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Two-fluid model of the apparent slip phenomenon in Poiseuille flow
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A two-fluid model to analyze the apparent slip phenomenon in Poiseuille flow is presented in this work. The model was formally developed
on the basis of the fluid mechanics and provides a theoretical support for the phenomenological correction given by Mooney to account for
slip in the Poiseuille flow. In addition, the model predicts a dependence of the slip velocity on the flow geometry, which is not considered in
the Mooney correction but has been observed experimentally in some polymeric systems in the presence of apparent slip. Finally, the main
differences with previous similar analyses by other authors are discussed.
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En este trabajo se desarroll6 un modelo de dos fluidos para analizar el fenémeno de deslizamiento aparente en el flujo de Poiseuille. El modelo
fue desarrollado formalmente con base en la mecanica de fluidos y es un soporte tedrico para la correccion fenomenolégica propuesta
por Mooney para cuantificar el deslizamiento en el flujo de Poiseuille. Ademds, el modelo predice una dependencia de la velocidad de
deslizamiento de la geometria de flujo, la cual no es considerada en la correcién de Mooney. pero ha sido observada experimentalmente en
algunos sistemas en la presencia del deslizamiento aparente. Finalmente, las diferencias principales con andlisis similares previos realizados

por otros autores son discutidas.

Descriptores: Flujo en capilar; deslizamiento aparente; soluciones poliméricas

PACS: 62.10.4s; 51.20+d; 81.60.Jw

1. Introduction

It is well known that flow enhancement may take place dur-
ing the flow of polymer solutions through capillaries [1, 5].
This flow enhancement has been called apparent slip to dis-
tinguish it from the real slip occurring in some polymer melts.
Such an increase in the flow rate has been assumed to be due
to the existence of a polymer depleted layer close to the cap-
illary wall, which has a lower viscosity than that of the bulk
fluid. Even though in the presence of apparent slip it is not
expected a clear demarcation between the fluid close to the
wall and that in the bulk, the fluid may have a completely dif-
ferent rheological behavior near to a solid wall than far from
it, as shown by the results of Rofe er al. [6], where the ve-
locity field was measured and a large velocity gradient was
found in a small region close to the capillary wall. On the
other hand, direct measurements of the polymer concentra-
tion in the neighborhood of a solid wall by Ausserré et al. [7],
showed that this was continuously decreasing until it reaches
an almost well defined constant value close to the solid wall,
which clearly demarcates the slip layer. Therefore, on the ba-
sis of the previously mentioned results, the assumption of a
two-fluid model to analyze the flow in the presence of appar-
ent slip is plausible.

The hypothesis of a two-fluid model has been used
by several authors to analyze the Poiseuille flow and the

slip layer characteristics for polymer solutions and suspen-
sions (2,3, 8, 11], as well as for polymer melts [12]. How-
ever, some of these works have inconsistencies, in their as-
sumptions or development. On the other hand, some of the
above mentioned models do not show a dependence of the
slip velocity on the rheological parameters of the core fluid.

The aim of this work is to show the suitability of a two-
fluid model to analyze the Poiseuille flow in the presence of
apparent slip. The model was formally developed on the ba-
sis of the fiuid mechanics and provides a theoretical support
for the phenomenological correction given by Mooney [1], to
account for slip in the Poiseuille flow. In addition, the model
predicts a dependence of the slip velocity on the flow geom-
etry, which is not considered in the Mooney correction but
has been observed experimentally in some polymeric sys-
tems [13, 14]. Also, the model provides an expression for the
slip velocity which is a function of the rheological parameters
of the fluid. Finally, the differences with previous analyses by
other authors are discussed.

2. Model

Assuming that the apparent slip phenomenon is due to the
formation of a polymer depleted layer, the capillary flow field
can be thought as consisting of two concentric regions. These
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regions are filled with immiscible fluids, one in the core,
which is representative of the polymer solution, region I, and
the other one in the boundary slip layer of thickness 4, re-
gion IL It is supposed that the flow field is steady, laminar,
isothermic, and fully developed. Such conditions are usually
fulfilled in any rheometrical experiment. Thus, the velocity
field V(r) is divided in,

Vi(r) for 0<r<R-9,

and

Vir(r) for R-6<r<R,

where r is the radial position and R is the capillary radius.
The velocity field must satisfy the boundary conditions:

1. The no-slip condition at the wall is satisfied, i.e.,

Vii(r) |r= 0. (N

2. The continuity of the velocity field in the interface be-
tween the two regions,

Vi(r) |r—s= Vu(r) |r-s - (2)

The established continuity condition of the velocity at the in-
terface in this work is more natural than the assumed con-
tinuous velocity gradient in the interface by Cohen and Met-
zner [3]. For example, when working with two-immiscible
Newtonian fluids of different viscosity their assumption may
lead to inconsistent situations.

By mass conservation, the total volumetric flow rate, (),
can be expressed as the sum of the contributions to the flow
rate in each region:

R-§ R
Q= QW] Vi(r)rdr + / Vit (r)r dr. (3)
0 R—§
From this equation, and taking into consideration the bound-
ary conditions (1) and (2), the apparent shear rate, ¥4, can be
written as

Lo_4Q _4([" 2 /T 2
Voppea i = (/0 f(r)rdr + ’ h(r)rdr ], (4)

where f(7) and h(7) are the constitutive equations in re-
gions I and II, respectively, given by

dvi :
—— = f(7) 0<r<R-4 (5)
A%ﬁl = h(1) R-46<r<R, (6)
Ir

7 is the local shear stress, 7, is the capillary wall shear stress
and 75 is the shear stress at the interface between the two flu-

ids given by
4
Ts = Tw (1 — E) ; (7)

Note that up to this point of the analysis there is not any
restriction with regard to the type of fluid in each region, then
(4) is a general expression for the flow of two immiscible flu-
ids in the capillary geometry.

Now, suppose that h(7) corresponds to the shear rate
function for a Newtonian fluid, h(7) = 7/p where u is the
Newtonian viscosity, which could be the situation in the pres-
ence of apparent slip, and that f(7) represents the shear rate
for a non-Newtonian power law fluid, f(7) = (T/m)l/"
where m and n are the power law parameters. If these as-
sumptions about f(7) and h(7) are used in Eq. (4) and an
expansion in power series of § / R is carried out, then we have

i 1

: in Tw\ 46 Tii T’y

Yame—— =) + 5 |- (=
3n+1\m R 7 m

i
16 [2n+1 " ;
22 | B Y ] g ¥
2R ey m I

It can be observed that a first order approximationin § /R
in Eq. (8) reproduces the Mooney equation [1] and the re-
sult of Funatsu and Sato [12], being the first term of the right
hand side the shear rate free from slip, and the apparent slip
velocity Vg, is given by the second term in the right hand side
of the Eq. (8). At this order of approximation, é and p are
coupled and they can not be obtained explicitly, unless an as-
sumption on § or ¢ is provided. This difficulty is inherent to
macroscopic two-fluids models [15]. In general, the apparent
slip velocity is given by

V:o{[%_(%)—]

16 [2n+1 1y s Tus
+Eﬁ|: n (E) —3; +...p. (9

Observe that this equation for the slip velocity is dependent
on the core fluid parameters m and n, the layer thickness 4,
and the fluid layer Newtonian viscosity p, in addition to the
known dependence on the shear stress. Also, Eq. (9) predicts
a dependence on the capillary radius. Similar equations can
be easily obtained for the case of slit flow [16].

In most cases the §/R ratio is usually considered to be
very small, and therefore is neglected. Nevertheless, there ex-
ist physical situations where /R can not be neglected, so,
more terms in Eq. (9) should be considered. This situation
will arise when non-linear Mooney plots are obtained, in this
case, the § and p can be determined from the coefficients of
a non-linear fitting of 74 vs. 1/R. The result may be par-
ticularly important when studying the flow through porous
media, vein blood flow, flow through membranes and chro-
matography, where the flow takes place through very narrow
channels. This hypothesis is supported by the work of Brunn
et al. [17], who analyzed the slip in tube and channel flow
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using a dimensional approach. They introduced a character-
istic length of a particle and concluded that the slip veloc-
ity Vs does not depend on R, for large enough R, and that
there is a dependence upon the sixth power on R for small R.
Also, they concluded that if the characteristic dimension is
no longer the size of an individual particle, rather the size of
the structure, then the slip layer would not appear infinitely
thin.

On the other hand, there are some works supporting the
fact that a dependence of the apparent slip velocity on the
capillary diameter may arise. Badura et al. [13], when study-
ing a rubber with a softener system (NBR 3807/DBP 20%
Vol%) found that a Mooney plot did not render an straight
line, however, a plot of Y4 vs I/B"’ did. This is in agreement
with Eq. (9) in the sense that the slip velocity expression can
be dependent on the capillary radius. In addition, Mourniac et
al. [14], when analyzing their data on a SBR compound and
assuming that the slip velocity was due to the formation of a
thin layer of fluid close to the wall, obtained an expression for
the slip velocity which fitted their slip data. Their expression
is a function of the fluid parameters in the core, as well as a
function of the dic geometry.

Finally, the velocity profile V' (r) can be obtained by us-
ing Egs. (5) and (6):

vy < R

2 1 R

1(3)~, R-6<r<R, (10

and

0<r<R-4, (11)

where Vy is the interfacial velocity between the two fluids,

given by
T 146
Vi=d— |1l— == ] 12
5 P ( QR) (12)

Note that this interfacial velocity is not the same as the slip
velocity given by Eq. (9), which is the total slip contribution
to the velocity field. In this point, it is convenient to comment
on some other two-fluid models appearing in the literature,
since there are differences in the definition of slip velocity
with respect to this work. Yilmazer and Kalyon [11] stud-
ied highly filled suspensions and obtained an expression to
evaluate the slip velocity as a function of the slip layer thick-
ness and its viscosity. Such expression is identical to Eq. (12),
however, they considered that such velocity is the Mooney
apparent slip velocity, instead of the interfacial velocity as
shown above. The slip velocity should be given by Eq. (9),
which explicitly includes the flow parameters m and n of the
core fluid.

Another two-fluid model given by Kozicki et al. [18],
postulated a correction term accounting for the anomalous

behavior in the vicinity of the capillary wall, i.e., to esti-
mate the slip layer thickness and slip velocity. This term is
expressed by the function g(4, 7,7), which is zero at r < R.
Assuming that in the domain R — § < r < R, the fluid prop-
erties represented by f(7) can be approximated by f(7,),
the authors integrated the corrected constitutive function and
obtained that the slip velocity was given by

‘R
Ve = / g(8, 7, 7)dr. (13)
JR-4
This V; can not be related, directly, to the apparent slip ve-
locity of Mooney. However, the final expression of Kozicki et
al. [18], to first order approximation in 6 / R ratio, agrees with
the first order approximation for the slip velocity in this work,
see Eq. (9). They obtained this expression assuming that the
velocity gradient in the slip layer is constant and equal to
7w/ jt. Note that in the Kozicki er al. model, the possibil-
ity of having a slip velocity depending on capillary radius is
not taken into consideration, in contrast with the result in the
present work.

On the other hand, Cohen and Metzner [3] developed an
expression for the Mooney apparent slip velocity, which was
approximated to zero order in §/ R, yielding

Vi = écﬁ [P(Tess ) — G(F5:.855) ] (14)

where p(7., ) and ¢(7s, cx) are the shear rate functions
of a Newtonian fluid in the layer and of a non-Newtonian
fluid in the core respectively . These functions depend on the
shear stress and polymer concentration. The above expres-
sion corresponds to our Eq. (9) considering the same order of
approximation, except for a factor of %. This difference can
be explained observing that the Cohen and Metzner model is
not physically equal to the present one, being the main dif-
ference the boundary conditions, as discussed in the previous
section.

Finally, it is very important to point up here the mean-
ing of the slip velocity as introduced by Mooney. The slip
velocity was introduced by Mooney as a phenomenological
correction to account for the flow enhancement observed in
some polymer systems. In the presence of apparent slip in
polymer solutions there is not true slip at all, and therefore,
the slip velocity is just a correction term.

3. Application

To illustrate the suitability of the model to analyze the
Poiseuille flow in the presence of apparent slip, it was ap-
plied to the experimental data obtained in the capillary flow
of 0.2% Xanthan aqueous solutions, which are presented in
Fig. I and clearly show evidence of apparent slip.

The plots of ¥ 4 vs. 1/ R are shown in Fig. 2. It is observed
that they appear linear, therefore, Eq. (8) can be used at a first
approximation in 1/, which reduces to the Mooney result
for a power law fluid. Note that the second term in Eq. (8),
belonging to the slip velocity, is dependent on the slip layer
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FIGURE 1. Flow curves of 0.2% Xanthan aqueous solution, ob-
tained with a capillary rheometer.
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FIGURE 2. Apparent shear rate versus the inverse of capillary ra-
dius for the 0.2% Xanthan aqueous solution. The linearity of the
plots suggests a first order approximation in 4/R for the model
proposed.

viscosity i, its thickness é and the rheological parameters of
the core fluid n and m. Thus, the parameters m and n of the
polymer solution can be easily determined, but, due to the
constant value of the slip velocity at a given shear stress, j
and ¢ of the slip layer can not be independently determined.
However, the viscosity of the slip layer is bounded by the
lowest possible value belonging to the viscosity of the sol-
vent (pes), f.e, jo > pg . For this polymer solution in the
limiting case, y1 = pi, = 1073 Pa-s, corresponding to the
water viscosity, then the layer thickness § can be calculated
as

Vs

IR (15)
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FIGURE 3. Variation of the slip layer thickness with the shear stress
for the 0.2% Xanthan aqueous solution calculated from Eq. (15).
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FIGURE 4. Calculated velocity profiles for the 0.2% Xanthan aque-
ous solution for shear stress 3,5, and 7 Pa, R = 0.0006 m.

The variation of the slip layer thickness with the shear stress,
calculated from Eq. (15) is shown in the Fig. 3. It can be ob-
served that the layer thickness is less than 4 microns under the
assumptions given above, and increases with the shear stress
as reported by Ausserré et al. [T].

The velocity profiles obtained by using this model
[Egs. (10) and (11)], are illustrated in Fig. 4 for the shear
stresses values of 3, 5, and 7 Pa, assuming the corresponding
lowest possible value of the slip layer thickness, i.e., using
the viscosity of the solvent. Note that the velocity profiles are
qualitatively in good agreement with those of Rofe et al. [6],
and show a high velocity gradient near to the wall. A quanti-
tative comparison with the work of Rofe er al. can not be per-
formed because they assumed that the slip velocity is given
by the extrapolation to the wall of their velocity profile, being
their closest datum point located at 30 microns to the wall.
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4. Conclusions

The model presented in this work, supports the phenomeno-
logical correction given by Mooney to account for slip in the
Poiseuille flow. In addition, the model allows to know the
properties of the bulk fluid, in the present case, the parame-
ters of the power law fluid, but the model does not give in a
independently way the parameters that describe the slip layer
fluid, 6 and g, when linear Mooney plots are obtained. How-
ever, making reasonable assumptions about the value of one
of these parameters, either 4 or , a procedure of flow data re-
duction for polymer solutions in a capillary or slit geometry
can be obtained.

In the case when non-linear Mooney plots are obtained, &
and g can be determined by using a non-linear fitting. Also,
an expression for the slip velocity is obtained, which predicts
a dependence in the 6/ R ratio, the core fluid, as well as, the
layer fluid parameters.
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