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For quantum open systems the semigroup approach in the weak coupling approximation has been revisited. We have proved that tracing-out
the bath variables a generator of the Kossakowski-Lindblad form is always obtained. This fact does not guarantee the completely positivite
condition. Nevertheless, in terms of the interaction Hamiltonian we have stressed the relevance of the invariance under Davies’s average
procedure in order to arrive to a completely positive semigroup. The alternative approach called the Schrodinger-Langevin picture has been
introduced. Then a non-Markovian evolution equation for a stochastic state vector has been presented. In the context of a perturbation theory
in the Kubo number, the average over the noises leads to a dissipative generator which has formally a Kossakowski-Lindblad form. In this
context it is possible to find noise correlation functions to guarantee the completely positive condition. The equivalence of this picture with
the trace-out technique in the weak coupling approximation has been proved. The benefit of the Schrodinger-Langevin picture to work-out
with a stochastic state vector representing a thermal ensemble has been pointed out.

Keywords: Quantum open systems; stochastic Schrodinger equation: non-Markovian

En la aproximacién de acoplamiento débil, el esquema de semigrupo para un sistema cudntico abierto ha sido reanalizado. Nosotros probamos
que eliminando las variables del bafio siempre se obtiene un generador de la forma de Kossakowski-Lindblad. Este hecho no garantiza la
condicion de completamente positivo. Sin embargo, en términos del hamiltoniano de interaccién nosotros hemos enfatizado la relevancia de
la invarianza bajo el procedimiento del promedio de Davies para asi arribar a un semigrupo completamente positivo, El esquema alternativo
llamado representacién de Schrodinger-Langevin ha sido introducido. De esta manera, una ecuacién de evolucién no-markoviana para el
vector de estado estocdstico ha sido presentada. En el contexto de una teoria de perturbacién en el nimero de Kubo, el promedio sobre los
ruidos lleva a un generador de disipacién, el cual tiene formalmente la forma de Kossakowski-Lindblad. En este contexto es posible encontrar
funciones de correlacién del ruido que garanticen la condicion de completamente positivo. La equivalencia de esta representacion con la
(écnica de eliminacion de variable en la aproximacién de acoplamiento débil ha sido probada. El beneficio de trabajar en la representacion
de Schrédinger-Langevin con un vector de estado estocdstico para representar un ensamble térmico ha sido remarcado.

Descriptores: sistemas cudnticos abiertos; equacion estocdstica de Schridinger; no Markoviano

PACS: 03.30.-d; 05.40.4j; 03.65.Bz; 02.50.Ey

1. Introduction ' that guarantees von Neumann’s conditions on p(t), and also
provides a completely positive map on trace class opera-
tors 7. This last condition is much stronger than the usual
positivity®

The Lindblad dissipative generator [3] is frequently writ-
ten on a Banach space in its diagonal standard representation;
the Kossakowski one |2] is more familiar (in physics litera-
ture) because it is written for finite dimensional systems [4].

In an arbitrary finite dimensional Hilbert space Hg
(dimHg = N) the dissipative K-L generator (i.e. subtract-
ing any possible von Neumann term) is

In classical physics it is well accepted, within the Markovian
stochastic description [1], that the master equation is an ex-
cellent approximation to describe fluctuation and dissipation
at the mesoscopic level. In quantum mechanics the most gen-
eral form of a Markovian evolution for the reduced density
matrix p(t), that give rise to irreversibility, is less popular.
Unfortunately sometimes the epithet “Markov” is used with
regrettable looseness. A Markov evolution (i.e., a quantum
semigroup) has to guarantee that p(t) be hermitian positive

definite with unit trace at all time, i.e., von Neumann’s con- 1 N2_1
ditions. Lple] = 3 Z iy ([Vﬂo,Vﬂ + [Vas oV_;f]) ,
o, y=1

The Markovian map has been well established long time
ago [2,3] and its generator is the so called Kossakoswki- (actson T), where Vo, e = 0,1,-- -, N? —1is abasis in the
Lindblad (K-L) one. This generator gives a Markovian map C* algebra of the N x N complex matrix M(N), Vo =1,
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and a,~ is a hermitian positive-definite matrix characterizing
the dissipation and the fluctuations of an open quantum sys-
tem (from now on we will call e, the algebraic structure).
Earlier comments on the positiveness of the solution of the
quantum master equation, in the context of nonequilibrium
spontaneous emission, can be seen in Agarwal’s book and
references therein [5].

How to construct the K-L generator for a given open
quantum system is another task. In principle we wish to find
the K-L generator from the underlying hamiltonian dynam-
ics for the total closed system (our system of interest S plus a
bath ) but sooner or later this is often technically impossible
and therefore one needs to introduce some approximations in
order to arrive to the quantum master equation.

In general, by tracing out the bath variables it does not
lead to a quantum semigroup [6, 7]. It is noticeable to remark
thatil'we deal with this situation it is always possible to intro-
duce a mathematical device—due to Davis [6]—which leads
to a K-L. generator. From Davies’s averaging procedure, in
the weak coupling approximation (applied to the differential
equations of motion), and when the hamiltonian of the re-
duced system is nondegenerate, the evolution of the diagonal
elements of the reduced density matrix p are uncoupled from
off-diagonal ones, so the dynamics of the evolution is reduced
lo a classical Pauli master equation for p;; = < j | p |.i=:

The purpose of the present work is twofold. In the first
part of the paper we are concerned with the characterization
of the K-L generator (its effective hamiltonian He.g and dissi-
pative part Ly, [e] ). Foremost, we will show that tracing out
the bath variables—in the weak coupling approximation—
always leads to a K-L form. Nevertheless we will remark that
a K-L form does not mean that the algebraic structure ey
will be positive-definite. To assure this fact there will be a
second step in the procedure, which strongly depends on the
interaction hamiltonian H; between S and B. With this pur-
pose we will explore the invariance under Davies’s averaging
procedure. In this form we will be able to give, in the weak
coupling approximation, a sufficient condition—in the inter-
action hamiltonian—in such a way to produce a bonafidé K-L
form from the underlying dynamics of the total closed sys-
fem. Some examples are given in the context of spin-boson
systems.

Different ways of writing the K-L generator are shown in
appendix A. This fact also enlightens some difficulties posed
by van Kampen and Oppenheim [8] in arriving to a K-L form
from tracing-out the bath variables.

The second part of our paper is about the Schrodinger-
Langevin picture and its connection with K-L generators. In
Sect. 5 we will present an analysis concerning their similar-
ities and differences with others alternative stochastic for-
mulations for quantum dissipative theories [1,9-15]. The
present picture gives the evolution equation for a stochastic
state vector, which represents a quantum open system. Then
any statistical average obtained from p(t) can alternatively be
taken by introgucing an average over the thermal ensemble of
wave lunctions. A clear interpretation of the non-Markovian

evolution equation for the stochastic state vector, in terms of
random operators, will also be given.

From this stochastic state vector we obtain the evolution
equation for the stochastic matrix py(¢), from which its mean
value corresponds to the reduced density matrix of S. Taking
this average—over the noises—in the context of a perturba-
tion theory in the Kubo number, a dissipative generator of
the K-L form appears. Then we will be able to interpret, in
the weak coupling approximation, the responsible of the dis-
sipation and the fluctuating terms appearing in a K-L form.
Therefore from the Schrodinger-Langevin picture it will be
possible to build up several K-L generators from a family of
correlation functions. In this way (as soon as the basis on the
Hilbert space Hg is chosen) the correlations of the noises
can be selected, in an empirical way, to represent different
physical situations and at the same time to assure a positive
structure a.-. A simple example is when the noises are white,
then it is easy to see that the hamiltonian shift cancels out and
the dissipative generator will be the corresponding standard
K-L semigroup [1,9, 10, 12].

Also the rigorous equivalence of our stochastic picture
with the trace-out techniques will be proved [17]. We em-
phasize that, in this case, the positivity or not of the alge-
braic structure of the K-L form is something that depends
on the type of interaction with the bath, so its analysis be-
longs to the section concerning the invariance under Davies’s
device (Sect. 4). In terms of the Schrodinger-Langevin pic-
ture this means that if we want to match with the trace-out
technique, the positivity of a,. depends on the class of in-
teraction hamiltonian H; from which the noise correlation
function can be read off.

Another advantage from the Schridinger-Langevin pic-
ture comes from a reverse point of view. Assume that we
know a given algebraic structure a,., to be positive, then we
can wonder which could be the set of noises in such a way
to produce the same dynamics. This task can be solve in the
present formalism, see Sect. 5.5.

In the same spirit as with the non-linear stochastic equa-
tion for the state vector [12], and in the quantum-jump
model [18], our wave-function thermal approach to dissipa-
tive processes gives a suitable tool to tackle numerically com-
plex systems.

2. The quantum dissipative semigroup

The quantum dynamical semigroup in the Schrodinger pic-
ture reads from (5 = 1)

dp(t) _ .
o = Klp()]
1 NE—1
= —i[Hemr, p(t)] + 5 D @ar([Vie, p(t) V]
= o y=1
+ [Vap (2), VI]), (1

while for the Heisenberg dynamics the dual generator® K* [o]
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is given from

dA(t) ..
g K*[A(t)]
1 N2-1
= i[How, A(1)] + 3 > aay(VIA(), Va)
o =1
+ [V, A()]Va), )

where H.g is some effective hamiltonian acting on the re-
duced system S. As we mentioned before a necessary and
sufficient condition to guarantee the completely positive con-
dition is a4~ > 0. Summarizing, the semigroup (1) [or (2)] is
the only candidate for a dynamical map describing a Marko-
vian irreversible evolution of open quantum systems in the
Schrodinger [or Heisenberg] picture [4].

Remark 1. These generators can trivially be written in the
form

dp(t)
dt

= —i[Hem,p ()] = {D,p ()}, + Flp(1)], (3

where {-, -}, denotes the anticommutator. The dual dynam-
ics would be

dA(t) . . .
df ) i{Har, A(0)] - (D" AW}, + FAQ)L @
where
1 N*4-1
_ riv * _

will be called the dissipative operator and

NZ-1
Fle] = Z oy Va @ VI,
a,y=1
A
Ft['] = Z Ao~y V-}.T oV, (6)
ai=1
the fluctuating superoperators. Here, as before, F'*[e] repre-
sents the dual. An interpretation of D and the fluctuating su-
peroperator F'[e] will be shown in Sects. 4 and 5. This split-
ing is frequently used in the context of the Quantum Jump
approach [15].
Let us now see (3) from a formal point of view. Its solu-
tion could be written in the form

p(t) = exp (~t{D, e}, )p(to)
+/0-— oe:n(p(—T{D,o}Jr)

X (—i[Hefr, o] + Fo]) p(t — 7)dr (7)

Then the dynamics will erase the initial condition p (t,) only
if D is a positive operator; this of course is guarantee by (35).

3. Tracing over the bath (weak coupling revis-
ited)

Consider the general case of a system & interacting with a
bath B, described by the total hamiltonian

Hr = Hs+ Hp + AH;. (8)

The factor A is a constant that serves to monitor the
strength of the interaction between S and B. The density ma-
trix of the total system p(t) obeys the exact unitary evolu-
tion:

d
EPT(” = —i[[{'[‘,[JT(t)] 9)

Therefore we search some approximation to the dynam-
ics of the reduced density matrix p(f) of system S

flt) = Teg [e‘””"';)((}) @ P(;af'“HT] (10)

Here p%, = pg(0) is the density matrix that describes the
equilibrium state of the bath 13, and we have supposed that S
and B were uncoupled before ¢ = 0, so that p,(0) = p(0) ®
pu(0). The trace is taken over the bath variables, thereby re-
ducing the evolution in the Hilbert space Hy = Hg @ Hp
to an evolution in Hg. Note that equation (10) defines a map-
ping of p(0) onto p(t), however this map is not a semigroup.

The Markov approximation can easily be introduced, in
the interaction representation, by assuming: (z) that for all
time the total density matrix factorize into a direct product;
(i) a perturbation theory to the differential equation of mo-
tion (9) up to order A7, (1. is characterized by the high-
est correlation time of the operators of B, which strongly
depends on the nature of the bath); and (éi7) that 7. is suf-
ficiently small such that 7. < {. Therefore the “quantum
master equation” is obtained, i.e., the semigroup approxima-
tion [1,4, 8, 19-21].

a2 /x dTTrB[[Hf,[H;(ﬁT),p(t)!Sp;]]] (1)

where H;(—7) = e"ir(HatHs} [ eir(Ha+Hs)

Remark 2. Equation (11) can be written in a K-L form.
We emphasize that with the word form we are not saying that
the algebraic structure is going to be positive, i.e., only the
hermitian condition on a,-, is assured.

This fact follows by introducing the Jacobi identity

(4,[B,C)) + [B,[C, A)] + [C,[A, B]] = 0
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into the integrand of formula (11), then we get

d

Ep(f,) = —i[Hg, p(t)]

=5 [ arten (1 Hi(=r)) o) © pi) + 1, U (=7), 00 © 240) + (Hi(=), (He o) 0 51 ) (12)
0

Now, using that
(4,(B,C]] +[B,[A,C]] =
{{A,B}+ ,C}+ - 2(ACB + BCA),
Equation (12) reduces to

dp (1)
dt
with

A2 [
= Hy — @?[ dr Trg [ (Hy, Hi(~7)] p;;] (14
0

= _i[Heffap(t)] == {Dvp(t)}+ o+ F[p (t)} g A13)

D:Ag—"/ drI&'B[{Hr,H:{—T)}ME]a (15)
0

Fip0] =2 [ " ar Tea (1) © 5y Hy ()

+ Hy(=7) plt) ® g5, H;] L (16)

Therefore (13) has the K-L form, to see this compare with
Eq. (3).

Now to obtain the algebraic structure a,-, we assume that
the interaction hamiltonian H has the general expression

H =) V3®Bs, n<N*-1, (17)
f=1

where the V3 belong to the Hilbert space of the finite dimen-
sional system & and By are bath operators.

Using explicitly the fact that H; is hermitian, (14) to (16)
can be rewritten in a slightly different manner, this fact will
be of utility for our future algebra. Introducing the notation

xap(-7) =5 (05 BLBs(-1))  (18)
in those equations, the effective Hamiltonian H.g, the dis-

sipative operator D) and the fluctuating superoperator F'[e]
read

A2 .
Her = Hs ~i%- Zﬁj/ dr ((Xea(=T)V4Va(-1)

—Xas(-TVH(=)Va ), (19)
p=5 Y viv,
=52 (veat-nvivin

+xaa(-TVj(=)Va ), 0)

Fleo] =X Z/ dr [,\’mg(ff)Vg(AT) o V!
af 0
+xas(-DVa s Vi(-7)] . @D

Finally, defining the matrix Cg,(—7) from

NZ.-1
Va(=7) = e s Vpet s = 37 O (-)V,  (22)

v=1

and using the fact that the indices in (19) to (21) are dumb,
Eq. (13) can be put as in the previous form (1)

Ip(t
B . o8]
dt
{ N?-1
it g f
+ Emz:lﬂm ([Vasr Vi) + [Var 0,71,
(23)
where
A2 00
Hep = Hs =i Z/ ar (xva(~7)Ca(~7)
0
afdy
~ Xag(=7)Chy (1) ) ViV, (24)
and

Aoy = A2 Z/ﬂ dr [XTB(fT)Cﬁa(_T)
8
+X3s(-1)Ch,(-7)) . 29)

Armed with these definitions we can now analyze the al-
gebraic structure a,~. From Eq. (25) it is simple to see that
matrix a,- is hermitian. Nevertheless in order to arrive to a
positive algebraic structure some restrictions on the interac-
tion hamiltonian H; must be introduced (see Sect. 4.1).

Remark 3. A necesary condition to assure that the alge-
braic structure will be positive can be seen in the follow-
ing way. Let the half-Fourier transform of the correlations
of the bath not to be cero; and let us assume that the inter-
action hamiltonian is written in a particular basis as H; =
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n
> Vs ® Bg withn < N* — 1. Then the set {V3}};_, ought
=1 -
to be closed under the Heisenberg representation, i.e.,
1;3{__}_) = e—t'rHs ]’/ﬁ(‘-i-i'r}{s

m

Zcm(—ﬂv?, with m<n (26)
¥=1

Il

otherwise the matrix a,~ will not be positive.

When m > n Sylvester’s criterium shows that this affir-
mation can easily be proved by writing the elements of ma-
trix (25). Note that if (26) is not fulfilled there will be (non-
null) off-diagonal elements a,-, and because the correspond-
ing diagonal element is null this fact inevitably leads to the
algebraic structure to be non-positive. A simple example is
the Spin-Boson system with an interaction hamiltonian pro-
portional to Pauli matrix 0. In this case condition (26) is not
fulfilled, thus giving for this model a non-positive matrix dq- .

Remark 4. Introducing the definition
Pap(-7) = Trg (04 BaBa(-7)) @D

in (14), the effective hamiltonian can also be written in the
following way:

A2 =
Heg = Hs — 17 OZH/O dr [Foﬁ(_f)VaI’Iﬁ(_T)

~Top(-nVi(=nVE)  @8)

using in this expression the matrix Cg,(—7) [see defini-
tion (22)] it results

e L
Hur = Hs =i 3 [ dr (Tap(=n)Can (=Vas

afy
- r:,ﬁ(p«r)cgq(—ﬂvm] . (29)

Note that it was possible to write expression (28) because
the interaction hamiltonian is hermitian. Then the use of the
pseudo-correlation T'o3(—7) is only a change of notation!
These formulas will be seen of utility in order to compare
with the Schrodinger-Langevin picture (see Sect. 5).

4. The Davies device

In the context of the trace-out technique it is well known
that using Davies’s averaging procedure the reduced dynam-
ics turns to be a K-L semigroup [4, 6,19], i.e., the algebraic
structure results always positive. In this section we want to
explore the definitions of the dissipative operator D and the
fluctuating superoperator F [e] from the point of view of the
application of Davies’s device. In general this mathematical
device is defined by

—+00

LT
K# = lim o . /4 exp (it [Hs, o))

x I{ exp (—it [Hg,e]) dt. (30)

Here we have used the short notation exp (it [Hg,o]) K =
eitHs [(o—itHs

Let us rewrite D and F [e] in terms of the operators Q,,
defined by

Va(—71) = e i Hs zetiTHs = ZQﬂe(‘i”")
w
w
QL= Y (mlValn) In) (n'], 31)
En—E =W
Note thathere . __  _  meansasum over all n, n’ under

the constraint w = £,, — £,,. Using the short notation (18),
and (31) we can rewrite 1D, from (20), as

A2 00 e
p=% Y /U (lr[xag(—r)e i)

o, 3w, w’

+ Xant(_T)e(iTW)] QLaQﬁ,J- (32)

In the same manner F [o], from (21), adopts the form:

o0

dr (Xap(=r)el =)

Flo] = X Z

a,3,w,w' 0

+ Xha(-7)e™ ) @5, 0 QL. 33)

From these equations it is easy to see that after the ap-
plication of Davies’s device (30) all terms with different fre-
quencies cancel out. Thus using the stationary property of the
bath: Xxag(—7) = X};,(7), it is possible to obtain

Bty X / dr Xap(-7)eTTIQIQL, (34)
J —o00
o3, w
F# [o] =X* Z / dr \‘m;(—r)e{”””}QﬁOQL‘l. (35)

a,Bw”

From these expressions we immediately recognize the al-
gebraic structure (compare with (5), (6)). The positivity of
the algebraic structure follows from Bochner’s theorem, be-
cause the matrix Za3(w) = [7_ drxap(—7)e! """} can be
shown to be positive definite it xo3(—7) represent the cor-
relation functions of a thermal bath. Also note that x3(—7)
fulfills KMS condition and this guarantees Detailed Balance
for the generator (see appendix A.3, pag. 90, of Ref. 4).

If the spectrum of Hg is nondegenerate, it is straightfor-
ward to see that after Davies’s device the diagonal elements
of the density matrix evolve obeying a Pauli master equation,
and the non-diagonal elements decay oscillating. The term
giving rise to the gain in the Pauli master equation is F# o).
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To see this note that any diagonal element of (35) can be writ-
ten in the form

{n| F# [p] | n) =A% Z Eap(w)

o, 3w

X3 | Va | DIV In) Il bepmcrw
I

which gives the well known Golden rule if we interchange the
order of the sum Y, with 3 [19]. In addition, the lost term
in the Pauli master equation comes from — {D#,p(f)}+
in(13).

4.1. Invariance under Davies’s device

Now the following question is in progress: Which are the
types of interaction hamiltonians H that leave the superop-
erator \'[e] invariant under Davies’s device? Using (13) and
due to the fact that it must be true for any density matrix
it follows that Heg, D and F[e] ought to be invariant sepa-

rately. It is possible to see that the invariance of F[e] implies
the invariance of its dual F*[e], thus using that F*[1] = D
the invariance of D is proved if F'[e] is invariant. From this
fact it is enough to demand the invariance of F[e] and Heg.
Applying Davies’s device to (16) we get

T oo .
Pl = %P Jim %[ dt e“[HSv'lf drTrp [H:p@ pS Hi(—7) + Hi(-=7)p @ p5, H;] o= Ha]

= A? lim —f dtf drTrg [H,( ) p®p% Hi(t —7)+ Hi(t —7) p® pf, Hy(t )] (36)

T—oo 2T

where we have used that correlations Trpg(p¢, Bl Bs(—

7)) are stationary. Invariance of F'[e] and H.g under Davies’s device

means Flo] = F#[e] and Heg = Hffi.. Thus it is possible to see that both equalities are fulfilled if the following sufficient

condition is held

J0

Note that the hermitian conjugate of (37) is also fulfilled, so
the invariance of H.g is guaranteed.

Equation (37) is the starting point to classify hamiltonians
H which leave the generator K [e] invariant under Davies’s
average procedure.

The next step is to characterize condition (37) in a given
particular basis using an interaction Hamiltonian of the form:
H = Z Vii © Bg. In order to carry on this analysis, in this

paper we will only be concerned with a spin-like Hmiltonian
He = o g B\, where S is a vector operator (angular mo-
mentum of the system &) and B‘u is an external magnetic
vector field. Therefore it is possible to interpret Davies’s de-
vice as producing an average of the rotated operators in the
Hilbert space H s, where the direction of this rotation is char-
acterized by the external magnetic field B; and the “angle”
is the time. In this particular case it is always possible to find
a basis in such a way that Hg = aS. B); so the rotation is
along the z-axes. Taking advantage of this geometrical inter-
pretation we choose to write the interaction Hamiltonian H;
in the basis of the irreducible spherical tensor operators of
rank & [20]
N-1

H; = Z Z T & 8] (38)

k=1 q=—k
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T—oo 2

[ dr Trg [H;(—T) p@p‘ngl] = / dr Trp (rlim 5T ]r.f.fH;(i —T)p®@ pRHp(t) ] (37)
" I e

I

Here B are operators of the thermal bath B and T acts on
Hs. These operators fulfill the conditions (i) that they are
traceless and orthogonal [basis in the C* algebra of the N x N
complex matrix M(N)]; (ii) that they satisfy T, 7 = TI”,
and (i77) that if Uy is an um[ary operator representing a ro-
; __Z_.r. Tq D}, where DY, are
the elements of the irreducible representation of the rotation
group.

tation R then, U T} DR —

As we have remarked before we are interested in a rota-
tion in the z-axes, thus

k _*iqﬂ 3
Dq q Oqq' -

So the irreducible spherical tensor operators, under a rotation

along z- axes are only affected by a phase-shift that depends
on ¢ in the form
Ha TR =T ~¥) =& %0, (39)

Introducing (38) in the rhs of (37), and using (39) we arrive
(6]
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/o dr lHnm 2T/ dtTrg

qkfl

_ZZ/ dTTlB pBBq

k.q k'.q'

—ZZ/ a‘T'FrB

Under these conditions [i.e., Hg = as - EM, Hj given
by (38), and the thermal bath fulfilling KMS condition] equa-
tion (37) means that if we want to have a superoperator K [e]
which is invariant under Davies’s device, a sufficient condi-
tion will be

o0 F i
/ dTT‘I‘B [peBBz . B:' (—T) ] e"WT=
0

for ¢ # —q. (41)

In this way the application of Davies’s average will not pro-
duce any change in the dynamics of the reduced system,
ie. K[o] = K7 [o]. A simple example where this condi-
uon is fulfilled is the Spin-Boson system with Hg x T9,
= Y. T! ® an + Ty ® al. Where B} = 3 an,

n

n
~! =3 al, and a,, are boson operators of B.

Fromncondition (41) we note that the effect of Davies’s
average is to eliminate the terms in F [e] which do not have
the symmetry under a rotation in the z direction, i.e. the
same symmetry as Hs. Only in this form the invariance of the
corresponding semigroup generator K [e] will be guaranteed.
Condition (41) might be seen restrictive to a few interaction
hamiltonians H;, but we have found that this condition is a
clear and plausible physical interpretation of what Davies’s
device produces.

5. The stochastic state vector approach

In this section we present an analysis concerning the so called
Schriodinger-Langevin picture, their similarities and differ-
ences between other alternative stochastic formulations for
quantum dissipative theories [1,9-13, 15, 16]. In van Kam-
pen’s presentation [1], he was only concerned in getting
the standard K-L generator, without looking at the effective
hamiltonian (the shift) neither to the temperature-dependence
on the algebraic structure. Latter on, in order to get the
temperature-dependence in the algebraic structure aq+, non-
white noises were introduced in the approach [9].

We will show that from this formalism it is possible
to obtain a quantum dissipative generator of the K-L form
and we will show that in order to get a one-to-one corre-
spondence with the frace-out technique, a light difference
in the approach ought to be introduced. Also the numerical
benefit—of the present approach—to get a stochastic state

S ST (t-7)@BL (t-7) (p©p5)TE (1) ® Bt )]

' i L % o e
Bz,(—-r)]ew-w -thj' pT h_moi"f dte1(q+q )t

£ Byt (~) ) T p T (40)

vector which corresponds to a thermal ensemble represent-
ing system S in contact with its environment, will be pointed
out.

The starting point of the formalism, is to postulate a
stochastic multiplicative equation for the state vector of the
system § in contact with a thermal bath B. This equation is
written in terms of an unknown hermitian linear operator U,
which is determined in a consistent way. The conservation in
mean value of the norm of the wave function of the system S,
at any time, will be guarantee. The occurrence of a random
operator F (t) in the Schrodinger-Langevin equation repre-
sents the effect of the interaction with the thermal bath B.
The Schrodinger-Langevin equation reads

%m: (-iHs-Aw+iF@) ) W) @2)
and its adjoint

4 @) = (¥ [iHS—,\[U—«;ff (a)]) 43)

dt '

where ) is a coupling parameter, U is the hermitian linear
operator to be determined later on, F (t) is an arbitrary sta-
tionary stochastic operator with (F (t)) = 0, and F7 (t) rep-
resents its adjoint. In the present approach the dissipation and
the fluctuations are both assumed to be of the same order in A.

Introducing the stochastic matrix ps:(t) = |¥) (¥| the
connection between the reduced density matrix p(t) and the
wave function, in the Schrodinger-Langevin picture, is given
by the assumption that in mean-value over the realizations of

F (t) and F* (t)
p(t) = {pse(t)) - (44)

The probabilistic weight of each realization p () is char-
acterized by the probability of the corresponding realization
of the matrix-noises. From (42) and (43) the stochastic matrix
pst(t) evolves with the following non-Markovian equation

d

E‘t‘pst(t) = — i[Hs, pst(t)] = AU, pst(t) } &

—ix (F @ pul®) - puOF (1) ) . 45)

A clear interpretation of this evolution equation can be
seen immediately as follows. Due to the fact that in general
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the stochastic operator F (t) is non-hermitian, it is possible
to separate it in the form

F@)=H(t)-iU(@), (46)

where H (t) and U (t) are stationary stochastic hermitian op-
erators with cero mean value. Their expressions in terms of
the operator F (t) are trivially given by

B=s(Fo+7 ),

1
2
s(Fo-Fo). (@7)
Introducing this notation in Eq. (42) the evolution of the
stochastic state vector can be rewritten as

d

=)= [Hs A (1)) [0 = A (U+T (1)) 19). @8)

Therefore each realization of the stochastic matrix ps;(t)
satisfies the non-Markovian evolution equation

d

aﬂsr(f) i 1[HS & o /\ﬁ (t) .ﬂst(t)]

~5 {U + U (t) ,Pst(t)}_l_ 49

which is nothing more than (45) rewritten in terms of hermi-
tian operators. Now its physical interpretation is more clear,
from (49) note that: (z) in von Neumann’s term the total
hamiltonian has a random fluctuating contribution AH ().
(71) In the purely irreversible term (anti-commutator) there
are two contributions: the first from the sure operator U and
the second from the random operator U/ (¢) representing its
fluctuations.

A remarkable point is that both random operators H (t)
and U (t) are correlated, and this correlation will depend on
the chosen interaction model between our system of interest
and the bath. In general it can be temperature dependent.

In what follows, from (45) we will introduce a second-
order perturbation theory in the coupling parameter A, see

Subsect. 5.1. In order to get a closed equation for the reduced
]

d

Then we can identify
(u(t)) = {pae(t)) = p(t), Ao, = —i[H,, 0],

The second cumulant appearing in (51) is given by

density matrix (ps(t)) of S, the unknown operator U will be
found in a consistent way demanding Tr (ps(f)) = 1, then
the linear (sure) operator U/ will result characterized by the
correlations of the stochastic operators F (¢) and F7 (t).

In the next subsections we will analyze several possibil-
ities that come from the ditferent elections for the random
operator F (t). In Subsect. 5.2 we will present the hermitian
case, i.e., when F (t) = F' (t). In this situation a stochas-
tic hamiltonian evolution, for the stochastic state vector, will
result. As we are going to show, in this case, the dissipation
into the reduced density matrix comes from the second cu-
mulant of H (¢). In this particular case each realization of
the stochastic state vector is normalized, and the correspon-
dence with the infinite temperature approximation will be
pointed out [22]. In Subsect. 5.3 we will present the anti-
hermitian case, i.e., F (t) = —F' (t). In this situation only
the average of the stochastic state vector is normalized. In
Subsect. 5.4 we will present the full non-hermitian case, i.e.,
F(t) # F(t). As we will show, for this particular case,
the evolution equation of the reduced density matrix can be
mapped with the (dissipative) dynamics that comes from the
tracing-out techniques. Thus we will prove the equivalence
of its corresponding K-L form with the one obtained in our
previous sections [17]. In Subsect. 5.5 some advantages on
the present stochastic picture are pointed out.

5.1. The second-order cumulant approximation

The Eq. (45) is a stochastic multiplicative operational equa-
tion (in general with non-white noise). The most general
stochastic Eq. (45), with an arbitrary multiplicative noise, can
be written in the compact form

Luw =t ra@uw, 60
where A, is a deterministic superoperator and A4, (¢) is a
stochastic one characterized by its statistical properties. Us-
ing Stratonovich’s calculus in a second-order cumulant ex-
pansion [1] (in the small Kubo number A7.) and assuming
that the correlation time 7, of the stochastic operator A; (t)
is smaller than any deterministic evolution time of u (t), the
average (u (t)) satisfies the closed Markovian equation

oo

= ()= [A,,+A (A1 (1)) +A2/d (Ay (t) ™4 Ay (t—r)»e*”‘o] (u(t)) (51

0

dylths —fmal. —i(}'(f) o —ort(t) ] . (5

(Ay (t) €7 Ay (¢ = m)he ™ = (F (1) o FM(t = 7)) + (F (£ — 1) 0« FT (1))

—(FOF@E-n))e—e(F(t—1)FI (1)) (53)
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All time-dependent operators are given in the Heisenberg representation, i.e., F(7) = e'"Hs Fe~"Hs Thus (51) can be

rewritten in the form
d

200 = ~ilHs,p (0] - AU O}, + 2 [ ((FOROF! (=) + (F (=) s ()

— (FWOF =) p(t) = p(t) (FT (¢ = 7) F (t)))] dr. (54)

Demanding the condition Trp(t) = 1, the linear operator U/ must fulfill

v=2 /0 dr ((FHOF -+ (F t-nFO) - (FOFE-) - (F e-DF @), 65

In this manner the conservation in mean value of the
stochatic wave function norm is guaranteed too®. Introducing
the expression of U back in (54) and after a little of algebra
the evolution of p(t) can be written in the form

dp (t) :
“dt = —i[Heg, p(t)]—{D,p (t)}+ + Flp(t)],
where the hamiltonian shift is characterized by the effective

Hamiltonian

(56)

2 oo
Ha=Hs—i [ dr ((FOF =)

—(F -1 F ()] 6D
The operator D and the superoperator F [e] are given by

2 oo
D= %/0 ar ((F () F (- 7)
+HF - F®)) 6B
Flo) = A2 /:Q dr [((}‘(t) o Fl(t-1))

H(FE-eF )] 69

These equations show that the Schrodinger-Langevin pic-
ture leads to an evolution equation for p (t) that has the form
of a K-L generator (see Sect. 1). Thus we can get profit from
the Schrédinger-Langevin picture by modeling different ob-
jects ((F (t) F (t — 7))). The positivity or not of its corre-
sponding algebraic structure is something that strongly de-
pends on the correlations (F' (t) F (t — 7))-

We point out that it is always possible to rewrite the last
expressions for Heg, D and F [#] in terms of the hermitian
stochastic operators H (t) and U (t), see appendix B. The
extension of this formalism to a higher order cumulant ex-
pansion is also shown in Appendix C.

5.2. Case when F (t) is a hermitian random operator

In this section we will assume that the random operator F (t),
appearing in the Schrodinger-Langevin picture (42), is hermi-
tian and we will search for its consequences. Using (46) it is
trivial to see that if F (t) = F'(t) it will be equivalent to

F(t) = H (t) and U (t) = 0. On the other hand, from (55) it
is simple to see that I/ = 0. Therefore from (48) and (49) the
dynamics result

d . "
S0 =i (Hs+2E@) 1),  ©0)
and for the stochastic matrix pg (1)
d ) 3
—pst(t) = —i[Hs + AH (t),, pse (2)]. (61)

dt

We see that each realization of the stochastic matrix
pst(t) is normalized as is, of course, the stochastic state
vector. The remarkable point is that this type of evolution,
stochastic Hamiltonian, give rise to a K-L form. Before go-
ing into any detail let us write Heg, D, and F [e] in terms
of the stochastic hamiltonian H (t). Then Egs. (57), (58) and
(59) will read

i) the effective Hamiltonian

2 o0

Hor = Hs —i- [ dr (8 (&), 5 (¢ - D));

62
2 0 ( )
ii) the operator D
/\2 es] _ _
D=5 [ @O A=) @
JO

i11) the superoperator ' [e]
Flo] = \? /:odf [((FI(t) o H(t—1))

F(HE-T) e HB)). (64

Note that in this case the Schrodinger-Langevin picture is
formally equivalent to trace-out technique just by replacing
Hy = H(t) = H(t)', see (14), (15), (16) and changing
Tr[e] by a second cumulant object.

What we will do now is to study which are the conse-
quences if we assume that the stochastic hermitian opera-
tor F (t) were written as a linear combinations of complex-
random numbers times operators in the Hilbert space of &.
This model is rather simpler than the one introduced by
Fox [10] because in the present case only a cumulant theory
of stochastic process is required. In that mentioned reference
a highly complex matrix-cumulant theory had to be used to
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go ahead with a second-order perturbation; and in particular
a boson bath was used to obtain the temperature dependence
in the generator.

Therefore let us analyze the case when F (t) is hermitian,
then it is characterized by

- St

The complex numbers [, (#) are in general stationary
complex stochastic processes with mean value cero and non-
white correlations. Owing to the hermiticity of H (t) it fol-
lows that if [, (t) were complex-numbers there will be an
index a’ such that [,/ (#) must be the complex-conjugated
of!()(Vaﬁ_V")zel:() I (t) otherwise H (t)
would not be hermitian. Note that in the particular case when
the operators V,, are hermitian the noises [, () ought to be
real.

Introducing this H (t) in (62), (63) and (64) it is possible
to see that the expressions for Heg, D, and F [e] are formally
the same as the one obtained from tracing-out in quantum
mechanics, see (19), (20) and (21). In order to realize this
fact the quantum correlations [see (18)] ought to be replaced
by stationary noise correlations

Xep(=7) = (la (t) La (¢ — 7). (66)

At this stage the correlations of the noises can be se-
lected, in an empirical way, to represent different physical
situations. For example, if the correlations of the noises were
white [from (19) or (57)] it is simple to see that the shift
cancel-out and the dissipative generator gives the standard
K-L semigroup. Therefore a shift can only be obtained if the
underlying dynamics is non-markovian,

Now we wonder if it is possible to find a complex stochas-
tic process in such a way to match with the corresponding
correlation functions that come from the operators of the bath
B,, see (18). Then these noises should satisfy

F(t)=H(t n<N2-1. (65)

Tro (05 BLBs(-7)) £ (la () g (t = 7). (67)
If this is the case we would have found an algebraic structure,
from the Schrédinger-Langevin picture, which will be numer-
ically equal to that a,,~, obtained from the trace-out technique.
In what follows we will show that this is not possible to do.
This is the main point why we will go, in the next sections,
to the case when JF (t) is non-hermitian.

Because H (t) is hermitian we could make the correspon-
dence H; — H (t), then from (65) and (17) it is possible to
assign to each operator of the bath a classical noise in the
form

B, = Iy, Bl -1 (68)
But this correspondence shows that it is not possible to rec-
oncile both algebraic structures, as will be show by the fol-
lowing steps. In order to show this fact we use rule (68) in the

following cases:
Xas(~7) = Trg (g, BL Ba(-1))
— (ia @)
Xarp (=7) = Trp P Ba(-7)B} )
— (120 la (=), (69)

where we have used that B, = B}, , By = B}, From the
rhs of (69) this mapping would be consistent, from the quan-
tum point of view, if and only if

) g (t=7)),

Xan(=7) = Xavg (=7) (70)
this means that
Trn (5 BL Bs(-)) = Trs (5 Ba(-7)BL). (1)

But in general this condition is not true because the bath
operators do not commute. Therefore due to the non-
commutativity of the bath operators an inconsistency to cal-
culate the correlation functions (% (¢) 5 (t — 7))} results
from assignation (68).

In short, in the weak coupling approximation the random
hamiltonian approach [complex-random numbers times op-
erators in Hs, whose generator is characterized by (62) to
(64)], cannot provide a one-to-one mapping with the method
of tracing-out the quantum bath variables. Only at infinite
temperature [where p¢, = e #H# /Tr[e~#H5] is the identity
operator in the Hilbert space of the bath] condition (71) could
be satisfied. Then, only at infinite temperature the random
hamiltonian approach, with f () = E la(t) Va, would give
exactly the same result as Lhe one obtamed from tracing-out
techniques (with Hr= > Va® Ba). We emphasize that

=1
the same conclusion wasaalready found by Abragam in the
context of nuclear magnetism [22].

5.3. Case when F () is a anti-hermitian random opera-
tor

In this section we will assume that the random operator
JF (t) is anti-hermitian. Using (46) it is trivial to see that if
F(t) = —F1(t) it will be equivalent to F (t) = —il (t)
and H (t) = 0. Therefore the evolution is given by

{ -
é |¥) = —iHs |0) - A(U + T (£)) ).  (72)

Each realization of the stochastic matrix pg(t) satisfies

d
E'O”(t) = —i[Hg, pst(t)]

-Mu+0 pa®)} . (3)
.+.

Is simple to see that the generator obtained (see ap-
pendix B) is the same that in the hermitian case making the
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following changes: H (t) — U (t) and changing the sign of
the contribution to Heg. If we asume that

iIF@)=0@) =) la{t)Vay n<N -1, (74)
a=1

and again we try to match with the trace-out technique, the
same problems that in the hermitian case are found. That is, a
correlation map cannot be established consistently owing to
the asignation (68). This one-to-one correspondence is now
result of being U (t) hermitian. As in the hermitian case, if
the correlations of the noises were white, the shift cancel-out
and the dissipative generator gives the standard K-L semi-
group

In the next section we are going to analyze the most gen-
eral case of the Schrodinger-Langevin evolution.

5.4. Case when F (t) is a non-hermitian random opera-
tor

Let us now analyze the case when JF (t) is non-hermitian (nor
anti-hermitian). This corresponds to the most general situa-
tion in the context of the Schrodinger-Langevin picture. As
before let us assume that F () is a linear combination of sta-
tionary complex stochastic processes times operator in the
Hilbert space of &, then

Fti=Y LtV nEN*=1 (75)
a=1

In this case we do not impose any restriction on [, (¢) as in
previous sections due to the hermiticity (or anti-hermiticity)
of F (t). Introducing (75) into the formulas (57), (58) and
(59) we can see that the resulting expressions for Heg, D, and
F [o] are formally the same as the one obtained from tracing-
out the bath variables, see (28), (20) and (21). From these re-
sults we emphasize that the same expression (as from quan-
tum mechanics) for the algebraic structure a,~ is obtained.
In order to realize this fact the quantum correlations [see (18)
and (27)] ought to be replaced by the stationary classical cor-
relations of the noises:

Xap(—7) = (5 (t) 1g (t — 7)),

Lap(—7) = (la (2) la (¢ — 7))

Contrary to what happens by tracing-out and also in the
case when F (t) is hermitian (or anti-hermitian, see previous
section), here in the full non-hermitian case, F(t) # F' (¢),
the pseudo-correlations (I, (t) I (t — 7)) necessarily ap-
pear in the theory, i.e., the generator (56) cannot be expressed
in terms of ((I% (t) lg (t — 7)) alone.

As before it is possible to choose different correlation
functions in order to build up several K-L generators. The
positivity of the algebraic structure strongly depends on
the correlations {{{% (t) I (t — 7))). The pseudo-correlations
only appear in the expression of Heg.

(76)

Therefore, we have a total freedom to choose the corre-
lation function of the noises as a possible empirical way to
map different physical conditions. A simplest example is to
assume that

(@) gt =7)) =bapd (1),
{la(t) lg(t—T)) =0.

In this particular case [uncorrelated white noises] from (55)
we get U = § 5~ V1V, (A = 1). Thus reobtaining van Kam-

pen’s approachﬂ[ll, from which the standard K-L generator
is obtained:

50) = =ilHs, o = 5{ T ViVaro} +3 Vsl (79)

(77

This type of evolution equation was also analyzed by Ghi-
rardi et al. [11] in the context of the wave-packet reduction
approach.

In short, once again we ask for the problem of finding
noises [, () in such a way that a,~ and Heg be numerically
equal to those coming from the tracing-out technique. Now
due to the fact that we have a freedom for the election of the
noise correlations, this issue will allow us to get a consistent
correlation mapping.

To do this program let us start analyzing the dissipative
part. Assume the that we have found noises such that the fol-
lowing equality is true

Trp (pf BE Ba(-7)) = (12 (1) s (t = 7))

Now we can show that there is no inconsistency in the present
correlation mapping, (that was not the case when F (t) was
hermitian or anti-hermitian).

In order to see if there is some contradiction in the assig-
nation rule (79) we now proceed to do the same steps that we
made in the previous case. As before, because H}‘ = 4y,
there exist an o’ and (' such that: By = BJ, , By = Bg;
then from (79) it follows:

Xag(—7) = Trp [p% Bl Bs(—7)]
— (15 (1) I (¢ = 7))
Xag(~7) = Trp (s Ba(-7)BL)
— Qlos (8) I3y (E = 7)) (80)

But because? [ (t) # I%(t) and lg (t) # U3(t) there is no
inconsistency in (80). In other words, this is so because in the
present case it is not possible to establish a one-to-one map-
ping between bath operators B, and complex noises [ (t).
Thus the fact that F (¢) # F' (t) gives us the freedom to find
noises giving a consistent correlation mapping.

We remark that for the noise correlations
(1% (t) lg (t — 7)), there are in fact four functions cor-
responding to the cross-correlations between the real and
imaginary parts of the noises l,(¢), then (79) gives only

(79)
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two equations to determine these four real correlations. This
fact gives us two (free) degrees of freedom in the choice of
the complex-noises. Note that x;,5(—7) trivially does not
introduce any new restriction, and on the other hand the
stationary property xga(—7) = X4s(7) indicates that the
corresponding (79) for xgo(—7) does not impose any new
restriction in the four real correlations necessary to build
{(1x (t) 15 (t — 7))). In conclusion, we arrive to the same dis-
sipative K-L form that was obtained from the tracing-out
technique and without any inconsistency in the assignation
rule (79).

Now we proceed to check if there is some contradiction
to try to match with the non-dissipative part of the genera-
tor, i.e., we now look if H.g (obtained from Schriodinger-
Langevin) is numerically the same as the one coming from
the tracing-out. This task can be tackle because we still have
two degree freedom to try to establish the following equality

Ten (0 Ba Bo(-7))  (la @ I (= 7). @B

Even when this formula only introduces two new restric-
tions, these are inconsistent with the previous ones (79). To
proof this fact note that because the interaction hamiltonian
Hj is hermitian, there always exist an o such that B, = B,
Vi = V.I. Then from the quantum point of view it is true that

Larg(=7) = Xan(=7) = Trp (5 BY Ba(-7) ],
(82)

Tap(=7) = Xarg(=7) = Tra ( Ba Ba(-1))

and this must be true for all couples («,a') appearing in Hj.
Therefore from (81) it follows that noise correlations should
fulfill

({tar () Lg (t = 7)) = (I3 (1) Ls (t = 7)),
({(la (t) 1g (t = 7)) = (L () Lp (= 7))

From this equations it is possible to see that for all cou-
ples (a, a') appearing in H, it must be true that

bt () = 12, (1) (84)

If this is so F () would be hermitian, but the hermitian case
only matches the dissipative part from the trace-out technique
at infinite temperature, and as a matter of fact this is not the
case of interest in the present section. Therefore in order not
to get any inconsistency from (81) we have to resign to match
both, simultaneously, the irreversible and reversible part of
the generator.

Therefore the two degrees of freedom are still undeter-
mined. The remarkable poinl is that we can use this freedom
to choose ({lo (¢) I (t — 7)) = 0. Then the resulting final
correlation- H'l&'p is

Xas(~7) = Trn (5 BLBo(-7) ) = (i2 (8) s (t = 7)),
(la (0) Ls

(83)

(t—7)) =0. (85)

In this way the correlation-mapping—for the
Schrodinger-Langevin picture—will reproduce exactly the
same dissipative part as is obtained from tracing-out tech-
niques.

We emphasize that with this assignation rule and
from (57), the shift coming from the Schrodinger-Langevin
picture is null, then Heg = Hg and also from (55) and (58)
it follows the identity

AU=D (86)

Then, the Schrédinger-Langevin picture results in

(HI\If) [ﬁz’Hgf = i AP ]m (87)

which means that the stochastic matrix pg(t) evolves with
the following non-Markovian equation

d

;ﬁpst( ]_{D pvl )}

—ix (F® pal) = puF (1)) (88)

== _1[H5' pst

Then from (88) we can see, in the weak coupling approxi-
mation, that A\ = D is the responsible of the dissipation and
F (t) is the one producing the fluctuating terms F'[e] in the
K-L form. We remark that the positivity or not of the alge-
braic structure is something that depends on the structure of
the interaction hamiltonian (see our previous section on the
invariance under Davies’s device).

5.5. Other possible applications

Let us now see other advantages from the Schrodinger-
Langevin picture. Assume that we already have a given al-
gebraic structure a,+, (i.e., a M x M positive hermitian ma-
trix where M = N2 — 1) then (25) can be seen in the re-
verse sense, i.e., as a set of lEM (M + 1) equations for the
unknown noise correlations

By = ,\ZZ[ d'r

+ ((la (2) {5 (t -

t) lg(t — 7)) Caal(—T)

N, (-7) ). (39)

Note that all what we have made in previous sections
was in fact to solve this non-trivial problem. But due to the
fact that from the Schrodinger-Langevin picture its algebraic
structure is formally the same as the one from tracing-out
the bath variables, in that particular case these numerical
equalities were just solved by making the correlation map-
ping that we have presented. Therefore we can conclude that
we have provided a non-Markovian evolution corresponding
to an open quantum system (where all effects of the bath
are introduced through the correlations of the noises) that in
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the markovian approximation, correspond to trace-out tech-
nique. This fact open the possibility of work out with non-
Markovian simulations of the state vector.

When this case is not available and assuming that we have
found a basis where the given a,- is diagonal, the resulting
cquations are

g =N Z/o | dr [((l; @) g (t = T)NChal—T)

+ (o (0123 (t = INCjal-7) ] ©0)

and for the case o # v results

0=Y" /x dr (& (6) 1o (t = )} Cpal-7)
4 JO

(o () 13 (= DNC5,(-7) ) . O

If in addition the noises are assumed to be statistically in-
dependent from each other, using (90) and (91) we arrive to
a simpler set of equations for the unknown noise correlations

b = /\2./(].00(# Re [((z; (t) s (t — r)))Cm(—T)] ; (92)

and for v # ~
0= [ ar (@0 1 &= ) Cral—1)

+ o () 15 (=T Ciaa(=7) ) 93)

which are equations for the half-Fourier transform of the cor-
relations. We emphasize that it is always possible to find
a family of noises that satisfy these equations. This fact is
shown elsewhere [17].

Therefore the advantage from our stochastic picture
comes from a numerical point of view. This is so because
solving non-equilibrium thermal statistical averages in the
context of the stochastic state vector reduces the computa-
tional time in comparison with the one required by using den-
sity matrix algorithm.

We want to end this section remarking that the present
stochastic picture leads to a numerical linear problem, with
an easy interpretation.

6. Conclusions

The quantum generator of the semigroup has been written
in an alternative form in terms of the dissipative operator D
and the fluctuating superoperator F' [e] [see (3) and also ap-
pendix A]. From the formal solution of the quantum semi-
group, we have shown that DD ought to be positive in order to
erase the initial condition p(t,).

We have proved that a Kossakowki-Lindblad form is al-
ways obtained if we trace-out the bath variables of the to-
tal system & + B [in a second-order perturbation theory

applied to the differential form of the equation of motion,
see (13) in remark 2]. Nevertheless we have remarked that a
Kossakowki-Lindblad form does not mean that the algebraic
structure aq~ is going to be positive, this is something that
concerns to the type of interaction hamiltonian /{; between
system & and bath B [see (26) in remark 3].

Stress has been put on the completely positive condition
of K [e]. Then we have used that a Kossakowki-Lindblad
Jorm will be completely positive if this form is invariant un-
der Davies’s average procedure (30) [see Sect. 4]. Thus in the
weak coupling approximation we have presented an explicit
condition (37), in terms of an arbitrary Hyp, in such a way
that after the application of Davies’s device the dynamics of
the reduced system be the same as before applying Davies’s
device. We have exemplified this condition for the particular
case of a spin system in contact with a bath [see (41)].

The second part of our paper is concerned with
the Schrodinger-Langevin picture and its connection with
Kossakowki-Lindblad generators for the reduced density ma-
trix. From this point of view a breakthrough has been pre-
sented giving rise to a non-Markovian (linear) evolution
equation for the stochastic state vector |¥) [and also for the
equivalent stochastic matrix ps(t) = |¥) (¥| ]. We empha-
size that in the present paper we were only concerned with a
Markovian description. This stochastic picture has been stud-
ied for different models of the stochastic operator F(t) ap-
pearing in the Schrodinger-Langevin equation (42). In gen-
eral F(¢) is non-hermitian, so we have written this stochastic
operator in terms of two hermitian operators F(t) = H (t) —
il (t). From this fact we have shown that the Schridinger-
Langevin dynamics has two contributions: first in addition
to the reversible von Neumann term there is an extra random
fluctuating contribution coming from F (¢) (which ultimately
produces dissipation); second a purely irreversible contribu-
tion explicitly appears in terms of the sure linear operator
U plus the stochastic operator UJ () (which represents the
fluctuations in the dissipation). A remarkable point is that in
general both stochastic operators are correlated and this cor-
relation depend on the specific model of interaction between
the system and the bath. We emphasize that in the present ap-
proach the dissipation and the fluctuations are both assumed
to be of the same order A. Other characterizations concerning
the dependence on the strength parameter A can also be done
in the context of the present picture.

From our stochastic non-Markovian operational equa-
tion (45) a perturbation theory in the Kubo number has been
introduced to calculate the average—over the noise—of the
stochastic matrix pg(t). In this context the linear operator
U has been solved in a consistent way to assure trace con-
servation of the mean value of pg(f). This fact guarantees
in mean value the normalization of the wave vector. Then in
this way the reduced density matrix p = (ps(¢)) fulfills an
evolution equation which has a Kossakowki-Lindblad form
(Sect. 5.1). From this fact we have been able to interpret the
dissipative operator I and the fluctuating superoperator F/[s],

Rev. Mex. Fis. 45 (3) (1999) 217-233



230 M.O. CACERES, A.A. BUDINI, AND A.K. CHATTAH

appearing in the Kossakowki-Lindblad semigroup, as a func-
tion of H (t) and U (t) [see appendix B]. Also we have em-
phasized the parallelism between the Schrodinger-Langevin
picture and the quantum semigroup. This follows, from ap-
pendix A, realizing that the structure of commutators and
anti-commutator appearing in a Kossakowki-Lindblad gener-
ator appears also—in a natural way—from the Schrodinger-
Langevin dynamics.

Later on at the end of our paper (Sec[s 5.2 to 5.4), by

putting F (t E I
tum bath could be rcpresented in a sort of “noisy” way.
This special form of F (t) has the advantage to work-out
with cumulants of complex noises rather than with gener-
alized cumulant for stochastic matrices. In this case, when

t)V, we have assumed that the quan-

2 lo(t)Vq, the algebraic structure is formally the

same as in (25), but where xq3(—7) has to be replaced by
the noise correlation (1% (¢) lg (t — 7))). Therefore, for this
model of F (t) the Schrédinger-Langevin picture can be seen
as giving rise to three remarkable applications:

i) The first one is to choose different noise correlations as
a possible way to build up Kossakowki-Lindblad generators
that represent, in an empirical way, different physical situa-
tions.

i1) The second one comes from the fact that we can map
the stochastic dynamics with the trace-out dynamics. This is,
we have found the underlying stochastic non-markovian evo-
[ution that in the markovian approximation give the same re-
sult that the trace-out dynamics. We remark that when F (¢)
is non-hermitian only the dissipative part (at any temperature)
can be mapped, the quantum shift cannot be obtained from
the Schrodinger-Langevin picture, but it can always be triv-
ially incorporated into the stochastic dynamics. In the case
when F (t) is hermitian both the shift and the dissipation can
be mapped with the trace-out technique, but only at infinite
temperature.

i11) The third one is to give a stochastic dynamic that cor-
responds to a given algebraic structure; this can be tackled
from the set of Egs. (89).

We emphasize that all these facts open the possibility to
work-out numerically with a stochastic state vector rather
than the density matrix. This clearly reduces the computa-
tional time in solving complex dissipative systems. Finally
this non-Markovian stochastic picture is a starting point to
work-out higher perturbations which could go beyond the
weak coupling approximation.
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Appendix A: On the Kossakowski-Lindblad
generator

Here we are going to see other forms of writing the infinites-
imal dissipative K-L generator (see Sect. 1). First define the
superoperator (A K B) [e] acting on the reduced density ma-
trix as

(AK B)[p] = -([Ap,Bf] (4, pB']) (A1)

With this notation the dissipative part of the K-L genera-
tor can be written as:

N2
Lolpl= Y aay (Va K V4) 0. (A2)
a;ry=1
Thus if the basis is hermitian, i.e., if A = A and B = Bt
hold, the following relations can be written
(AK B) (o] + (BK 4)[g] =
- 5 (A B + (B (4,81
(AK B)[p] - (BK A)[] =
1
5([4-{3110}-{—] - [Bs {Aap}+J) (A3)

Using these formulas and the fact that matrix aq-~ is her-
mitian, we can put @,y = bay + 1 Cqy Where bg+ is a sym-
metric matrix and ¢,~ antisymmetric. Thus it is possible to
write

1 NZ-1
= _5 Z bu:v [Vaa [V'WPH

a,y=1

Lp[p]

N2

> o [V (Vahy | - (A%)

a,v=1

+

b | =

Therefore (if the basis V,, is hermitian) this expression is
equivalent to the dissipative K-L generator if the matrices by~
and ¢, are symmetric and antisymmetric respectively.

On the other hand, note that if we use the relations

24B = {A, B}, +[A,B],
2(ApB + BpA) = {4, {B,p}+}+ - [A,[B,pl],
[4,{B,p},] - {4,[B,pl}, .

which are valid for any operators A and B, it is possible to
rewrite the operator D and the superoperator F' [#] in the form

Vi Val) .

2(ApB — BpA) = (AS5)

N*=1
1

D=3 aa ({ViVa}, +1

a,y=1

N2

Flil=§ % oo ({Va (W0, }, = Ves [0]

a,y=1

+ [V (W}, ] = (Ve [V11,) - (46)
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Now if the basis is hermitian V., = V.I and using again
that aa~y = bay + 1 Cay We have

\2—1

plpl=—7 Z = ({

a =1

}+.p}

+ [Va [V 0]] = {u“ {V""p}+}+)

i N==1
+ 1 Z Caxy ({[VH*I":Y}”O}+

a,y=1
+ [V (Vapdy] = o el ) - A7)

In this expression only the real part is present if a., is di-
agonal. Thus the terms of the generator corresponding to the
real part, must have the form of a K-L. To see this fact we use
again (AS) and note that

bmf( {{Vaa V-;}+ aﬂ}+

L N?*-1

N2_1

Lol=-7 ¥

a,y=1

2 (VapVy + VapVa) ) +

ar=1

+2(VapVy = VapVa) ). (A8)

Then, in the real part it is possible to recognize terms with
the form of D and F [p].

Flo] = X? /Om ar ((#

+i(H(t) e Ut —1) -

S e ({[Ver Vil 0},

f).f[(t.—r)%—f?(i—r)off(i)) +

U(t—71)e H(t)) —i(U(t) e

Appendix B: Heg, D and F [#] as a function of
H (t)and U (t)

In this appendix the cumulant notation ((- - -)) has been
dropped-out from any expression to simplify their formulas.
In order to find Her, D and F [e] as a function of H (t) and
U (t), introduce

F(t)=H(t)—iU (t) (B1)

in their expresions. From equation (55) we get for the deter-
ministic unknown operator {7

U=A./O.OO(IT ({E(f),r}'(t —T)}+
+ilOw, AE-n]). @

From (B1) and (57) it follows that the effective hamiltonian
is

Heg= Hs— ;5‘2- [Ooc;ir([ﬁ(t) JH(E-7)]-[0(@),U(t-1))

_,r({f-”f(r),é'{f—r)}++{0(f)»mt““)}+))' A

The dissipative operator D reads

D
D=— Ir( {H(t)
5 ﬂ (T({

—i([H(t

H(t = 7))+ + {0(), O(t - 7)}+

) Ut -7) =[O, Bt -7))) B4

and the fluctuating superoperator F' [e] results
(U)o U(t—7)+U(t—71) 0 U(t))

At 1)~ H(t—r).t}(z&))) (BS)

Finally using (A5) this expression can be rewritten in the form:

2

Flo] = %/ooodf[{f!(t},{f!(t—r),.}+}

+

Now it is interesting to compare expressions (B4), (B6)
with the dissipative K-L generator given in formula (A7) or
alternatively expressions (B4), (B5) with (A8). Then we real-
ize that the imaginary part comes from the cross-correlation
between H (t) and U (t), but the real part comes from the
self-correlations of H (t) and U (t). On the other hand any

—{ﬁ(r).[ﬁ(ur)mn

semigroup has a combination of commutator and anti-
commutator objects. These combinations appear in a nat-
ural way (in a second-order perturbation theory) from the
Schraodinger-Langevin picture.
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Appendix C: The fourth-order cumulant ap-
proximation

Here we are going to work out the Schrodinger-Langevin pic-
ture up to fourth order in the coupling parameter A; then we
show that also up to Q(A*73) a K-L form for the evolution of
the reduced density matrix p is obtained. The H.g, the dissi-
pative operator D and the fluctuating superoperator F' [e] are
obtained in the general case. Also for a particular choice of
the random operator F (t) the expression of a hermitian a~
is proved. Thereby a systematic way of calculating higher or-
der corrections to a,~, can be made in the present framework.
These corrections are of interest when lowing down the tem-
perature of the bath.

The notation and the methods are the same as in Sub-
sect. 5.1. Starting from the stochastic multiplicative opera-
tional equation (50), the cumulant expansion [23] allows us
to find a closed Markovian evolution for the average ( u (t))
0o [ S e

dt

o0
ol (u(t)) = (AD + ZA"I(,I) (w(®) (€D
n=1

I, is the n-th order generator. In Subsect. 5.1 (51) gives the
corresponding contribution to O(A?7.) in terms of K; and
K5 Here we give the next term in the cumulant expansion
O(A'72), finding in this way a closed evolution equation for
p = (u(t)) under the constrain Trp(t) = 1. We show that
this trace conservation condition, once again, leads automat-
ically to a K-L form, after solving in a consistent way the
unknown dissipative (sure) operator UU. This expansion can
be done to any order A™ but the algebraic manipulation is te-
dious. Making the same identifications as in (51) and (52) we
write the next contribution from (C1). We assume that odd
correlations of the random operator F (t) are null. Demand-
ing trace conservation for p the operator U/ must fulfill (up to
order A*) the self-consistent equation

2= [ ar((F O F -

J0

= (FOF(E=7)) +he)
+ A2 /“’ICJ dmy /00 dry (<(ff (1‘} [}—(t — 1"_2), U(—Tl)]»

= {(F O [F(t = m2), U(=n1)]) + hec.) (C2)

where we have used Heisenberg’s representation for U(—7)
and for the random operator F (t) the same notation as in
Subsect. 5.1. Now from (C2) we have to solve the sure her-
mitian operator I/ order by order in A. The solution can be
found in an iterative way. Note that the anticonmutative con-
tribution A{U/;, e} in (54) is of O(A%7.), where U; reads
from equation (55); then from (C2) the next iterative correc-
tion will give a contribution of O(A*72). Introducing the so-
lution of U up to order A* back into the cumulant expansion

F[o]:)«?/

for p a K-L form to O(A172) is obtained. Then the effective
Hamiltonian and the fluctuating superoperator are

2

Hog = Hg — J— [A.’ /0 (]T(«.}'_(t)}-(f _ T)»
= (Ft (1 =) FH (D))
X lm dn /: fir-z(«f (1) [F(t — ), Ur (=1)])

~([i(-n), A -] F o)) ©3

OO

dr ({(F (t) @ F1 (t — 7))

0

+ (F(t-1)eFt(t)))
48 _[Om i /m dry ((F (&) [Ur (=10), F1 (2 = 2)])

+([Ft - n), L(=n)] F ®)). (€4
Taking into account that F'*[1] = D the dissipative operator
D follows.

In the case when the bath can be represented as a lin-
car combination of stationary complex stochastic processes
times operators in Hg, so F (t) = > la(t)Va, the algebraic

a=1

structure to O(A*72) is
¥ Heo
Bopey SRS Z / dr ({la (2) Ui (t = TINCE,(—7)
g o

+ (15 (@) Lg (t = )N Cgal-T))

4 )\4 %: /( ({Tl ./rl (h’g(«lﬂ (f) [;? (f e ’?'2)))557(—7‘1,—7‘3)

,
+ {15 (t) Ig (t = 2))Spal(—71,—72)), (CS)
where the coefficients are
Con(=7) = Tr (Vi Va(-7)),
S (=1, =72) = Te (V! [Va(=72), Us (—0)] ]

Note that Eq. (C5) assures hermiticity. The remarkable point
is that up to this order the equation for p also has the K-
L form. From this equation it is also possible to see that to
O(A*7?) there is a necessary condition for the matrix a,- to
be positive (in a similar way see remark 3). Up to this order,
and because odd correlations are null, the generator only de-
pends on the two point correlations (F1 (t) F (t — 7))). For
higher order corrections the occurrence of four-point correla-
tions are expected.
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Alincarmap A : A — B, A and B, C* algebras, is said to be
completely positive if the tensor product map A™ = A @1, :
A @ M(n) — B @ M(n), is positive for all positive inte-
gers n.

The dual generator is defined by the following relation:
Tr (K [p(t)] A) = Tr (pK* [A(t)]).

Let |®;) be a complete basis, then Trp(t) = ( 3 (®; | ¥)(¥ |

B, 5 = (508 | 8@ | ), = (P, .
therefore Trp(t) = 1 — (“‘I’||2);r|;r1 =1

Note that if F (t) were hermitian there should be (for all o, 3)
a couple (o, 3") such that I/ (t) = I7, (1) and I (t) = [3(t)
with Vor = V1, Vg = V.
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