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We systematically study the three family extension of the Pati-Salam gauge group with an anomaly-free single irreducible representation
which contains the known quarks and leptons without mirror fermions. In the context of this model we implement the survival hypothesis,
the modified horizontal survival hypothesis, and calculate the tree level masses for the gauge boson and fermion fields. We also use the
extended survival hypothesis in order to calculate the mass scales using the renormalization group equation. The interacting Lagrangean with
all the known and predicted gauge interactions is exphicitly displayed. Finally the stability of the proton in this model is established.

Keywords: Unification; chiral color

Se estudia sistemdticamente la extension con tres familias del grupo de norma de Pati-Salam con una sola representacidn irreducible libre de
anomalias, la cual contiene fos quarks y leptones conocidos sin fermiones espejo. En el contexto de este modelo se instrumentan las hipdtesis
de supervivencia, y de supervivencia horizontal modificada y se calculan las masas a nivel drbol para los bosones de norma y los campos
fermidnicos. Se emplea también la hipdtesis de supervivencia extendida para calcular las escalas de masa usando las ecuaciones del grupo
de renormalizacion. El Lagrangiano de interaccion con todas las interacciones de norma conocidas y predichas es mostrado explicitamente.
Finalmente se establece la estabilidad del proton.

Descriptores: Unificaion; color quiral

PACS: 11.15.Ex; 12.10.Dm

1. Introduction The model under consideration unifies non-gravitational
forces with three families of flavors, using the gauge group

The renormalizability of the original Pati-Salam [1] model
for unification of flavors and forces rests on the exis-
lence ol conjugate or mirror partners of ordinary fermions.

G =SU(6), @ SU(6)g @ SU(6)cr ® SU(G)(,‘L X Zy

where © indicates a direct product, x a semidirect one,

Mirror fermions are fermions with quantum numbers
with respect to the Standard Model (SM) gauge group
SU(3)¢SU(2), @U(1)y identical to those of the known
quarks and leptons, except that they have opposite handed-
ness {rom ordinary fermions. Their existence vitiate the sur-
vival hypothesis [2] according to which chiral fermions that
can pair off while respecting a symmetry will do so, acquiring
masses grater than or equal to the mass scale of that symme-
(ry.

Today we know how to cancel anomalies without intro-
ducing unwanted mirror fermions. As a matter of fact, the
three family extension of the Pati-Salam model without mir-
ror fermions was presented recently in the literature, with
some aspects of the model briefly analyzed in the original
reference [3]. But a systematic analysis of this model is still
lacking. In what follows we do such analysis, paying special
attention to the implementation of the survival hypothesis |2]
and of the modified horizontal survival hypothesis [1]. (For a
technical explanation of the terminology used in this article
see Appendix A.)

and Zy =(1. P, P, P?) is the four-element cyclic group
acting upon [SU(6)]* such that if (A, B,C,D) is a rep-
resentation of [SU(®)]* with 4 a representation of the
first factor, I3 of the second, C of the third, and
D of the fourth, then P(A,B,C,D) = (B,C,D,A)
and then Z4(A, B,C,D)=(A,B,C,D) & (B,C,D,A) &
(C.D, A By (D, A, B, C). The electric charge operator in
(7 is defined as [3]

Qevi =Tz +Tzr + [Yip-ry, + Yia-0)al/2, (1)

where (B — L)ppy stands for the local Abelian
factor of (Baryon — Lepton)y(g) hypercharge asso-
ciated  with the  diagonal  generators Yip_p), .

Diag(3. 3.3, —1.1.=1)1(r) of SUO)c:1 (1)
The irreducible representation (irrep) of & which con-
tains the known fermions is

(144d) = Z140(6.1,1,06)

= ¥(6,1.1.6) + ¢*(1,1,6,6) ¢ ¢(1,6,6,1) @ (6,6,1,1).
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The model described by the structure [G,1(144)] is a
grand unification model which contains the three family SM
gauge group, the three family left-right symmetric exten-
sion of the SM [5] [SU(3)E'(':'JSU(Z)1,";:‘,‘:SU(2)HE;=U(])(B_L)]
and the three family chiral color extension of the
SM [6] [SUB)cr@SUB)eL@SUR), @U(l)y]. Finally,
[G,¢:(144)] is the chiral extension of the vector-color-
like model described by [7,8] GY = SU(6); 2 SU(6)c®
SU(6)rxZ3 and ¢V (108) = ¢V (6,6,1) ® vV (6,1.6) &
)Y (1,6,6), where SU(6)¢ in GV is the diagonal subgroup
of SU(6)c:p® SU(6)cr C G, and Y (108) C v»(144)

That [G,¢>(144)] is free of anomalies and does not con-
tain mirror fermions follows from its particle content. To see
this we first show that there is a unique way to embed the SM
gauge group for three families in [G,1)(144)] [3] and then
write the quantum numbers for 1)(144) with respect to the
subgroups of the SM which are [the notation designates be-
havior under (SU(3)¢:, SU2)r, U(D)y)]:

¥(6,1,1,6) ~ 3(3,2,1/3) & 6(1,2,-1) @ 3(1,2,1)
(1,6,6,1) ~ 3(3,1,-4/3) & 3(3,1,2/3) © 6(1,1,2)
®9(1,1,0) @ 3(1, 1, —2)
(6,6,1,1) ~ 9(1,2,1) 9(1,2, -1)
¥(1,1,6,6) ~ (8 +1,1,0) & 2(3,1,4/3) & 2(3,1, —4/3)
@ (3,1,-2/3) @ (3,1,2/3) & 5(1,1,0)
®2(1,1,2) ®2(1,1,-2),

where the ordinary left-handed quarks correspond to
3(3.2.1/3) in ¥(6,1,1,6), the ordinary right-handed quarks
correspond t0 3(3, 1, —4/3) ®3(3,1,2/3) in (1,6, 6, 1), the
known left-handed leptons are in three of the six (1,2,—1)
of (6,1, 1,6), and the known right-handed charged leptons
are in three of the six (1,1,2) of ¥(1, 6,6, 1). The exotic lep-
tons in 1)(6,1,1,6) belong to the vectorlike representation
3(1,2.—1) @& 3(1,2,1) (vectorlike with respect to the SM
quantum™numbers) and the exotic leptons in 1/(1,6,6,1) be-
long to the vectorlike representation 3(1,1,2)&3(1,1, —-2)%
9(1,1,0), where three lineal combinations of the nine states
with quantum numbers (1,1,0) could be identified as the
right-handed neutrinos.

(6.6,1,1) is formed by 36 exotic spin 1/2 Weyl
fermions (we call them nones because they have zero lepton
and baryon numbers), 9 with positive electric charges, 9 with
negative (the charge conjugates to the positive ones), and 18
are neutrals; all together constitute a vectoritke representation
with respect to the SM.

Also all the particles in ¥(1,1,6,6) form a vectorlike
representation with respect to the SM, where 5(1,1,0) @
2(1,1,2) & 2(1,1,-2) stands for nine exotic fermions,
five with zero electric charge (nones), two with electric
charge +1 and the other two with electric chaige —1
(spin 1/2 dileptons); 2(3,1,4/3) @& 2(3,1,—4/3) refers to

two exotic spin 1/2 leptoquarks with electric charge 2/3;
(3,1,-2/3) @ (3,1,2/3) refers to one exotic spin 1/2 lep-
toquark with electric charge —1/3, and the nine states in
(8 + 1,1,0)=(8,1,00+(1,1,0) (quaits)+(quone) are the so-
called dichromatic fermion multiplets [6] (also nones) which
belong to the (3, 3) representation of the SU(3)cgr@SU3)
subgroup of SU(6)cr@ SU(6)¢ 1.

Notice that contrary to the original Pati-Salam model, the
G symmetry and the representation content of 1(144) for-
bid mass terms for fermion fields at the unification scale, but
according to the survival hypothesis [2] the vectorlike sub-
structures pointed in this section (all the exotic particles in
the model) should get masses at scales above M, the known
weak interaction mass scale.

2. The Model

The model under consideration contains 140 spin | gauge
boson fields, 144 spin 1/2 Wey! fermion fields, and a conve-
niently large number of spin 0 scalar fields. We use for them
the following notation:

2.1. The gauge bosons

For the gauge boson fields we define:
a) For the 70 gauge fields of SU(6)¢ 1, and SU(6)c gk

(D, G} 6} X Vi Z
G: Dy G} X2 Yo Z

1 3 3 . vz
AA = - Gl Gz D3 _\3 Yg Zg (2)
HEOTVR X, X2 X3 Dy P- P
i Y» Y5 PP Ds P
% Ba s P B D) oyom
where

1
Dscricry = (G3)ercn) + %B(an,),_(m

2
—B J=12.3:
+4/ 15 Biyecm), 3

3 1
Dicricr) = — EB(B—L)L(R, = EBI}’L(R}
1
— -_‘B" '
ABrim

3 4
Dscricn = \/;_GB(B—L“_(R) = \—/32031}'“!{)5
3 It :
! EB(H-L)”RJ = ‘EBH'L{RJ

1
=SB ;
\/i ¥ L(R)

DecLicry =

with (G3)epery 8.m = 1,2,3 the gauge fields asso-
ciated with SU(3) CL{(CR) (G{CL(C.'R} = BlgCL(CR)/\/E
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+Bsycricr)/VE, Géwcm = —BicLer/V2 +
Bayycrier/ V8 Gioricry = —2Bager(cr)/ V6 such that

25(GS)erer) = 0, and Bygepcr) and Bygep(cory are
the gauge fields associated with the diagonal generators of
SUB)ericr))- B(B-L), s, is the gauge boson associated
with the generator Y(B—L)L(n)' and BIYL(R) and BgyL(R)
are two gauge bosons associated with the SU(6)c (¢ p) di-
agonal generators Y gy = Diag(2,2,2,-1,-4,-1)//15
and Y57 (r) = Diag(0,0,0,—-1,0,1) respectively. X;,Y;
and Z; are spin 1 leptoquark gauge bosons with electric
charges —2/3,1/3 and —2/3 respectively, with § = 1,2, 3 a
color index. PE, x = 1,2; and P are spin | dilepton gauge
bosons with electric charges as indicated.

b)For the 70 gauge fields of SU(6);, and SU(6)

A BiY HP Bf H} Bf

B~ 4 By HY B H)
i Hy Bf A, B HP BF
A”’”z_ﬁ By i B A, By HP (3)
f}g B;r E’;U B;_ Aﬁ Bsr)Jr
~0 s M0

BS_ H4 BT’_ HB Béi_ Aﬁ L(R)

where the diagonal and the primed entries in Eq. (3) are re-
lated to the physical fields as explained in the Appendix B.

2.2. The Fermionic content

For the spin 1/2 Weyl fields we use the following definitions:

(11 d-_;_v (f;j el_l e?‘i €1_3

up uz uz -n n, —-nd
—_ OC -
- S1 S2 83 —€51 €93 €93
1/!(6‘1,]‘ 6)[« = 0 + 0
C1 Cy C3 My Mgy  —Tlyy
o 0 =
[)1 b-g b3 —€31 (’33 —€33
0 + 0
th ta t3 ng  ng Ny i
=Yg (4)

where the rows(columns) represent color(flavor) degrees of
freedom, (u,d,c,s,b,t) are the quark fields with colors
4 = 1,2, 3 as indicated, (eij nij), 1,5 = 1,2,3 are lepton
Weyl fields with electric charge as indicated, the minus signs
are phases chosen for convenience, and the upper ¢ symbol
stands for charge conjugation.

d§ g 8§ s b§ 15

d§ ug 8§ o b5 5

c c c c 'id C

~ ds s§ 5 bg tg

+ Oc
*E31 N31
0 = 0 = 0 i
El?. ‘IVIQ E22 ‘N22 ESZ N 32

Oc + O¢
-N33 —Ej; Nyj I

= YA (5)

where the rows (columns) now represent flavor (color) de-
grees of freedom. The notation we are using with the lepton
fields in (1,6, 6, 1) unrelated in principle to the lepton fields
in ©(6,1,1,6) is consistent with the SM quantum numbers
for (6,1, 1,6) @ v(1,6,86, 1) presented in the Introduction.
The known leptons (v,,e™, v, u~,v;,77) and the known
quarks are linear combinations of the leptons and quarks in
(6,1,1,6) &¢(1,6,6,1), up to mixing with exotics. Our
notation is such that a,b,---; A, B, - -; a, 3, A, Q
stand for SU(6)r,, SU(6) g, SU(6)¢: 1., and SU(6)¢: i tensor in-
dices respectively.
For the sake of completeness we also write:

9% 95 T Y

!fiz fl':g} 0'*‘;! Ty Yy 2y

g9 9 T ow
YLLEE =yi=|o = 5w o op| ©

VI T A
ol ¥
where ¢!, 7, j = 1,2, 3 are the (quaits) + (quone) spin 172
nones; x,y and z are the spin 1/2 leptoquarks with elec-
tric charges 2/3, —1/3 and 2/3 respectively, [i ,j=1,2are
spin 1/2 dtlcpton fields with electric charges as mdlcated and
1'” J =1,...5 are five nones with zero electric charge.

2.3. The Scalar Content

~ ~

= it 0
oSy B S

In order to spontanecously break the G symmetry down to
SUB)c@U()gar, and to implement at the same time the
survival hypothesis and the horizontal survival hypothesis,
we need to introduce the following rather complicated scalar
sector: First we introduce the scalar fields ¢, and ¢» with
Vacuum Expectation Values (VeVs) such that (¢;) ~ (¢2) ~
M, where

¢; =9;(900) = Z4¢;(15,1,1, 15)
[a,b [ex,d] [AQ [A,B]
=dlas + Pitaty + Oam) + ]

gi==1 2 and [..] s[ands for the commutator of the indices in-
side the brackets. The VeVs for ¢;, j = 1, 2 are conveniently
chosen in the following directions:

[a,b]

(Drjas) = VBM  for  [a,b] = [4,1] = [2,3] = [5,6];
[a, 8] = [5,6]

(@lpam) = VM for [4,B]=[4,1]=[2,3] = [56);
[&, 8] =[5, 6]

(o) =M for [ab]=[4,B] = [4,1] = [2,3]
= [6,5]
(Biiay) = 0; §=1,2

(W) = VEM for  [a,8] = [1,2] = [6,3] = [4,5);
[, 8] = [4,5)
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(b [A.Q] s VM for [A,B]=[1,2]=1[6,3] = [4,5]; It then follows that

2[A, 1?1

s (0350 crr T
[&:8] = 9] SU(B)cr @ SUG)er - = SU®B)cLicn = SUB)YS,

(ol By — ar for [a,b] =[4,B] =[2.1]=[6.3 _
2a.b] k] = )= 21} = (6.3 and that the main effect of (m[;l[ {J”J) is to break
= [4,5). SU(2)r=UC) 13 4y,, In an appropriate way as we will
, ; shortly show.
It is casy to show [9] that (@) + (@2) with the VeVs as e "y LS )
o ) Finally we introduce
indicated breaks
G — SU(2)1, ® SU(2)r @ SU(3)er © SUB)er oy = 94(2592) = 04(6,6.6,6) + ¢4(6,6,6,6)
5 = s kil s
@ U (1)(“,_]_)!' 5] ("(1)(3 =LYisa = @4, Aa T Py.a02
the chiral extension of the left-right symmetric extension of — with the following VEVs: (¢7'%¢) = 0, and (¢5%,) = Mz
the SM. for (aA)= 6:6); [.a) =(.1):=22) = (33)=@d4)=
Next we introduce (5.5) = (6.6); and also for (a,A)=(€). a)=(5.5). As we will

show in the next section the main effect of (¢4) is to break

oy = d4(5184) = Zadps (1,1, (15 + 21), (15 + 21)) SU@) Uy down to U g,

eom AN F¥ad/] s AL LAD
= P30y T P3,80 T 948 T P3an

with the following VEVs: 3. Tree level masses
<”::.”im) = M, -5;{_;52\; ay AT = 1 .50, The scalar fields and their VEVs introduced in the previous
A section allow for the following tree level masses:
() = M for [A,Q]=AQ-0A
= [A,B)] = [4,6], 3.1. Masses for gauge bosons
ab \n A tedious calculation [9] in the sector of the covariant deriva-
<( ‘.r\u) (Cji nh) = 0.

tive in the Lagrangian shows the following results:
| I. {01) + () produces:

3 =
L(M) = u’.\f'-’{ [Z (IXscrl? + 20Vsel + 12,”-;,1“’) + AP+ Pl + | Pacil? + 3By, + BJ_;’,.,_]

=1

=1
where g is the gauge coupling constant for the simple gr nup I
. and the coefficients ¢; and ¢ are such that oy = ¢, = As itis clear from the former equation, (¢ )+ (¢2) breaks

el = w o= gt = 5l = o = o= .md
& [3= eyf2= v = )2 =t f3 = ¢ = 1..(The relation-
ship between the unprimed ficlds in Eq. (7) and the primed
ones in Eq. (3) is presented in Appendix B.)

(i down to the chiral extension of the left-right symmetric ex-
tension of the SM.
2. For (@3) we split the analysis.

| 2a. (¢4 hq) produces:

L{M¢)

= 129* M{ T [A?'L —2Ac Acr + Al g

Il

4
Gg* M2 [2 Z (|.\—(5('I. = Xscrl® + Yoo = Yeorl® +|Zscr, - Zﬁ(_'n|3)

=1

t Z ( |Piccr. = Picr]” + (Big, — Bigr)” + (Biy 1, — Bn'ﬂ)"’) (Bia—1y, — Bia—1)x)" + 2/P81, — Ppl’

=]

(IC sor — Gaerl® + G — Gicnl® +1Gic — Gierl® )] (8)
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As it is clear from the former expression, (¢}"\,) breaks
SUO) ¢ SUB)e g ——>SU(6)(‘I: as mentioned before.
2h. (r;»:[{‘_\[:_:z_]“]) for [A. 2] = [, B] = [4, 6] produces:

3

C(Mp) = -m-’.\f;}[z (1Xscrl? +1Zscnl?)

a=1

1Pl+( ‘R + iP,( R + |B‘_’R|2 = JB:Hi‘l2

+|Bigl* + |Brrl* + |Bsil* + | B l*

., 4 2
Il + [ Hanl? + 5 (Bl — W) ] ©)

where
Bl = (3Biy_1), + Bivr) /V10
and
o (VBWR +VBAup +Aanr —V3Aian — As AR)
W= e 3
V16
The mixing between SU(6)¢- iz and SU(6)  is given by BY, R

WY, The analysis shows also that (uE (A ]Ul) with the VEVs

J

; U
chgp =122

+ (i I)Zsr'f.{"') +|PiLl?

=1

+ P +

Combining the former equations we see that the only
gauge bosons that remain massless are:
. The eight fields GY* = (G® ., + GS p)/V2.6,9 =
15253, (3 5 ('l 8 = = ()), associated with the gauge bosons for
SU(3)¢-.
2. A = WP+ W8 - ¥(Bip_yy, + Byl
which is the photon field. Then using the identity 4 =
.\ian-H'f,f + cos by By, where By is the weak mixing an-
gle, we get sinflyy = 3/+/28 at the G scale, and By =
BWH — V5(Bp_1y, + By_1,,)]/V19 as the boson as-
sociated with U( 1)y .

3.2. Masses for fermion fields

With the scalar fields of the model ¢,.1 = 1,---
construct the following Yukawa terms:

.4 we can

Gy Y+ (o)

61Bsr|® + [BsLl” + 6|Brr|* + |Byr|* + 7|By, | + | HY, |* + 6| HY

(L — R)+6(Aq; — .4r.h‘)2 + (A5 — D5y,

= WG T T a3+ Yoe ) + J.'.,E’,H';.r 13 +Yaeh ) + o5, (Yo, + Yaes,

113

as stated breaks SU(G)¢cpe @ SU(G) g down to SU(4)., @
SU ())( 3 ql'( ]T{ SL{ ) (l)mi\h where I-'I( )mlx
is associated with the unbroken gauge boson (BY., +
WE)/V2.

[t is also a matter of a careful analysis to realize that

(d1) + () + (p3) breaks G down to SU(3) ¢ @ SU(2),
U(1)y, the gauge group of the SM.
3. {¢4) with the VEVs as indicated produces:

L(My) = *ME{Tr[AZ, — 2Ac1Ach + Aby
+ AT = 2A I ARls + AR T2

+ G(ALIE — 2A L IgA pls + ARIY)

FALL I = 2Ac 1 I AcrTs + A2 L T2)

2(AL — Ap)i(AcL — Ac H):,'}

A
. Jl/ L(‘[{) Cn’(ff

1212 e G

where L( M) is given by Eq. (8), and Iy = 55 and I = dgg
are 6 x 6 matrices with only one entry different from zero,
which produce:

PP+ [HEL | + 6| HE, P

~ Asgp + Dsn)g] (1

[ 2
Zu(6,1,1,6)4(6, 1, l.m{ 3 wii(15.1,1,15)
f==1
s [(15 4 21). 1,1, (T5 + 21)] }
+ f}.]Z]l,‘"-‘(G. l 1 G)f,""(].. G G 1)(;)4(6. 6.6. 6) - h.(‘.

where y;, ¢ = 1, - - - 4 are Yukawa coupling constants of order
one. When the HI"g:‘: fields ¢;,i = 1-4 develop the VEVs as
indicated in Sec. 2.3 they produce the following masses for
the fermion fields:

3.2.1. Masses from (&)

-} (rh\

Zap(6.1.1,6)¢:(6, 1, 1, 6) Z,

duces:

yi{e:i(15,1,1,15))  pro-

I. Masses of order M for all the exotic nones in 1/(6, 6. 1. i

2. The lollowing Dirac masses:

J+ Np(BEL + BER)

+ NpMES + RER) + NG (Vi B + V2 ES ) + EL (NS + %5 NIT) + Ef(F NE + Yo N2

Oy

+ EL (YiNGs + YaNSY) +el5(Vindy + ¥and,)

+c,,{}'|uL limil‘). ”'() u({"-i-}.n,l)+hr (12)
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where Y; V3My;, i = 1,2.
us to identify w(Ysess — Yienn), x(Yaers — Yies) and
n(Yoez; — Yies;) with & = (Y2 + Y2)7!/2 as a basis
for the known charged left-handed leptons (e~ ,u™, 77 )1;
w(Y2Ef; — Y1E]}), s(Y2E; — Y1E],) and k(Y2E5; —
Y| ;) as a basis for the known charged right-handed leptons
(e, =, 77 )r; k(Yan3s — Yind,), s(Yand; — Yin;) and
#(Yand,—YinY, ) as a basis for (ve, vy, 7)1, and (Y N5 —
YN, k(Yo NSE — Y1 N%) and k(Yo N — Y1 NJE) as a ba-
sis for (vg, vy, v7)L.

As can be seen from the former expression, all the vector-
like particles with respect to the chiral extension of the left-
right symmetric extension of the SM acquire masses of order
M, as it should be according to the survival hypothesis [2]
(see Appendix A).

Equation (12) allows

3.2.2. Masses from (¢3)

Z4(1,1,6,6)%(1,1,6,6){ps(1,1, (15 +
prnducccs the following masses:

. Dirac masses for all the exotic fields in (1,1,6,6) of
order M¢:, via the Yukawa term y3 245 (95 hq)

21), (15 + 21)))

2. The following Majorana masses:
v {3 [A,Q
£ = yavAvB (L)
Mp(N9f Nesy, + Nosp N3s
= ysMp(Nay ] 23L4Y31L
+ N35, Nty + N3t Nag ), (13)

3.2.3. Masses from (¢4)

¢4, with the VEVs as stated in the previous section, produces
the following mass terms:

(¢a) f / A
L‘.Lf; = Y4 (l“nLA +LAL::) ((:'SC\A

3
: . Ar0c .0 A= e
ys Mz [ tsptsr + Najpngip + Nyppngsy
=1

I

-+ N.’?;L”%:}L + Egu‘eggL + h.C.] 3 (14)

from where we can immediately see that the top quark (but
not the bottom quark) gets a tree level mass m; = y4Mz.
The algebra also shows that Eq. (14) contains a small mass
term for one of the neutrino fields [10]. This is the way how
we achieve the modified horizontal survival hypothesis in the
context of the model presented here.

4. Mass scales

4.1. The electroweak mixing angle

There are several ways to calculate the electroweak mixing
angle at the unification scale (M) for a grand unified theory.
For a simple gauge group the relationship [11]

sinBw (Ma) = tr(T2,)/tr(Q?)

may be used, where the traces can be evaluated using any
faithful representation (reducible or irreducible) of the sim-
ple group.

Now, [SU(6)]* is not simple, but [SU(6)]* x Z, is. There-
fore we can calculate the traces for 1(144) and plug them in
the former expression. Note that all the four sectors of 1(144)
must be used in the computation of the traces due to the fact
that a single sector is not a faithful representation of G be-
cause it is not Z4 invariant. After the algebra is done we get
sin®fy (M) = 9/28 in agreement with the previous calcu-
lation, and the same value obtained for the three family ex-
tension of the Pati-Salam model with mirror fermions [12].

Now, if we define gy, g2, and g3 as the gauge coupling
constants for U(1)y, SU(2);, and SU(3)c respectively, the
the embedding of the SM model gauge group for three fam-
ilies in [G,v(144)], and the former value for sin*6y imply
that at the G scale the following relationships holds [3, 12]:
g3 = g/V2.92 = g/V3, and g, = /3/19g. At scales
well below the (¢ scale the former relations are not longer
valid because the embedding symmetry G is not manifest,
then the effective coupling constants must be evaluated using
the renormalization group equations.

4.2. The renormalization group equations

Next we introduce the renormalization group equations and
use standard decoupling theorem arguments [13] in order to
calculate the mass scales.

For generality, let us analyze the two mass scale symme-
try breaking pattern

G Me=le ¢, M, 55(3)e @ SU(2)L ® U(l)y

¥z SUB)e ® U(1)em

with Mg > M > Mz, and G; = SU(6)L @ SUM4)Y @
U(l)y ® ---, where SU(3)c C SU(4)% and SU(2), C
SU(6) . For this two-stage gauge hierarchy the runing cou-
pling constants of the SM satisfy the one loop renormaliza-
tion group equations [14]

b”Rl (ﬂ/ff) le (;:’[j;)’ (15)

where a; = g?/dm, i = 1,2,3,a = g*/4r, and f; are em-
bedding constants given by f; = 19/3, f = 3 and f3 = 2.
The beta functions are:

a7 (Mz)= fia~

1 2
b; = 4% { gl Ci(vectors) — 3 C;(Weyl-fermions)
1
— gCi(scalars)}, (16)
where C;(. .. ) is the index of the representation to which the

(- ) particles are assigned, and the C;(Weyl-fermions) and
C(scalars) indexes must be properly normalized with the
embedding factor f;.
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Now, using the relationships e ? = gfz + y.;,'z and
tanfy = g1/g2, valid at all energy scales, we get from
Eq. (15):

—1
a; (Mz)
oa (Mg} = = ——
Mg M M
N P W (Mr
2 28 28 M
b 3 3l M
+ ifL’"’ il Mg [ 22 D)
2 28 28 Mg
and

sin*fyw (Mz) = 3apm(Mz)

y az ' (Mz) . bl pite (M
2 ) 3 M
bgf nM M
—_— e e o 4 g
+( 2 73 )1“(:112)} e

As it is well known, the Higgs fields play an important role
in the beta functions [15] and can drastically change the so-

5. Interacting Lagrangian

lutions to the renormalization group equations. So, we are
going to solve those equations under the assumption that the
extended survival hypothesis holds [15]. Using this hypoth-
esis, decoupling the vector-like representations in (144)
according to the Appelquist-Carazzone theorem [13], and
using the experimental values [16] sin?fw (Mz) =
0.2319, a3(Mz) = 0.117 and “I-:}w (Mz) = 127.6 we get
the solutions M = 5.0 x 10° Mz and M = 5.5M. When
the threshold effects and the experimental errors are taken
into account, the solution is compatible with the amazing re-
sult Mp = Mg ~ M ~ 10% > My ~ 105 GeVs, which
implies that only one stage symmetry breaking pattern is re-
quired, and there is only one mass scale between the GG and
the electroweak scales.

So, our model is compatible with the symmetry breaking
pattern:

G 4 SU@B)e ® SU2), ® U(l)y

Y2 SU3)e @ U(1)em,

where M ~ 10% GeVs, and Mz ~ 102GeVs is the elec-
troweak mass scale. Notice also that the lower value of the G
scale softens the gauge hierarchy problem.

Using the covariant derivative for G we can write the following interacting terms:

LM = g[(6,1,1,6)Acrth(6,1,1,6) — (6.1,1,6)AL1(6.1,1,6) + (1.6,6, 1) Agii(1,6,6, 1)

—(1,6,6,1)Acry(1,6,6,1) + v(1,1,6,6)Acry(1,1,6,6)

—4(1,1,6,6)Acy(1,1,6,6)

+10(6,6,1,1)AL1(6,6,1,1) — 14(6,6,1, 1) A z1)(6.6,1,1)]

ELor+Lr—Lr—Len.

As far as the ordinary particles are concerned, each term in
L™ may be written as

Li=LP Ll + L

fori = CL, R, L, CL, where qq, ql, and Il stand for quark-
|

qq .
L( 'L —

.
Sl

q=u,d,c,s,t,b d#n=1

aql
Lop =

3
g (X, (8

s

L YeUst + & - vuDsr) + Y, (87 -

(19)

quark, quark-lepton and lepton-lepton interactions respec-
tively. Also for our concern here, only the terms in Eq. (19)
with known fields must be evaluated explicitly.

After the algebra is done we get the following expres-
sions:

{ Z [ Z Q'()I G (‘[ YulnL Z q&LD,s( 'L mflnl] } (20)

Y UcSL + égi Y DJL)

+ 2% (B3, vuUst + 857 -7, Dst) + h.r'.], 1)

sl
Loy = \/E[Df;m (@Y 71.nly, + &7 vuery) + Dby, (B

+ , =0c . .0Oc
L Yulgy + &7 Yeest)

B (=0 0. == - 0,40 (=0 0 s g .
+ Dgep (B3 vum3y + €51 -yues,) + Pot (B 103, + €1 -vees,)

+ih (=4 0 e o e to ot 0 =0¢ - ;
+ Pigp (B3, venl, + &% 7€l ) + Pogl (83, -vum3y + &5 -vuesy) + hec. ], (22)
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where we have defined the following three compo-

(ug,cs5,t5), Dsg = (ds,ss,b5);

0 - ik s
(=nfynd,n8y), nf = (nfy,ndy,nd), n§ =

(=nls, —nly,ng;); ef = (e, —eqy,—eq), € =

0 Oe ¢ = - - =
(el5, €35, €35) and ey = (e]3,€53: —€33)-

nent vectors: Us =

2 e
n =

co o and £, are expressions similar to the ones
crilor CR

pressented in Egs. (20), (21) and (22) with the following
changes: replacement of CL — CR in all the gauge fields,
changing of the quark fields Uy, and D, by their correspond-
ing charge conjugated fields U and Df , and changing of the

|

After the algebra is done we get the following expressions

3
W L
L" - 6 Z

d=

—

[ L (DJL Y Dgy, — Usy, - “UJL) + (W:L /

lepton vectors nY, nf, nJ, e, ) and e; by NY¢ =
(=NUT NSE NSE), Ny = (N, Np, Nib). N§F
(—N{5,—N2% . N%): EfY = (Ef,—-Ef,,—E}), E§ =
(EY;, ES;, ES,) and EJ = (Ef, EY,, —EJ,), respectively.
Then the right-handed fields will show up in the final ex-
pressions by using the identity Y v*£; = —&ry*xr. Then
—Le i will be just L¢:; with the substitutions . — R and
{n,e} = {N,E} everywhere.

Next for £, and £ we have the result that £
Then CL(R) and EL(R)

LR = 0.

can be conveniently written as:

qq(ll) »q(l) q(l)A q()B
Lhiny _Lr(m +LL[R +Lyry T LLir)-

4 Dy + h.:-.)], (23)

O

3 (}p
sl ) ” Op 7, = 7 Op 7
£y = Y‘_‘ [T(CtsL%HaL + 851 Vudsr) + Hyp bspyudse + \/ng (EsLyutsr, — Sspvpdst) + HyY tspvuuse

I V)

HY : < S
+ Y5 (bsevussr + EsLvucse) /3 (Fs1vucsL — bsryussr) + hec.|, (24)

3
[:l,'.-l - g [‘4
ol T¥ ;

4)HL

Y (dspvudsy + Gspyvause — bspvubst — fsLvutse)

+ /3 (dsLyudse + GsLyuusr — 2861851 — 2851, VuCsL + bsr¥ubse + torvutsr)

"

Aj
e 222

\I/’%‘r‘ (dsrvudst — @srvuusr — 2551 VuS6L + 2651 YuCor + bsr¥ubse — tszvutsr)

+ A% o (dsnyudse — Gsrveuse — bsrvubsr + tsrvutsr) |, (25)

_ﬂ

3
qH o X‘ [
Y

—pt

(dspyuusr — bspvutse) + Baf' dsivucst + Baf' dsivatsr + Baf' Ssevuuse + Bof bsrvuuse

+ \%_5 (bszvetsr = 2851 vucsr + dsrvuuse) + Bof* Ssevutsr + Byl bspvucse + hec.|. (26)

Again, — L is just £1" with the substitution L — R everywhere.

The expressions for L'L(R) are very similar to ‘CL(R) In

fact LY
Us — ng, in the expression for C‘i

is just £97 with the substitutions D5 — e; and
W. and us — 1 =
-n$;), s = 12 = (7181,71;2,—1;33), ts —
N3 = (1131 n;r, n%) ds = g1 = ((’;1,9?5,6;3), S§ F €y =

(—e5;,€35,e53) and bs — €3 = (—ez;, €35,

0+
(—niin7z,

—e3,); and the

exclusion of the sum in the other expressions. Now, —C’,’?

[
is just C’If with the substitutions L — R and {e;;,ni;} —

{Eij,Ni;} everywhere. If now one introduces instead
of the mathematical leptons introduced in (6,1,1,6) @

)(1,6,6,1), the more natural set of lepton fields [ =
(espt,7), ¥ = (VeyVpy 7). 0 = (ny2,Mma3,n32) and e =
(€95, €9,,€%,), given by
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(e3s e11)e = (npy,e7 )L M; (13, €31)L = (ny )M, (e33,€51)L = (nge, 77 )L M,
(Exs, Efy)L = (Nfy, et )M, (Ely, Bf)e = (N, ut) e M; (Efy, Bf )L = (Ngh, %)L M;
(93,10 1)L = (€92, ve) L M; (nf3,n3;)1 = (€23, V) L M; (n33,13,) 1 = (€32, v;)LM;

(N, NiD)e = (B, v M; (VU5 NGD)e = (B35, o) M; (NS5, N$E)L = (ES5, vE)LM,

where

_.{h Y
J\/f—h-(yq _YI),

then the former Lagrangians can be put into the form

3
g n ez
gt.[. = 7Z{AX(5LC’L [Yl Uea-*VT;_Vu)L ’YJLU«“ +Yl( T ) )L'AqudL

+ Ya (- "1215’2%"23)L YuUst + Ya(ngs, —ilgy, —Man) L 'YJLDJL]
+Yie, (B - vuUst + &1 - 1, Ds1)
+kZ5cy, [Yl(—égzs —&12,83) - YuUse + Y (g, gy, — figa )z ~YuDsr
+ Ya(=0, =P, U7)r - WuUsp + Ya (™ 67, —77)y, "mDaL]

+ h.c.}, @7)
£y = E{D“L K [} (I -yl + 51 “yuvy) + Y5 (R cy.ny + 8 - Yuer) = V1Ya (g Yl + 81 - yuvr + h.c)]
+ Dlioy [8 - un} +85 - e
+ Dfoy v° [}12 (B - yunp + &, yer) + Y (I - vlp + 51 “Yiu¥L)
+ Y1 Ya(Ry <yl + &L - yvr + h.c}]
ng K2 [}! (ITL Yol = b - Yabr — L “Yalsr)
+Y1Ya(he  Yobr + br - Vel — Br - Yalir + bt - Yaler — Lz “Yalut — Lt * Yalbr)

#+ Ygz (LL ; 'cht,uL 4 z.’L “Yalrp + ISL : 'anlc-L)]

+ Pig & [ (BL02  Yalur + Bros - Yl — 10y - Yaler) + Ya(iihvaeds + idyvaed, TQB?z)]
Pici & [V (7€l — 10l — il vaeds)
4 (IIL‘I? Yalut + 5102 Yaler — 00 'Ynlffa)]
+ h.c.}, (28)

0 (W po #ng —~ &yt Ir vyl -0 mp
L = 75 /3 g ooy — &y ytep i vl —UL"Y;J/L} = [VV“L(U; “Ylp + & y¥n )+h,_c] . (29)
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SLH g [HE - 2v,2 (7 7 21,2 (T

Ly =—= 7 [1-11, Yoo + &Y (L - Yabr — bn - Yaler) + K2YE (ber Yo lur
— B Yahi) + Y1 Ya (b - Yaler + hie - Yaler + et - Yabr + bp “m[lL)]

+ Haf [éggfﬂ“Eg;L — £V (B Yaep + M3apYaNgyy) + K7Y5 (iga Yaniag + 77 Yahiy)

2 L= - = i
+ £°Y; Y‘—’(”zzL’YHEL = NgopYaltp + [y Yallisp — Tp fﬂ”-zul.)]

+

Hl(]n _ e B B S -
{; [th’Tzi Yahr + &Y 13(171,(73 “Yaler, — hiros - ’}nsz) + ,\-3}_33([3‘,403 “Yalit, = bp oz - ’mlp!.)

- &°Y1Y2(BLos - Yaler + hi203 - Yolur + ler.03 - Yol + lr103 - "m-"'lL)]

O [+ o+ 2v,2(=0 0 = 2200 0 S
+ His [”;;-_)L’Yn”lgi, — Yy (("SQL’YHP'?_’.L = VuL'Yrt“FL) - kY5 (f"l'_’L—}ﬂ( g VTIJnVstL)

2y =0 =0 = 0 P 0
+ R yllf] (e‘z*_)LF}/ﬂrVE'L — €321, TaVulL .t VL Ya€121 — UTL’YH(’Q‘_),L):'

Oex
HY

\/§

+ [ZQCL i 7&’51, + "i?le UuL i ‘Ynl'rL - IﬂL s Tnll[;) i "321’22 (E‘.ZL * Ya ZiiL = I-rl‘- 2 "J"c‘rtc-f.}

- &Y Ya(br  Yaler + br - Yabrr + lur - Yalsr + br, - %hL)]

HOn - B B e ~
o =4 {JELO'(; Yalsp, + K2Y? (BLos  YaliL = lupos - Yalrr) + K2Y3 (b 103 Yaler, — bros - Yalar)

Vo)

+ &YYo (bros - Yaler + bros - Yolrr + biros - Yalar + Lpos - 'YnllL)] + h'rl'}’ o
cit = 5_!%{-4(1\'11!_ [31(:1_ oy = By Yol + K°YP (br - valer — L - Yalse)
+ &Y (hr - Yahe = e Yaber) + 82 (YE = YE) (Br  Yabr — Lt - Yalut)
+ 6 Y1Y2 (2he  Yalut = lie  Yaler = b1 Yol + ’”")}
+ Ail‘/%L [sz Yalfy, = 281, Yaly + By Yalfy + it Yabut + br - Yadar
+ % (¥ —2Y3) (Lo - vaks + B -Yabe) — &% (2¥ — Y5) (hi -Yahs + Lo - Yeber)
+3:*V1Ya (br - Yolrr — hiL - Yaler + """'")]
+ ﬁ;—! [2151,03 Yalsy, = U103 Yalip — BLO3  Yabr + bros  Yabr + 403 Yalut

2

+ &2 (Y2 = 2YF) (kros  Yaler + ooz - valse) — £ (2Y7 = Y5) (Lo Yalip + Loz - YalrL)
+362Y1Yo (bros - Yabr — o3 - Yaler + fLC-)]
+ A% [Bros - val§y — pos  Yalfy + 82V (leLos - Yaler — lLos - YalsL)
- N21,22(11L0'3‘ Yohir — LLo3 -'yL,I.,L) + K2 (YI2 - )’22) (TgLUa “Yebap — IﬂLﬂg Yalur)

+ &£°Y1Y2 (2bros - Yaler — hros - Yaler — BLos - Yalrr + h--f'-)] }, (31)
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el -3

7 -Y5) (17.27'(1”;*1‘ - ’_7'27214“"0(’32!_)

-
9 = Iy 2
£ = L B [ vany, - elfprandsy +47

2vr2 o — 0 = 2y2(=— e 2 =
+ ¥ (g Vet = Cr et r) * BV (T Tavei — Ay Toier ) ¥V Y5 (87 1aelay
+ i, Mgar Yatr L — 2L Ya€3ay — 2005 P Yo
FNyap Yalel + Ngap YalrL — 2fip YaCaay ooy YaVul + Tp Ya€3aL
—a [-0¢ 2y s 0 DRAY o 0 =
+ By [31511’711”;214 + KV (€L YarrL — ”321_%61‘3.',) +K7Y5 (”12L’Ynf333L = My, ’Yn"eb)
2} Yol 0 - 0 = — . ==
—,H ] E(EL'YcreS?L + i Ya€iag, + gy p Yalel + nlgL'TnVTL)
—a -0 + 2v2 (o— — 0 BBl o —
+ By [elsL"fnnzzL + 8P (L Yavur + gy Ya€sar) + K75 (R Ya€dap + g YavrL)

DA e e B ‘ oo
- r'NY; (EL faCaar = HpYa€aag — Mooy YalrL + ”131_7(17’;1.[,)}

—a [20c . .+ BB N oty R | .
+ By [ﬁ’esz YaTiag, + 8°Y] (T Yaler — fify Ya€azp) + K°Y (”;3-31, Ya€l2r — €L YaVuL)
2y — — — o
- k°NY, (EL'yn.e._,QL + Tp Yallsp + Tlgar YaleL + n,]ﬂ‘%uﬂ!‘)]

—p [0e F: IR = 0 A2 — 0 =
+ Bg;, [8321,%”12!, + kY3 (AL Yaver + 331 Ya€3a1) + K7 YF (Moo Yaelar + T2 YaWuL)

3 —— 0 ——_ 0 e = o
- LY Y’J(/"[,"fnf’lzt- = TL Yalaar — NgapYalul + 1y !ﬁ“eﬂ)]

Bzl
6L [50c g o=0c . .+ 0c _ .+ e . 0
* \/]6 [6151,701112L = 28331 YaN3ay, + €350 YaN3az — Az Ya¥ul — Tayp Ya€321,

+ &2 (2Y2 — Y3) (A1 Ya€Yar + 7L Yavrr) — 82 (Y2 = 2V5) (RgarYa€92r + €L TaveL)
+ 3k7Y1Y2 (8 Ya€lar + MparYaleL = figyp YaVrL — 7:[“/negzL)]
i B7_[fL [éggL‘\fﬂ??’;zL b "“'EYIZ2 (ﬂ‘;ZL'Yﬂ(‘gzL - F}T 'Yn-VuL) + "‘32}’2‘2 (EZ"fﬂ Vol — ﬁ':—;-g[ffn C’g?_,if,)
-kl (éi%fgu + f;'rtv"gu. + gy p YaVul + g Yo VTL)]

= | -0 anF 2v2(=— _ 0 == 22— = — 0
+ By, [ea;b%llzzL + &Y (g T Bian = fip, YaVrr) + K7Y5 (TL YaVeL — Tizyr, Ya€321)

- KV (7 el + 77 ol + ot + g )] + B (32)

where we have used the following leptonic doublets: [ =

[

(I=,um) forl = e,u,7and § = (ny,e}) fori = 1,2,3; and
the rotating matrices 6. Stability of the Proton
In the subspace of the fundamental representation of

o] B o=L % 10 33 SU(6)c p2SU(6)¢:, the baryon number for G can be asso-
2= o = - B3 Ciated with the 12 x 12 diagonal submatrix
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B = diag[(1/3,1/3,1/3,0,0,0) & (1/3,1/3,1/3,0,0,0)].

Since this matrix does not correspond to a lineal combina-
tion of generators in &' then the baryon number is not gauged
in this model (there is not a gauge bosson in G associated
with B).

Now due to the stated directions of the VEVs for ¢;, i =
1-4 in Sect. 2.3, it is a matter of algebra to show that B(¢;) =
0,i = 1-4. Therefore B is not broken spontaneously by
the set of Higgs fields used for the breaking of G' down to
SUB)e®U(DEar. So, B is perturbatively conserved in the
context of the model presented here, and the proton remains
perturbatively stable.

Another way to see this is to use t'"Hooft [17] argument
and to consider two generators BL and © in the subspace of
the fundamental representation for SU(6)cp@SU(6)y, de-
fined as

BE = Ditg 1,0, 0,~1,~L,~1 @01, 1~T,~%~1]]

which is a generator of the (G algebra which distinguishes
baryon and lepton number, and

© = Diag.[(1,1,1,1,1,1) & (1,1,1,1,1,1)]

which generates a U(1)g global symmetry of the model. BL
and © are spontaneously broken by (¢;),7 = 1-4, but the
lineal combination B = (BL + ©)/6 is not.

7. Concluding remarks

We have studied in detail various aspects of the [SU(6)]* x Z4
grand-unification model, using the fields in the representation
(144) = Z410(6,1,1,6) as presented in the main text. The
most outstanding features of the model are:

e The evolution from low to high energies of the gauge
couplings in GG, meet together at a single point at the
scale M ~ 10% GeV, in good agreement with preci-
sion data tests of the SM. We emphasize that this is
the only realistic (small number of low energy Higgs
doublets) non supersymmetric model for three families
which descends to the SM group in one single step, as
adetailed analysis shows [18].

e The low unification scale does not conflict with data
on proton stability because baryon number is perturba-
tively conserved.

¢ Unlike the model presented in Ref. 12, our ¢:(144)
does not contain mirror fermions, and it is not vector-
like with respect to . Therefore the survival hypothe-
sis [2] and the decoupling theorem [13] can be properly
implemented, in such a way that all the exotic fields in
i1(144) get very large masses (of the order of the uni-
fication scale).

o At tree level the only ordinary charged fermion field
which get mass (of the order M z) is the ¢ quark, in con-
sistence with the modified horizontal survival hypoth-
esis [8]. Masses for the other standard charged fermion
fields should be generated as radiative corrections.

e The mass terms for the neutral particles of the model
show that a generational (three family) see-saw mech-
anism may easily be implement in order to explain the
small neutrino masses [10].
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Appendix A

The terminology used in the main text has been properly
translated from classical papers on grand unified theories
from fifteen years ago.

Survival Hypothesis [2]

For a symmetry group (¢ with G' C G, if (G is spontaneously
broken down to G at the mass scale M (G X G'), then ac-
cording to the survival hypothesis, any set of fermion fields
which are vector representations of G’ should get masses of
order M. In other words, “‘at each energy scale the only rel-
evant fermion are those which are chiral with respect to the
surviving symmetry”.

Extended Survival Hypothesis [15]

It claims that only the scalar fields which acquire VEVs at a
particular mass scale, acquire masses at that scale, with the
rest of the scalar fields acquiring masses at the unification
scale. In other words, “Higgses acquire the maximum mass
compatible with the pattern of symmetry breaking”

Horizontal Survival Hypothesis [4]

It claims that only the particles in the heaviest family of
quarks and leptons acquire masses at tree level from dimen-
sion four Yukawa couplings, with all the other families get-
ting masses via radiative corrections.

Modified Horizontal Survival Hypothesis [3]

It claims that for a universe with three families, only the top
quark and v, acquire tree level masses (the last one lower
down with the appropriate see-saw mechanism), with the
masses for all the other known fermions generated via ra-
diative corrections.
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Appendix B

In this appendix we introduce some mathematical definitions used in the main text.
First, the diagonal entries in Eq. (3) are related to the physical fields by

s /1/V6  1/2  1/V/12 1/2 1/V12 -
Az -1/v6  1/2  1/V/12  -1/2 -1/V12 A
As |l yve o -2/¥/12 0 -2/V12 A}H -
Ay -8 0 —2/v1iZ2 0 2/VI2 A"":
As 1/v6 -1/2 1/Vy12 -1/2 1/V12 A‘I)A
A6/ 1 -1/v6 -1/2 1/V12  1/2 -1/V12 A LR
where the gauge fields E‘Vg(R)‘ -AIHL(R)v A'JHL(R)* AJAL(R)' I
and A, 41 (g) are related to the following set of diagonal gen-
erators of SU(6)y,(g): WLi(R) 1/V3 1/vV3 1/V3 B
h , B Bftf,(m 1/v2 0 -1/v2| | B§* (36)
Ywr(r) = Diag(1,-1,1,-1,1,-1)/v3; B;’(m 1/v6 —2/v/6 1/V6 B;}i -
Y, = Diag(1,1,0,0, -1, —1)/v/2: o
AL iag( V2 In order to simplify matters we have defined
Yauein = Diag(1,1,-2,-2,1,1)/V6; O L1 o o\ (HS
YA, a0 = Diag(1,-1,0,0,-1,1)/v2, H? _ 1|t 1 o oflaP 37
and H3 vz|0 0 11 Hy
H{? 56 0 0 -1 1 Héo —_—
¥inariny = Diag{l,—1,~2.21,~13/V6: @5 ‘ (
With the former definitions W9, .. and WX . are the
respectively. L(R) L(R)

The primed fields in Eq. (3) B;*, | = 1,6,9 are related
to a set of unprimed ones by the equations

gauge fields associated with the gauge group SU(2) r)of the

left-right symmetric model.
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