

term porosity is used in parentheses, because the excluded
volume in the system in fact is determined by the repulsive
core of the fluid-matrix interaction. In both cases we con-
sider a set of parameters T* = 4 x 10~ and T* = 2 x 1073
The trends of behavior of the adsorption isotherms are the
following. The adsorbed density increases with increasing
chemical potential of fluid species. The adsorbed density de-
creases with increasing density of matrix particles. However,
this tendency is much less pronounced than for impermeable
hard sphere matrix, due to smaller changes of “excluded” vol-
ume with increasing p}, in the model with permeable cores.
Stronger fluid-matrix repulsion (i.e. lower T or higher A,ep)
lower adsorbed fluid density. Similar trends have been also
observed for smaller matrix particles (¢, = 4).

Interesting insight into the structure of adsorbed fluid in-
side and close to the external surface of matrix species is pro-
vided by the fluid-matrix distribution function, g, (7). This
function has not symmetric shape, as one observes for a fluid
in contact with a single permeable barrier, see e.g. Ref 17.
The asymmetry of the distribution function arises due to the
confinement of fluid particles in each of permeable cavities
and multiplicity of permeable barriers. In Figs. 2a and 2b, we
show this function at intermediate fluid density, py = 0.35,
for the model with ¢,,, = 5 and o, = 4, respectively. The
values for gy,,(r) at the terminating points of the Gaussian
fluid-matrix barrier are different in spite that the barrier is
symmetric. Higher value of the g, (r) at the interior of the
barrier is due to the confinement effect. Strong trends for lay-
ering of adsorbed fluid in the interior of matrix species are
observed both for o,,, = 5 and 7,,, = 4. The value of the ratio
of the diameter of matrix particles w.r.t. the diameter of fluid
particles is of importance, dependent on that ratio one can ob-
serve augmenting density in the center of the permeable core
(0, = 4) or lower density (o, = 5), in comparison to
the fluid density outside matrix species. The behavior of the
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FIGURE 2. The fluid-matrix pair distribution function, ggm(r),
for adsorbed fluid at density p; = 0.35 in a disordered matrix
(om = 5) considered at density pmas, = 0.6 (upper solid and
dotted lines) and in a matrix with p,no2, = 0.1 (lower solid line).
The solid lines are for T* = 2 x 1072, whereas the dotted line
is for T* = 4 x 107* (part a). In part b we show gsm(r) at
the same conditions as in part a, however, for the model with
om = 4. In part ¢ the function, gss(r), for adsorbed fluid at
chemical potential Gy = —0.54 in disordered matrices at density
pmﬂgl = (.1 (symbols) and at 0.6 (solid line) is shown; o, = 5,
TE =2 102,
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FIGURE 3. The fluid-matrix coordination number, 1. (r) on the
distance of a fluid particle from the center of a matrix particle in the
matrix at density pm o3, = 0.6 (upper curves) and with the density
0.1 (lower curves); T* = 2 x 10~2, The solid and dotted lines are
for the model with o,,, = 5 and with o, = 4, respectively.

g m (r) inside the barrier follows the shape of the Boltzmann
multiplier, exp [=Uy,,(r)/ET]. The fluid-fluid pair distri-
bution function is almost uninfluenced by changes of matrix
density. We observe in Fig. 2¢ that very small changes of the
contact value occur in a fluid adsorbed at a given chemical
potential (3 &~ —0.54) in the permeable matrix with quite
difterent density, py, = 0.1 and pJ, = 0.6.

Itis of interest to discuss trends of the behavior of the co-
ordination number 7.5, (1) that gives the average number of
{Tuid particles with respect to the permeable matrix species.
The coordination number is defined as

n‘fm(") = ‘47Tﬂf/ dR Rggfm(R}x (9
4]

Due to the repulsive barrier, the dependence of the coordina-
tion number of fluid particles w.r.t. the matrix center exhibits
weak trends for slowing down in the region close to o,, /2,
Fig. 3. However, due to a stronger confinement in the model
with o,,, = 4, the coordination number at 1 < r < 2 is larger
than in the model with o,,, = 5. Stronger repulsive barriers
would evidently influence stronger the coordination number
in the region of the interface between matrix interior and ex-
terior.

Finally, we would like to comment the effect of the width
of the repulsive barrier on the surface of matrix species. In
the previous studies of partitioning of simple fluids through
a single permeable barrier [10-12], it has been shown that
for a wide barriers of the order of one or two molecular di-
ameters the fluid density exhibits maximum, i.e. the fluid
layering occurs in the exterior and the interior of the bar-
rier. We have held fixed the height of the barrier and changed
the decay of the Gaussian barrier by changing the parameters
a and w. The effect of confinement on the behavior of the
fluid-matrix distribution function, g, () remains well pro-
nounced (Fig. 4a), similar to the case of a narrower barrier
(Figs. 2a and 2b). However, we have not observed trends for
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FIGURE 4. a) the same as in Fig. 2a but for the model of a wide
Gaussian barrier, & = 0.005 and w = 1. b) the same as in Fig. 1
but for the model of a wide barrier. The nomenclature of lines and
symbols in parts a and b is like in Fig. 2a and in Fig. 1, respectively.

augmenting density in the central part of the barrier, ie. in
the region where the repulsion is the strongest. The explana-
tion of this behavior is due to a smooth decay of repulsion in
the model of Gaussian barrier. Strong variation of the fluid-
matrix repulsive potential is necessary to provide layering in
the interior of the barrier. However, the adsorption isotherms
in a model of a wide Gaussian barrier, Fig. 4b, exhibit similar
trends to those shown in Fig. 1. We would like to mention
that at given matrix density, the adsorption becomes lower if
the width of the barrier (volume of action of the fluid-matrix
repulsive interaction) increases.

To conclude, this work considers the problem of adsorp-
tion of a simple fluid into a quenched disordered matrix of
permeable spheres. The ROZ equations represent out theoret-
ical tools. We have observed that the adsorption in this type of
matrices is less dependent on the matrix density, than for the
model of impermeable matrix spheres. Higher value of the
repulsive barrier lowers slightly the adsorbed density. The ef-
fect of confinement of permeable matrix species resuits in a
fluid layering inside matrix species and in different values for
G5m (1) on both external surfaces of the barrier.
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The considered model is simple. However, it permits sev-
eral interesting extensions. One of them may be thought in
the sophistication of fluid-fluid interaction. If the attractive
forces, like in the Lennard-Jones potential, would be in-
cluded, a study of liquid-vapor transition in fluids adsorbed
in disordered microporous media of permeable objects can
be attempted. Intuitively one would expect lowering of the
critical temperature and shrinking of the coexistence enve-
lope due to the excluded volume effects of matrix species.
However, the critical temperature may increase and become
closer to the bulk value, if the height of the repulsive fluid-
matrix barrier decreases. On the other hand, sophistication of
the fluid-matrix interaction may put the system in question

closer to the modelling of less idealized, see e.g. Ref. 15, 16,
and probably more realistic, multimembrane media. Com-
puter simulation of the model considered in this work and
some closely related models are now in progress in our labo-
ratory. The Monte Carlo methodology in the grand canonical
and in the Gibbs ensemble are employed for the systems in
question.
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