INVESTIGACION

REVISTA MEXICANA DE FISICA 45 (2) 125-131

ABRIL 1999

A local anharmonic treatment of vibrations of methane

R. Lemus', A. Frank'?, R. Bijker!
U Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México
Apartado postal 70-543, 04510 México D.F., Mexico
2 Instituto de Fisica, Laboratorio de Cuernavaca
Apartado postal 139-B, Cuernavaca, Morelos, Mexico

F. Pérez-Bernal and J.M. Arias
Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Fisica, Universidad de Sevilla
Apartado postal 1065, 41080 Sevilla, Esparia

Recibido el 12 de agosto de 1998; aceptado ¢l 9 de noviembre de 1998

The stretching and bending vibrations of methane are studied in a local anharmonic model of molecular vibrations. The use of symmelry-
adapted operators reduces the eigenvalue problem to block diagonal form. For the 44 observed energies we obtain a fit with a standard

deviation of 0.81 cm™! (and a r.m.s. deviation of 1.16 cm™!).
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Se hace una descripcion de las vibraciones de tensién y flexién de metano en el marco de un modelo local anarménico de vibraciones
moleculares. El uso de operadores y funciones adaptadas por simetria permite reducir ¢l problema de valores propios a una forma diagonal.
Para las 44 energias observadas se obtiene un ajuste con una desviacién estdndar de 0.81 cm™" (correspondiente a una desviacién cuadritica

mediade 1.16 cm™?).
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1. Introduction

The development and refinement of experimental techniques

in high resolution spectroscopy has generated a wealth of

new data on rovibrational spectra of polyatomic molecules.
Highly symmetric molecules, such as tetrahedral XY, sys-
tems, form an ideal testing ground for models of molecu-
lar structure. On the one hand, the high degree of symmetry
tends to reduce the complexity of the spectrum and on the
other hand, the use of symmetry concepts and group theoret-
ical lechniques may help to interpret the data and eventually
suggest new experiments [1]. A good example is the methane
molecule, for which there exists a large amount of informa-
tion on vibrational energies.

Theoretically, the force field constants of methane from
which the spectrum can be generated [2] can be obtained
from anharmonic force field calculations [3] or ab initio cal-
culations, see e.g. Refs. 4, 5. In a more empirical approach,
the vibrational Hamiltonian is expressed in terms of curvilin-
car internal coordinates, which are symmetrized for the bend-
ing variables, but not for the stretching variables. The model
parameters are optimized in a fit to experimental vibrational
energies [6].

The aim of this paper is to investigate the stretching
and bending vibrations of methane up to three quanta in a
symmetry-adapted vibrational model. The method is based
on the use of symmetrized (both for bending and stretching

variables) internal coordinates. The fundamental idea is to in-
corporate anharmonic effects in the local modes from the out-
set. This is done by substituting the standard creation and an-
nihilation operators associated with the internal coordinates
by SU(2) operators which carry the intrinsic anharmonicity of
the local modes. The result can be viewed as a symmetrized
(and in other ways improved) version of our previous work
on methane [7].

2. Local anharmonic symmetrized coordinates

The vibrational Hamiltonian of methane is usually expressed
in terms of curvilinear internal coerdinates S; and their con-
Jugate momenta P; [8,9]. Both the kinetic and potential en-
ergy are then expanded as a Taylor series around the equilib-
rium configurations. In practice, it is convenient to introduce
symmetry-adapted curvilinear internal coordinates and their
conjugate momenta [3]
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since it reduces the Hamiltonian to block diagonal form.
In the case of methane there is a redundancy between the
curvilinear coordinates which describe the bending degrees
of freedom. The redundant or spurious combination can be
removed from the outset by restricting the labels T and x
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to the fundamental modes only: I' = A, Fy for stretching
vibrations (z = s) and I' = E, F, for bending vibrations
(@ = b). However, as a consequence the inverse transfor-
mations of Eq. (1) become nonlinear [8,9]. In the present
discussion we prefer to keep the redundant coordinate (with
symmetry labels * = b, T" = A;), and to remove the spuri-
ous states at a later stage. In this case the inverse relations are
linear just as Eq. (1) itself.

Next we introduce instead of the symmetrized coordi-
nates and momenta of Eq. (1) creation and annihilation op-

erators
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The coefficients /3, - represent scaling factors for each vibra-
tional mode. According to the discussion following Eq. (1)
the symmetrized operators can be expanded in terms of local
()pEl'ﬂl()TS as
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As mentioned before, the basic idea of the present ap-
proach is to explicitly incorporate anharmonic effects in the
local modes. It has been shown that the anharmonicities in-
duced by potentials such as the Morse and Poschl-Teller os-
cillators can be described in terms of U(2) algebras [10, 11].
Hereto we construct an anharmonic representation of the lo-
cal operators bj- and b; through the correspondence [13, 14]
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where J? = J3 ;+ (Jy i i +J_i40)/2 = Ni(Vi+2) /4,
i.e. N;/2 = j; [14]. The anharmonic operators satisfy the
commutation relation
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The operators .J,, ; with ¢ = =, 0 together with the number
operator N; are the generators of U;(2). In the limit N — 00
we recover the harmonic description in terms of b b; and
U; = hi b;. With each internal coordinate we associate a U(2)
algebra. For the methane molecule this leads to four U(2) al-
gebras for the stretching degrees of freedom and six more for
the bending degrees of freedom (of the latter, one linear com-
bination is spurious). The molecular dynamical group is then

given by

G=11(2)@Ux(2)®...® Uo(2). (6)
The Hamiltonian and other operators of interest are expressed
in terms of the generators .J,, ;, N; of the U;(2) algebras in
Eq. (6). The local basis states for each oscillator are | N;, v;),
where v; = 0,1,...[N;/2] denotes the number of oscillator
quanta in the i-th oscillator and JV; is related to the depth of
the anharmonic potential [11, 12, 14].

For the CH; molecule there are two different boson num-
bers: N for the stretching modes and N, for the bending
modes. The tetrahedral symmetry of methane is taken into
account by symmetrizing the local operators ju.i [7]

Ty = Znﬂ, i )

i=1

The coefficients af._, are the same as in Eq. (1). The sym-
metrized tensor operators of Eq. (7) correspond to ten degrees
of freedom, four of which (A; & F,) are related to stretching
modes and six (A; & E & F3) to the bendings. Consequently
we can identify the tensor with x = band I' = A, as the
operator associated to a spurious mode. This identification
makes it possible to eliminate the spurious states exactly. This
is achieved by (i) ignoring the Tf‘;, tensor in the construction
of the Hamiltonian, and (i1) dlagonalumg this Hamiltonian in
a symmetry-adapted basis from which the spurious mode has
been removed [15, 16]. It is important to note that, although
in general in the presence of anharmonic interactions only
approximate methods can be developed to eliminate spurious
degrees of freedom, the particular anharmonization provided
by U(2) admits a symmetry procedure to exclude the unphys-
ical states exactly [16].

3. The vibrational hamiltonian

The vibrational Hamiltonian for methane can now be con-
structed by repeated couplings of the tensors of Eq. (7) to
a scalar (' = A,;) under the tetrahedral group T4. We
use the standard labelling for the vibrational basis states:
(11 1/5,2 r/"ui ), where v, v3 and 1, v4 denote the number of
quanta in the A, F, stretching modes, and in the E, F, bend-
ing modes, respectively. The labels /; are related to the vibra-
tional angular momentum associated with degenerate vibra-
tions. The allowed values are [; = v;,v; — 2,...,10r0 for
; odd or even [17].

In this paper, the Hamiltonian is taken to be diagonal in
the total number of quanta V' = 11 + v + v3 + v4, and in the
polyad V' = 21y + vy + 213 + vy, but does not contain ex-
plicit Fermi interactions between the stretching and bending
vibrations. Fermi interactions can be included in the model
by means of additional interactions which are diagonal in the
polyad V' = 21 + 15 + 213 + 14 and exchange quanta
between the stretching and bending modes. In that case the
number of quanta V" ceases to be conserved.
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According to the above procedure, we now construct the
T, invariant interactions that are at most quadratic in the gen-
erators and conserve the total number of quanta

: 1 S —_
Her = (Tf?z -OI:? + I’z T‘E’I) '

J il (8)

Here I' = A,, F> for the stretching vibrations * = s and
I' = E, F, for the bending vibrations x = b. In addition to
Eq. (8), there are two stretching-bending interactions
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The zeroth order vibrational Hamiltonian is now written as
Hy =‘-’-"1‘HS‘A1 +waHs E + WSQS‘Fz + wiHp,F, +wasHsp
+ay Vo p + a3 Vs, g, + aa Vo py + a3g Ve (10)

The interaction terms of Hg can be rewritten in terms of the
Casimir operators of subgroups of Eq. (6) which were used
in [7]. The interaction }A/A“ has not been included since the
combination

4
Y (Far +Vur) =55 S Klfi+2), ()
¥ =1

F'=A,,F

corresponds to a constant N + 2. A similar relation holds for
the bending interactions, but in this case the interaction Vj, 4,

J

. . . i X X g . . N i g .
H=uwHsa,+wiHp g+ wisHs ry+wiHy p + 03V m + X121 (’Hs‘rll) +Xa2 (Hb,E) + X33 (Hs,n) + X4 (Hb.Fz)

has already been excluded in order to remove the spurious A,
bending mode. The subscripts of the parameters correspond
to the (112 vé“ v'4) labeling of a set of basis states for the
vibrational levels of CHy.

In the harmonic limit the interactions of Eqgs. (8) and (9)
attain a particularly simple form, which can be directly re-
lated to configuration space interactions [2, 6]. This limit is
obtained by interpreting Eq. (4) in the opposite sense [13, 14],
and corresponds group theoretically to the contraction of the
SU(2) algebra to the Weyl algebra. In the harmonic limit the
interactions of Egs. (8) and (9) can be expressed in terms of
the symmetrized harmonic operators of Eq. (3)

lim H,r =% Z (l’.*r.r,, ber, + ber, bl,r,) ;

Ny—00
5

lim  V,r =0,
Nz—00

. o 1 T
lim Has =§ X’T: (bs,Fz., bb'pz_, + bs,Fg., bl,Fg,,) 3

Ny Np—o0

lim Vg =0. (12)
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From Eq. (12) we find a direct physical interpretation for
the interaction terms. The ?L,,p terms represent the anhar-
monic counterpart of the harmonic interactions, while the
fir‘p terms are purely anharmonic contributions which van-
ish in the harmonic limit.

The zeroth order Hamiltonian of Eq. (10), however, is
not sufficient to obtain a high-quality fit of the vibrations of
methane (see also [6]). The use of symmetrized operators of
Eq. (7) makes it possible to construct higher order (quartic)
terms in a straightforward and systematic way. For the study
of the vibrational excitations of methane we propose to use
the following 7, invariant quartic Hamiltonian

2

+X12 (7:13,,1,?:&;,3) +X14 (ﬂs,Alﬁb,F;) +Xa3 (')’:fb.s'f;fs.ﬁ) + X4 ('ﬁ'b,E'?:ib.Fz) + X34 (?:{s,Fz?:'{b,Fg)
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i s v

Each one of the interaction terms of the Hamiltonian of
Eq. (13) has a direct physical interpretation and a specific ac-
tion on the various modes. The w; and a3 terms have already
been discussed in Eq. (12). The X;; terms are quadratic in the
operators 'Hmlr' and hence represent anharmonic vibrational
interactions. The g;; terms are related to the vibrational an-
gular momenta associated with the degenerate vibrations [2]
and give rise to a splitting of vibrational levels with the same
values of (v 5 v3 v4) but with different I, I3 and/or l4.
They can be expressed in terms of the symmetrized tensors

fkff; + t3304s + taaOpp + 1340t + 123024 + 12402 (13)

Iof Eq. (7) as

[42

T PP
-3 \/EM[T_E,, X TE,,]A2,

. 1 .= x

P = 44 \/iE[Tf’z* x TP P (14)
The square brackets in Eq. (14) denote the tensor coupling
under the point group 74 [7]. In the harmonic limit, the ex-
pectation value of the w;, az, X;; and g;; terms in Eq. (13)
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leads to the familiar Dunham expansion [17]
d; . d; d;
S (1 4) + £ (1 B+ 4
] ‘l_j

+> il (15)
i<j
where d; is the degeneracy of the vibration. The ¢;; terms are
quartic operators of the type discussed by Hecht [2] and give
rise to further splittings of the vibrational levels (v va1514)
into its possible sublevels. They can be expressed in terms of
the tensor ()perators of Eq. (7) as

Ory = (6 Z[TFZI 0 PP, [T PFLTE

’VN

~ A TR PR ey ]
= 1 F- ~E = 14
(-)'_’:r \Tg .N ( Z[TE T-?a:]Fh [T+.b x T+ir]F

83 [FE, x TR P [T, x T2)P). (16)
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In the harmonic limit the #;; terms have the same interpre-
tation as in [2,6]. The O, @bb. and Oy, terms give rise
to a splitting of the E and F, vibrations belong,ing to the
(mvvivyt) = (00°220°), (00°0°22) and (00°1'1") levels,
respectively. Similarly, the O35 and O, terms split the F,
and F vibrations belonging to the (01'1'0%) and (010°1")
overtones, respectively.

We remark that, whereas the w;, ag and X;; terms can be
rewritten in terms of the Casimir invariants of [7] and prod-
ucts thereof, the g;; and t;; terms cannot be expressed in
this way. These interactions involve intermediate couplings
with I' = 4,, Fy, E, F5 symmetry, that are not symmetric
(I' = A)) as is the case for the invariant operators.

4. Results

The Hamiltonian of Eq. (13) involves 23 interaction strengths
and the two boson numbers, Ny and N,,. The vibron number
associated with the stretching vibrations is determined from
the spectroscopic constants w, and x.w, for the CH molecule
to be N, = 43 [11,7]. The vibron number for the bending
vibrations, which are far more harmonic than the stretching
vibrations, is taken to be N, = 150. We have carried out
a least-square fit to the vibrational spectrum of methane in-
cluding 44 experimental energies from [6, 18-22] with equal
weights.

The values of the fitted parameters are presented in the
second column of Table I (Fit 1). In Table IT we compare the
results of our calculation with the experimentally observed
cnergies. All predicted levelsupto V = vy +va+ws 41y = 3
quanta are included. The quality of the fitis expressed in

TABLE 1. Parameters in cm ™" obtained in the fit to the vibrational
energies of CHy4. The last column shows the results in the harmonic
limit (N; — o0, N — 00).

Parameter Fit | Fit2
N, 43 00
N, 150 o0
Wi 2977.60 2967.40
w2 1554.83 1558.38
w3 3076.45 3081.34
wa 1332.22 1337.51
a3 582.87 -

X 3.69 -21.30
Xoo 1.30 -1.17
Xaa 543 -10.79
Xia -3.47 -6.26
Xi2 -3.60 -3.39
-Y!fi - -
X4 -2.86 =3.10
Xy -11.14 197
Xoy 1.00 -5.37
Xy -5.60 -3.46
g22 —0.46 0.37
933 0.19 —4.35
a4 4.07 498
34 -0.65 -0.74
tas 0.40 -1.25
t44 1.00 0.56
t34 21 0.24
ta3 -0.39 -0.39
taa 0.13 0.91
r.m.s. 1.16 20.42

terms of the r.m.s. deviation

n 1/2

6= Z(E:xp_ cal) /U\’OXD' par) ’ (7

i=l

where Ney, is the total number of experimental energies and
Npar the number of parameters used in the fit. We find a good
overall fit to the observed levels with a r.m.s. deviation of
d = 1.16 cm™! for 44 energies (and a standard deviation of
a = 0.81 cm™'). The deviations with experiment are fairly
constant over the entire energy range up to 9000 cm ™!, the
largest one being AE = —2.22 cm~!. A statistical analysis
of the error in the parameters (i.e. the variation in a given
parameter such that the r.m.s. does not increase more than a
certain fraction) shows that the fitted parameters are well de-
termined. The cross-anharmonicity X;3 was not included in
the fit, due to lack of data for the (1, 0r30) vibrations.
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TABLE 11. Fit to vibrational excitations of CH4. The values of the parameters are given in the second column of Table4. Here AE =

Eca — Eexp. The experimental energies are taken from [6, 18-22]. The levels marked with an asterisk are taken from [23], but were not

included in the fit. The wave numbers are given in cm™!.

I (v1172v314) Eecal Eexp AFE T (r1v2173124) Ecal Eisp AFE
Ay (1000) 2916.32 2916.48 —0.16 (0111) 5844.98
E (0100) 1533.46 1533.33 0.13 (1200) 5974 .81
F; (0001) 1309.86 1310.76 -0.90 x (1011) 7147.49
(0010) 3018.09 3019.49 -1.40 (0021) 7303.38
(2100) 7315.60
Ay (0002) 2587.77 2587.04 0.73 (0120) 7479.48
(0200) 3063.66 3063.65 0.01 (0120) TS )T
(0011) 4323.81 432272 1.09 (1020) 8833.05
(2000) 5790.13 5790 0.13 F (0003) 3920.46 3920.50 -0.04
(0020) 5966.57 5968.1 —1.53 (0102) 4128.38 4128.57 -0.19
E (0002) 2624.14 2624.62 -0.48 (0201) 4364.39 4363.31 1.08
(0200) 3065.22 3065.14 0.08 (0012) 5620.08
(0011) 4323.09 4322.15 0.94 (0012) 5630.76
(1100) 4446.41 4446.41 0.00 (1101) 5755.58
(0020) 6045.03 6043.8 1.23 (0111 5829.79
Fy (0101) 2845.35 2846.08 -0.73 (O111) 5848.94
(0011) 4323.15 4322.58 0.57 (0210) 6061.57
(0110) 4537.57 4537.57 0.00 (1011) 7147.53
F> (0002) 2612.93 2614.26 -1.33 (0021) 7303.29
(0101) 2830.61 2830.32 0.29 (0021) 7343.21
(1001) 4223 .46 4223.46 0.00 RN 7361.79
(0011) 4321.02 4319.21 .81 (0120) 7518.70
(0110) 4543.76 4543.76 0.00 (0030) 8947.65 894795 -0.30
(1010) 5845.53 s (0003) 3871.29 3870.49 0.80
(0020) 6003.65 6004.65 —1.00 (0003) 3931.36 3930.92 0.44
(0102) 4143.09 4142.86 0.23
A (0003) 3909.20 3909.18 0.02 (0201) 4349.01 4348.77 0.24
(0102) 4131.92 4132.99 -1.07 (0201) 4378.38 4379.10 =0.72
(0300) 4595.26 4595.55 -0.29 (1002) 5523.80
(1002) 5498.66 (0012) 5594.92 5597.14 -2.22
(0012) 5617.16 (0012) 5620.68
01y 5836.11 (0012) 5632.36
(1200) 5973.26 (1101) 5740.86
(1ot 7147.56 (0111) 5830.28
(0021) 7300.85 O111) 5848.46
(0120) 7562.91 (0210) 6054.58
(3000) 8583 .81 (0210) 6067.03
(1020) 8727.97 (2001) 7094.16
(0030) 8975.64 8975.34 0.30 (1011) 7145.84
As (0102) 4161.52 4161.87 -0:35 (0021 7266.11
(0300) 4595.28 4595.32 -0.04 (0021 7303.38
(O111) 5844.61 (0021) 7344 87
(0120) 7550:53 [RRREY)] 7365.83
E (0102) 4105.22 410515 0.07 (0120 7514.67 7514*)
(0102) 4152.15 4151.22 0.93 (2010) 8594.90 8604*)
(0300) 4592.13 4592.03 0.10 (1020) 8786.05 8807
(1002) 5535.04 (0030) 8907.91 8906.78 113
(0012) 5620.36 (0030) 9045.36 9045.92 —0.56
(0111) 5836.45
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TABLA I11. Standard and r.m.s. deviations in cm ™" of some recent
calculations of vibrational energies of CHs.

Reference Nesp:  Npax a 4

Lemus and Frank [7] 19 8 9.50 12.16
Ma er al. [24] 19 8 9.08 11.61
Xie et al. [25] 19 7 8.26 10.12
L. Wiesenfeld [28] 35 9 8.80 10.21
Halonen [6] 39 24 0.99 |.58
present 44 23 0.81 1.16

A particularly important role is played by the as term.
Eq. (5) shows that this type of terms can be rewritten as par-
ticular higher order interactions in the operators J4 ;. In or-
der to address the importance of this term, we have carried
out a fit in the harmonic limit (Ngy = oo, N, — oc). In this
limit the a3 term vanishes and the Hamiltonian of Eq. (13)
is equivalent to the vibrational Hamiltonian of [2], the har-
monic frequencies w; and anharmonic constants X;;, gi; and
t;; having the same meaning. A comparison between the pa-
rameter values and the r.m.s. deviations of Fits 1 and 2 in
Table IT shows that the a3 term and the anharmonic effects in
the interaction terms of Eq. (13) can only be compensated for
in part by the anharmonicity constants X;;. The r.m.s. devi-
ation increases from § = 1.16 cm™! for Fit 1 to § = 20.42
cm~! for Fit 2.

For comparison we show in Table IIT the results of some
other recent model calculations.

5. Summary and conclusions

In summary, in this paper we have studied the vibrational

excitations of methane in a model based on the use of

symmetry-adapted internal coordinates, in which anharmonic
effects are introduced in the local modes. We find an over-

all fit to the 44 observed levels with a r.m.s. deviation of
4 = 1.16 cm~* (and a standard deviation of ¢ = 0.81 cm™1),
which can be considered of spectroscopic quality. We pointed
out that the a3 term in combination with the anharmonic ef-
fects in the other interaction terms plays an important role
in obtaining a fit of this quality. Physically, these contribu-
tions arise from the anharmonic character of the local modes.
They play an important role to describe the anharmonicities,
especially for higher number of quanta. This conclusion is
supported by earlier applications of this model to the Bey
cluster [13,26], the H, Be; and Naj molecules [14], and
two isotopes of the ozone molecule [27].

The present calculations only include interaction terms
that are simultaneously diagonal in the total number of quanta
V' = v + vy + w3+ vy, and in the polyad V' = 2(vy +v3) +
vy + 14, but do not contain explicit Fermi interactions be-
tween the stretching and bending vibrations. It is interesting
to note that despite the absence of these interactions which
are generally considered to be necessary for an adequate de-
scription of methane, we do obtain a high quality fit. Fermi
interactions can be included in the present model by con-
structing a Hamiltonian which is still diagonal in the polyad
V' = 2u) + vy + 2v3 + vy but that mixes the stretching and
bending modes [29]. It is well-known that energies only are
not sufficient to distinguish between various model calcula-
tions. Other quantities, such as infrared and Raman transi-
tions or Franck-Condon factors are more sensitive to details
in the wave functions than energies, and provide a better test
of different models of molecular structure. Work along these
directions is in progress [29].
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