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Physical interpretation of thermal waves in phototermal experiments
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The physics of thermal waves propagation created in a fluid or solid medium by a periodic heat generation are examined from the theoretical
point of view. The temperature distribution in the sample as a function of both, time and position, is obtained by solving the heat diffusion
equation with appropriate boundary conditions, the time dependent heat flux at the surface of the sample and fixed temperature at the opposite
surface are used as boundary conditions. The attenuation and reflection of thermal waves in a the temperature fluctuation in a dissipationless
sample, is can be explained as a c011séqucncc of the periodic time variation of the incident radiation converted into heat at the heat flux at the
surface of the sample which can be positive or negative. The thermal waves spectrum is not precisely like electromagnetic wave propagation,
features that appear to be shared by all photothermal models of thermal waves propagation. The response of the system to this external
pertubation in the limit of high and low modulation frequency w of the incident light respect to the characteristic time 7 of the sample is
analayzsed.
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En este trabajo se analiza la propagacion de ondas térmicas en un sélido generadas por la absorcion de la radiacién electromagnética en la
superficie de la muestra. La distribucién de temperatura en la muestra se obtiene resolviendo la ecuacion de difusién de calor con apropiadas
condiciones a la frontera consistentes con el experimento. La atenuacién y reflexion de las ondas térmicas en un medio no disipativo se
explica como consecuencia de la variacién periédica en el tiempo del flujo de calor en la superficie de la muestra debido a la radiacién
incidente. Se hace referencia a la diferencia entre las ondas electromagnéticas y el espectro de las ondas térmicas. Finalmente, la respuesta
del sistema a esta perturbacién externa en el limite de alta y baja frecuencia respecto al tiempo caracteristico de la muestra es analizado.

Descriptores: Ondas térmicas; atenuacion y reflexion; tiempo caracteristico; ondas longitudinales y transversales

PACS: 65.90; 78.90

1. Introduction

Diffusion is a process by which matter and/or heat is trans-
ported from one part of the system to another as a result of
random particle collisions. Transfer of heat was recognized
by Fick in 1855 [1], who first put diffusion on a quantita-
tive basis by adopting the mathematical equation of heat con-
duction derived some years earlier by Fourier (1822). The
mathematical theory of diffusion in isotropic substances is
therefore based on the hypotesis that the rate of transfer of
diffusing substance through unit area of a secction is propor-
tional to the concentration gradient measured normal to the
section. and energy conservation law. The two corresponding
one dimension equations in heat flow are

orT
Q= —h% (1
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where 7" is the temperature, & is the heat conductivity, p is
density, and ¢ is specific heat, so that pc is the heat capac-
ity per unit volume. The space coordinate is x and t is time.
In Eq.(1) @ is the amount of heat flowing in the direction
of & increasing per unit time through unit area of a section
which is normal to the direction of z. Many authors [2] pro-

pose an additional term 7.0*T /9t* in Eq. (2) where 7. is the
energy relaxation time, i.e., is the elapsed time at which the
extra energy is distributed in the sample. This new equation
really represents a wave equation instead of a diffusion one
and it is valid when 7. > w™!, where w being the frequency
of the modulation light converted into heat in photothermal
experiments. However, it is well known that the temperature
T is a thermodynamic parameter which describes the aver-
age energy of the system; thus if 7. satisfies 7. > w™! T is
not a well defined parameter and Eq. (2) loses its physical
meaning. It is a good reason why it is not convenient to use
the temperature as a boundary condition at the surface of fi-
nite samples in heat flux problems; heat conservation used as
boundary conditions at the interfaces of the sample is always
a well defined quantity. In this work, we shall restrict our-
selves to study conduction of heat in isotropic solids in which
Eqgs. (1) and (2) are valid, i.e., 7. & 0, when compared with
the these terms in typical photothermal experimental condi-
tions.

Carslaw and Jaeger’s [2] and other books [3] contain a
wealth of solutions of the heat-conduction equation. One of
them usually correspond to so called thermal waves. The
most important fact about thermal waves is that they are
rapidly attenuated. A plane thermal wave has the form
e“t=77 where o = (1+1i)(w/2a)'/? (see Sect. 2). It is thus
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damped by a factor ¢ ! in a distance called the thermal dif-

fusion length L. = (2a/w)'/?. Then any thermal wave gen-
crated at the sample depth greater than L will thus have neg-
ligible effects on the surface of the sample. Therefore from
Eq. (1), the heat associated with this thermal wave also dis-
sapears at the same diffusion length. However, in a dissipa-
tionless media where there are not any sources and sinks of
heat, a natural question arises; what does happen with the en-
eray conservation? In addition the extra terms, +i(w/2a)!/?
represent a reflected thermal wave in the sample. If heat is a
diffusion process: what is the physical interpretation of thesc
terms? It is worth mentioning that the boundary conditions
used by those authors (e.g. continuity of the temperature at
the surface or at the interface of two different media, a plane
periodic heat source at the surface AQe™", etc.), do not rep-
resent the usual experimental conditions in the photothermal
experiments (absorption of chopped light produces a periodic
heating at the surface of the solid). There is general awareness
among scientists and engineers that the phenomena of heat
flow and diffusion are basically the same. Nevertheless, many
physicists experience difficulty in making the difference be-
tween heat flux as a diffusion process and heat transport like
a “electromagnetic wave™.

A very active area of research in applied physics these
days comes under the general heading of photothermal or
photoacoustic phenomena. Photothermal techniques in solid
materials are becoming a valuable tool in measuring ther-
mal parameters as well in the semiconductor industry for
characterizing process in the manufacturing of electronic de-
vices [4]. These techniques are versatile, nondestructive and
can be employed under different experimental conditions for
determining thermal parameters of solid and liquid materials.
Several photoacoustic cells with slight modifications, includ-
ing the derivative photopyroelectric and photothermal deflec-
tion methods, have been used in some special cases with
areat success [5]. The apparatus for all techniques is basi-
cally the same, the modifications being mainly concentrated
on the type of detector and on its location relative to the
sample inside the cell. Recently, a new technique has been
described in which a transient thermoelectric voltage of a
semiconductor is measured after a pulse laser radiation, it
is generated by heating the semiconductor through absorp-
tion of an optical pulse, furthermore of the thermal charac-
terization, it is also possible to obtain inforrmation about the
electronic energy spectrum in semiconductors [6]. In all the
cases, the photothermal signal depends on the material ther-
mal properties, interaction between the quasiparticle systems
as well as on the geometry of the sample. The fact the pho-
tothermal signal depends upon how the heat diffuses through
the sample, allows us to perform thermal characterization of
the sample (i.e., measurments of its thermal conductivity and
thermal diffusivity) and carrier transport propierties [9]. The
absorption of an incident energetic chopped light beam by
the quasiparticle systems and the subsequent relaxation pro-
cesses gives arise to a periodic heat source in the sample,
which may be distributed throughout its volume. This peri-

odic heating of the sample, causes both temperature and/or
pressure fluctuations within the sample (thermal waves) prop-
agation inside the sample, which are then detected by thermal
or acoustic, or even both, sensing devices.

In the present work, heat diffusion in solids or fluids cre-
ated by a periodic light beam is examined from the physical
point of view for a wide range of modulation frequency. We
restrict our analysis by solving the heat-diffusion equation
assuming that the sample is optically opaque to the incident
light (i.e., all the incident light is absorbed at the surface) and
the optical carrier generation or recombination is neglected
as well as quasiparticle systems with different temperature
e.g. electrons and phonons in which T, # T, [7]. It is clear
that when the intensity of the radiation is fixed, the light-into-
heat conversion at the surface (x = () can be used as bound-
ary condition. The heat flux in the time-independent problem
must be maintained in addition to the plane heat source with
sinusoidal time dependence at the condition instead of the
temperature fluctuation at surface, which in general it is an
unknown parameter in the experimental conditions [11]. In
addition, because the specimen is usually in contact with a
heat reservoir at some temperature Tj, the continuity of the
temperature distribution is used as boundary condition at the
opposite surface (x = d). It is important mentioning that the
solutions of the heat diffusion equation obtained in this work
are not new, they were first obtained by Rosencwaig and Ger-
sho [10] in the interpretation of the photoacoustic effect in
solids on the basis of thermal waves. However, the physical
meaning of the solutions and the boundary conditions used in
this work are not completely clear.

2. Heat-flow equations

It is well known that heat transport in solids is carried out by
various quasiparticle systems (electrons, phonons, etc.). Fre-
quently the interactions between these quasiparticles are such
that each of these systems can have its own temperature and
the physical conditions at the boundary of the sample may
be formulated separately for each quasiparticle system. It can
be shown that under certain conditions on the relaxation fre-
quency of the electron and phonon systems and the size of
the sample, the total system can be described by the same
temperature 7" and the total heat flux satisfies div () = 0 in
the static approximation, i.e., the heat flux is independent of
time. However, in the photothermal experiments, the incident
radiation is modulated on time by the chopper and in this
case, it is necessary to consider the dynamic contribution in
the heat transport equation Eq. (2). In the case of semicon-
ductors, the absorption of light is accompanied by the gener-
ation of electron-hole excitations which have a finite lifetime
and which travel a finite distance before they transfer theiry
energy to the sample in the form of heat. Consequently, the
photothermal signal is governed not only by the absorption
coefficient of light but also by the characteristics of the trans-
port processes such as the carrier lifetime, the transport length
and surface recombination, so that the photothermal response
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depends on all these quantities which can be deduced from
the experimental data by analyzing the amplitude and phase
of the photothermal signal as a function of the modulation
frequency [12]. Strong surface recombination will be consid-
ered in this work such that, the heat source is quite confined
at the surface of the sample, in other words, the incident ra-
diation is totally absorbed at the surcace and converted into
heat, therefore, in this approximation the electron-hole exci-
tations are neglected. In the heat diffusion equation, we are
considering that the thermal conductivity k is independent of
time and coordinates temperature, this approximation is valid
when the intensity of the incident radiation is not strong. The
solution 7'(z, 1) should be supplemented by boundary condi-
tions at the surface x = 0. In the photothermal experiments,
the most common mechanism to produce thermal waves is
the absorption by the sample of an incident modulated light
beam, Iy + Ale™! where Iy with is the incident monocro-
matic ligth of modulation frequency w. Let 3 denote the opti-
cal absortion coefficient of the solid sample. The heat density
produced at any point x due to the ligth absorbed at this point
in the solid is given by

Be=P=(I + Ale™*). 3)

It is clear that when the intensity of the radiation is fixed, the
light-to-heat conversion at the surface may be written as the
thermal diffusion equation in the solid taking into account the
distributed heat source

%) - : .
pcca—i: +div @ = Be P2 (I + Ale™?). (4

This full equation is somewhat difficult to solve. However,
physical insight may be gained by examining the special
case according to the optical opaqueness of the solids as
determined by the optical absorption coefficient. Assum-
ing that the sample is optically opaque to the incident light
(8 d > 1, disthe thickness of the sample) so that, all the
incident light is absorbed at the surface and converted into
heat. Then, it is possible to eliminate the right hand side term
in Eq. (4) and write the general boundary condition at the
surface of the solid as

Q(-Tr t)l:z:ﬂ = (Q(] + AQeth) == 77(T == TO)';:::D: {5)

where 1) is defined as the thermal surface conductivity [13],
T, the ambient temperature and 7" the distribution tempera-
ture into the sample. Physically the second term in Eq. (5)
represents the heat flux from the surface of the sample to the
surrounding media. In the limit when 7 vanishes (adiabatic
approximation), the heat boundary condition is only given
by the first term. (We shall use these conditions in this work).
Here @)y is the average over time of the total heat flux Q(x, )
at the surface of the sample and it is proportional to the inten-
sity of the incident light (it is frequency-independent only if
the incident radiation is chopped in equal time-intervals, oth-
erwise it is frequency-dependent). Physically, this static heat
flux at the surface givesrise to a dc temperature distribution in

the specimen, while the dynamic contribution part in Eq. (3)
represents a heat source with sinusoidal time dependence at
the surface @ = 0 and it produces a thermal wave propaga-
tion into the sample. The temperature is not used as boundary
condition because it is usually an unknown parameter in the
photothermal experiments and besides that it is necessary to
know the temperature on the back. It is only important in ther-
moelectric phenomena in semiconductors where the specifi-
cation of the temperature on the surfaces of the sample must
be know. At this point, it is important to compare the bound-
ary conditions used in this work with the other ones used in
previous theories; Rosencwaig [10] and many scientists con-
sider the temperature and heat flow continuity at the surface
of the sample & = 0 in order to describe thermal waves in
the photoacoustic experiments. In this work, we only con-
sider the light-to-heat-conversion at the surface since this is
a well-known parameter while, the temperature is usually an
unknown parameter in all the photothermal experiments. Op-
sal and Roesencwaig [14], on the other hand, used a plane
periodic heat source Qe at the surface of a semi-infinite
elastic body as boundary condition to study the thermal-wave
depth profiling. However, in order to observe the phothother-
mal effect, the sample must to be illuminated with light which
is intensity-modulated by a mechanical chopper to generate
thermal waves inside the solid by absorption of radiation.
The intensity radiation is usually must to be described as
I = Iy + Ale'!, where in general I(t), I > 0 and Ale*t
can be positive or negative and Al < [y. Thus according
to the Opsal and Rosencwaig model the plane periodic heat
source is solely determinated by the dynamic part of the inci-
dent radiation into heat conversion neglecting the static con-
tribution in the boundary condition at the surface of the sam-
ple i.e., Qp = 0, and the average on time of the heat source
at the surface vanishes, i.e., ((Qe’“*), = 0. This model, how-
ever has not physically meaning because the amplitude of the
modulation heat is greater than (Q) = Qg i.e., AQ > 0.

3. Temperature distribution in the sample

The general solution of the heat diffusion equation for this
system is given as

T(z,t) = A+ Bx + O(x,1t). (6)

In order to obtain the constants /A, B and the dynamic contri-
bution to the temperature distribution @(z, t), it is also nec-
essary to specify the boundary condition at some point in
the sample 2 = d. Because the temperature is a thermody-
namic parameter, the all system has to be in contact with
a heat reservoir at some temperature Ty, e.g., in the stan-
dard photoacoustic cell configuration the system consists of a
solid sample in a small, gas-filled cell, a transparent window
through which a modulated radiation beam is incident and
a condenser microphone mounted on the cell walls to detect
the acoustic signal produced in the gas chamber, see Fig. 1,
all the system is at room temperature. So that, again, it is
natural to choose the following general boundary condition
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FIGURE 1. Schematic photoacoustic cell configuration.

Q(x,t)|x=a = n(T" — To) which in the limit n — oo (good
thermal contacts) gives the continuity of the temperature dis-
tribution in the sample at x = d, i.e., T'(2,t)|z=4 = To.

It is important mentioning that the one-layer model used
in this work, actually represents an effective medium in the
photothermal experiments, e.g., in photoacoustic experiments
the layer represents the sample to be analayzsed, the gas
chamber and the substrate. Our theory allows us to obtain
the effective thermal parameters of the sample.

Using the boundary conditions on Eq. (6) the constants
A, B may be written by

Qo

Q
A=Ty+ T(L 2

T!

and the solution ©(z,t) satisfies the heat diffusion equation
similar to Eq. (2) with the following boundary conditions:

B=- )

—k——e(;l:, f) = AQeiwt}
dx
=0
(;)(,1" t)lIU:(t ={}. (8)
The general solution for Oz, t) is
(‘)(.‘l', f) = (flo“”’- o fzeo'r)eiwt. 9)

The parameter o is determinated by forcing Eq. (9) to sat-
isfies Eq. (2) and it is equal to ¢ = (1 + i)y/w/2c and
a = k/peis the thermal diffusivity. Using the boundary con-
ditionsat z = 0 and 2 = d , the constants f; and f, are given

by
eod AQ e—a-d AQ

erd + e—od |x ' fQ = ead o efa'd ko

fi= (10)
As can be seen from Eq. (9) the decreasing exponential term
of time-dependent part of the the temperature fluctuation into
the sample attenuates rapidly to zero with increasing distance
from the surface such that at a distance L ~ /2a/w =
v/ 2k / pew, this contribution to the temperature fluctuation is
effectively damped out. Physically it represents a propagation
of the thermal waves {rom the surface into the sample, while
the growing exponential term is associated with the propaga-
tion of these waves from the sample towards the surface of
the specimen (“reflected thermal wave”). It is also possible to

observe that the heat wave can penetrate deep into the sample
in the limit of low frequency and high thermal conductivity,
however, the thermal wave attenuates quickly if the heat ca-
pacity is high i.e. it is necessary to introduce a great amount
of heat energy into the sample to elevate one degree its tem-
perature. At this point, an important question arises: why
does the temperature attenuates at a distance L from the sur-
face of the sample in a dissipationless media? The answer is
the following: The modulation of light-into-heat conversion
at the surface given by AQe™" can be positive or negative. It
is positive during a half period of the modulation incident ra-
diation, i.e., for 7 /w, the temperature at the surface is higher
than inside of the sample and during this time there is propa-
gation of heat from the surface to the bulk of the elastic body.
This effect is associated with the decreasing exponential term
in Eq. (9). On the other hand, the growing exponential term
in Eq. (9) represents the heat flux from inside to the surface
of the sample when AQe™" is negative, i.e., now, during the
period of time 7/w the bulk of the sample is hotter than its
surface. According to this brief discussion, it is important to
note that both, the sinusoidal behavior of the source heat at
the surface and the thermal parameters of the sample, give
the fundamental characteristics of the propagation of thermal
waves.

The temperature distribution resulting from the modu-
lated light-to-heat conversion in the sample is

T(z,t) =Ty + %((f —x)

AQ sinho(d — 2)

‘iwf-. 1
ko coshod % CL)

Once we know the temperature distribution in the sample, we
can assume some model in order to calculate the photother-
mal signal (e.g., photoacoustic signal, photothermal deflec-
tion, etc.) [5].

As can be seen {rom Eq. (11), the dynamic contribution
to the temperature distribution has a sinusoidal dependence
through the imaginary part of the exponential terms, i.e.,
exp [ +1i/2a/wz]. Nevertheless, the propagation of ther-
mal waves in the sample are not similar to the propagation of
electomagnetic waves, the heat flux is a diffusive process and
itis described by the heat diffusion equation Eq. (2), while the
propagation of electromagnetic radiation satisfies the wave
cquation.

4. Comparison with electromagnetic waves

We believe, at this point, that its important to emphazise the
main differences between the propagation of electromagnetic
waves (can also be sound waves) and thermal waves. In the
absence of rigorous theoretical guidance from first principles,
several workers find it neccesary to introduce arbitrary alge-
braic factors into their calculations in order to get a desirable
fit to the data. As a consequence the controversial analogy
between thermal waves an electromagnetic waves arises. The
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main diferences are the following: The propagation of elec-
tromagnetic waves in one direction satisfy the wave equation

e 1 &

9z2 ~ 2 o2 (2

which is a hyperbolic equation (second-order derivative on
coordinates and time), while the temperature distribution sat-
ifies a parabolic equation [diffusion equation with first-order
dervative on time and second one on coordinates Eq. (2)], ¢ is
a constant, ¢ in the wave equation represents a component of
the a vector field while in the heat flux equation the temper-
ature distribution is a scalar field. The electric or magnetic
field associated with the electromagnetic wave can be lon-
gitudinal or transversal, the temperature cannot be. In gen-
eral, the time-dependent solution of the wave equation may
be written as
plz,t) = L,ami(k"”“’” - ﬁ,ogef'\"’eﬂ(kmf“’t), (13)
where ; » are constants and A and k are real numbers. This
solution of course simply reflects the fact that a finite medium
with energy loses will not transmit and reflect the wave with-
out attenuation. The fields die within the sample over a dis-
tance A~ ', in metals this distance is called the classical skin
depth, for example. On the other hand, the time-dependentce
solution of the heat diffusion equation, Eq. (11), is given by

Tn, ) = Tyeisettistet) L pua—reg=iti—il). g

where T » are complex numbers and v = \/w/2a = L'
Although, Eqs. (13) and (14) are mathematically similar, the
physical meaning between them are different; the electro-
magnetic wave is damped. This means that the energy as-
sociated with it is absorbed by a quasiparticle system in the
medium; while in a diffusion process, the thermal wave gen-
erated by the chopped beam light converted into heat at the
surface of the solid is also damped. However it is, of course,
due to the periodic time variation of the heat at the surface
around (Qg, see Eq. (5), any energy dissipation is involved
in the diffusive processes. Another important difference is
the change on sign in the solution of the diffusion equation,
Eq. (13) as compared with Eq. (14); in the wave problem the
total flux density of energy in the sample is the difference of
the flux density energy of both, the transmited and reflected
waves and it is proportional to |¢|? (Poynting vector), while
in the heat diffusion process is the sum, it corresponds to the
rate at which heat is generated or absorbed at various places
in the sample and because (Q(z,t) = —kdt/Ox the energy
heat flux can be positive or negative at different points in
space at different times. Finally, its important to remark that
the following inequality & > A is always fulfilled in the solu-
tion of the wave problem; in the diffusion of heat they have
the same value, see Eq. (14). All these differences mentioned
in the text show that the analogy between thermal “waves”
and electromagnetic waves are not correct.

5. Temperature frequency dependence

It is worth mentioning that our model is valid for a wide range
of modulated frequenciesy of the incident light on the sample.
In the limit when wt < 1 where 7 = d?/a is the character-
istic time at which the system responds to an external pertur-
bation (this condition is also equivalent to assume |o|d < 1),
Eq. (11) reduces to

T(z,t) - T + %(d— x) + ifQ(d— r)e*t.  (15)
In this limit the temperature distribution is quasi-static and
independent of the diftusivity of the sample, i.e., from any
photothermal experiments only information about the ther-
mal conductivity can be obtained. Eq. (9) may be obtained
from the static heat diffusion equation 9*T (z,t)/dz* = 0
and the boundary conditions used earlier, note that at low
modulation frequency, the thermal diffusion length in the
sample L = (2a/w)"'/?, is large as compared with d.

On the other hand, in the limit when w7 > 1 (high mod-
ulation frequency) or |o|d > 1, Eq. (11) reads

T(.l‘,” = TU + Q—O(d — .l’f) + ﬂeiut—a‘z‘ ([6)
k ho

In this limit the dynamic part of the temperature fluctuation
in the sample is smaller than the static temperature distribu-
tion part, i.e., AQ/ok < Qod/k and it attenuates rapidly
to zero with increasing distance from the surface such that,
at a distance I, < d, the temperature fluctuation is effec-
tively damped out. Another different but equivalent manner
to analize this temperature frequency dependence is the fol-
lowing: from Eq. (11), the amplitude of the heat modulation
is AQ = —kd®/dx « ©/L, in the high limit frequency
modulation, L — 0 and because A(Q is finite then T — 0.
The thermal diffusion of a two-layer system for high mod-
ulation frequency has been analysed in Ref. 11. At this fre-
quency, the system cannot respond to this external perturba-
tion and essentially the temperature distribution into the sam-
ple is static.

6. Conclusions

In conclusion, a theoretical analysis of heat diffusion in one
temperature approximation has been studied. Using the ap-
propiate boundary conditions, respect to the usual photother-
mal experiments, we obtain the temperature distribution in
the sample. The thermal waves generated into the specimen
by the incident modulated radiation are analaysed in terms
of the characteristic time of the system 7 = d” /a according
to the modulation frequency. In the limit of high modulation
frequency the temperature fluctuation in the sample is small
as compared with the static contribution while in the limit of
the low frequency, the temperature distribution in the sample
fluctuates in a quasi-static variation on time, and is indepen-
dent of the thermal diffusivity, it only depends on the thermal
conductivity.
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Finally it is important mentioning that the one-layer
model used in this work, actually represents an effective
medium in the photothermal experiments, ¢.g., in photoa-
coustic experiments the layer represents the sample to be
analaysed, the gas chamber and the substrate. Our theory al-
lows us to obtain the effective thermal parameters of the sam-
ple. Finally, direct comparison of the diffusion and the wave
equation have been made and the main differences between
heat flux in solids and the propagation of electromagnetic
waves have been described here. Each physical situation must
1o be described and interpreted independently according to if

is a wave problem or diffusive process. In summary, there is
not analogy between propagation of electromagnetic wave,
for example, or thermal waves.
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