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It is shown that the Kepler problem can be transformed into the problem of a free particle moving in the sphere, the plane, or a hyperboloid

in Minkowski space, depending on the value of the energy.
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Se muestra que el problema de Kepler pucde transformarse en el problema de una particula libre moviéndose en la esfera, el plano, o un
hiperboloide en el espacio de Minkowski. dependiendo del valor de la energia.
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1. Introduction

It is well known that the Kepler problem possesses a hidden
symmelry, which is associated with the existence of a con-
served vector—the Hermann-Bernoulli-Laplace-Runge-Lenz
(HBLRL) vector—that lies on the plane of the orbit and
points to the perihelion. The conservation of the angular mo-
mentum and of the HBLRL vector permits to obtain the orbit
without the explicit integration of the equations of motion. (In
fact, these results hold for the Kepler problem in any number
of dimensions [1].) Depending on the value of the energy,
by suitably normalizing the HBLRL vector, one finds that the
Poisson brackets between its components and those of the an-
eular momentum coincide with the commutation relations for
the Lie algebra of the rotation group, the Euclidean group or
the Lorentz group.

In the case of the quantum Kepler problem for bound
states, Fock [2] showed that, by means of the stereographic
projection, the Schrodinger equation in momentum space can
be transformed into an integral equation on a sphere, in such
a way that the invariance under the rotation group becomes
manifest (see also, e.g., Refs. 3=5). When the energy is pos-
itive or zero, the Schrodinger equation in momentum space
can be transformed into an integral equation on a hyperboloid
or a hyperplane, respectively, that displays the invariance of
the problem under the Lorentz group or the Euclidean group
(see, e.g., Refs. 2 and 6). In this paper it is shown in an el-
ementary manner that a similar result applies to the Kepler
problem in classical mechanics, giving canonical transforma-
tions that relate the Kepler problem with the problem of a free
particle on a sphere, a hyperplane or a hyperboloid. Some ear-
lier treatments of this correspondence can be found, e.g., in
Rels. 7-9. In order to present the procedure in a simple way,
we consider in some detail the two-dimensional Kepler prob-
lem and for the three-dimensional Kepler problem we only
discuss the case where the energy is equal to zero.

2. The Kepler problem in two dimensions

The Hamiltonian corresponding to the Kepler problem in two
dimensions, expressed in terms of cartesian coordinates, is
given by

1, k
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where & is a positive constant. Therefore, the hypersurface in
phase space H = E corresponds to
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where p = | /p2 + p2. As we shall show now, depending on
whether E is positive, negative or zero, one can find a canon-
ical transformation that takes Eq. (2) into h = const., where
i1 is the Hamiltonian of a free particle in a maximally sym-
metric two-dimensional space.

2.1.E<0

Following Refs. 2 and 3, making use of the stereographic pro-
jection, we replace the vector p = (p.,p,) by a unit vector
n = (ng,n,,n.) according to

P = (Pa,py) = pu(;i‘”_’—ff’_), (3)

where
po = V-2ME, (4)

hence,
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Under this correspondence, the plane is mapped into the unit
sphere and making use of the spherical coordinates 6, ¢, of
n, from Eq. (3) we find that

p

p= i—ﬁ (sin @ cos ¢, sin @ sin ¢)
f )
= pp cot (—2-) (cos ¢, sin ¢), (6)
therefore,
f
p = po cot (5) (7
and

9
Pz dz + py dy = po cot (-2-) (cos ¢ da + sin ¢ dy)

= d[po cot (g) (x cos ¢ + ysin @)]

-
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+ pp cot (g) (vsing — ycos @) do,

which means that €, ¢ and
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Py = po cot (5) (zsin¢ — ycos o) (8)
are canonical coordinates. From Eq. (8) and (7) it follows that
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therefore, taking into account Eq. (4), one finds that Eq. (2)

amounts to
1{ 5. 7 1 (Mk)z
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The left-hand side of the last equation is recognized as the
Hamiltonian of a free particle (of unit mass) moving on the
unit sphere; which is manifestly invariant under the rotation
group SO(3). This invariance is related to the fact that the
functions

o=
8

—sin ¢ pp — cot @ cos ¢ py,
= cos ¢ pg — cot@sin¢ pg,

Is =, (10)

H

which generate rotations about the n,-, ny- and n.-axis, re-
spectively, have vanishing Poisson brackets with the Hamil-

tonian
15 B
h==|ps+ - . 11
2 (“ sin‘)B) ()

The auxiliary Hamiltonian (11) is conjugate to a fictitious
“time”, 7, which is related to the true time, t, by

dr o

E_Mgk 72 + 12 -

)
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Hence, the functions (10) are also constants of the motion for
the Hamiltonian (1). (Alternatively, {h, f} = 0 if and only
if f generates canonical transformations that leave the hyper-
surface i = const. invariant; therefore, since h = const.
is equivalent to H = const., {h, f} = 0 is equivalent
to {H,f} = 0. From Egs. (6) and (8) one finds that
po = cscl(xp, + ypy) and py = Tp, — Yps, hence, us-
ing Egs. (6), (7) and (2), it follows that the constants of the
motion (10), expressed in terms of the original coordinates,
are

A, Az
le=2L =22 L=gzp,-ips (13
% y - z = TPy — YPz )
where
A, = py(xpy — ypz) —
z = Py\tily — T "\/T—Ey
2 4y
Mky

Ay = —p(zpy — 1 —- (14)
v I ( v JP:) \/W

are the nonvanishing components of the Hermann-Bernoulli-
Laplace-Runge-Lenz (HBLRL) vector A = p x L — Mkr/r
with L = r x p. From Eq. (13) and the well-known Poisson
bracket relations {l,ly} = L, {ly,1:} = bz, {lz:, )} = 1y,
which can be derived from Eq. (10), one can easily obtain the
Poisson brackets between A;, A, and [;.

The orbits on the unit sphere can be easily obtained by
noting that Eq. (10) leads to [, sinf cos¢ + I, sinfsin ¢ +
1. cosf = 0, or, equivalently, (I, 1,,l.) -n = 0, which is the
equation of a great circle, as expected. Then making use of
Eq. (5) one finds that 21, popz + 21, popy +1: (P2 + P2 —P3) =
0. On the other hand, form Egs. (10) and (9), 12 + I3 + 12 =
p} + p3/sin® @ = (Mk/po)?; hence, assuming [, # 0, we
have

Lpn\ 2 l . Mk 2
(52 e ) = (42 o

which is the equation of a circle of radius Mk/|l.| whose
center is at a distance

Lpo\> | (lLpo\® _ Mk 2E12 _ |A|
\/( )+ (U8) = e w09

from the origin. The orbit (15) is the so-called hodograph and
the fact that this curve is a circle follows immediately from
the fact that the orbits of the Hamiltonian (11) are great cir-
cles and that the stereographic projection maps circles onto
circles.
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As is well known, the orbit in the configuration space is
casily obtained making use of the conservation of the HBLRL
vector (14). Indeed, if ¢ is the angle between A and the posi-
tion vectorr, thenr|A|cosy) =r-A =r-(pxL)— Mkr =
1?2 — MEr; hence

l'Z
e S —— 17
' ME(1+ ecosvp)’ an
where ¢ = |A|/MF is the eccentricity of the orbit.
|

and

22. E=0

In this case the vector p will be replaced by a two-component
dimensionless vector u = (u,, u,) according to

(g, 1y) u
= Pz, P = - L a = 9 18
P = (P2, Py) mui+u§ PO (18)
where pg is a constant with dimensions of momentum. Under
the inversion (18), the plane is mapped into itself. Then,

_m
u

(19)

P
u-= po—73, P
P

pedr + p,dy = p - -
Pa Pyay o 'llﬁ+1!»§’
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uz +ul
hence, w,, 1, and

2(u? — u:;i) + 2yu,uy,
{(ul +ug)?

Py =py

: .
y{“é —ui) + 2rugu,

20
(ul +ul)? =y

Py = po

arc canonical coordinates. From these last expressions one
finds that P} + P} = p*'(a® + y®)/p?; thus, Eq. (2) with
E = 0 takes the form

§. . . 1 /2Mk\?
—(P2+PH== . 21
3(1+ ) 2(Po) =

The left-hand side of Eq. (21) is the Hamiltonian of a free par-
ticle (of unit mass) in the plane, which is manifestly invariant
under the Euclidean group SE(2).
Clearly, the functions Py, P and u, Py — u, P, have van-
ishing Poisson brackets with the auxiliary Hamiltonian
h = %(P;‘ + Py). (22)
The functions Py, P> and u, P — u, P, generate the action
of SE(2) on the phase space alluded to above and their Pois-
son brackets with H also vanish [see the discussion after
Eq. (12)]. From Egs. (19), (20) and Eq. (2) with E = 0 it

follows that

2A;
PI = _-'_”i)
Fo
24
Py ==t
Po
w, Py —u, P = xpy — yp2, (23)

with A, and A, defined by Eq. (14).

Using the fact that Py, P, and u, P> — u, P, are con-
stants of the motion, one finds that the equation of the orbit is
1, Py —uy, Py = 1., where l., P, and P are constants, which
corresponds to a straight line, as expected. Then, from

Updr + uydy i {p Ug® + u.yy] ny [x(u2 - u‘j) + 2y, |du, + [y(us — u?) + 2zuguy|du,
= 0

(ul +ul)?

[

Eq. (19) it follows that, in terms of the original variables, the
orbit is given by Pap, — Pip, = (I-/po)(p3 + p2) or, taking
into account Eq. (21),

P n* P\? [/ ME\?
(pc - p;lw ) + (py+ p;Tl) = ( 7 ) (24)

[¢f. Eq. (15)], which is the equation of a circle of radius
Mk /|l+| passing through the origin.

The orbitin configuration space is also givenby Eq. (17).
Owing to Egs. (21) and (23), |A| = Mk, therefore the ec-
centricity is equal to 1.

It is known that, making use of parabolic coordinates, the
two-dimensional Kepler problem with energy E can be re-
lated to a two-dimensional isotropic harmonic oscillator of

angular frequencyw = /—2FE /M (see, e.g., Refs. 5 and 10);
therefore, by means of this relationship, the two-dimensional
Kepler problem with zero energy corresponds to the problem
of a free particle in the plane (see, e.g., Ref. 11). However, by
contrast with the canonical transformation given by Egs. (19)
and (20), this procedure cannot be applied to other dimen-
sions.

23. E>0

Now the vector p will be replaced by a vector n =
(ng,ny,n.) satisfying the condition [2, 6]

ni+nd-nl=-1 (25)
by means of

(Mizaiy)
l—mn.

P= (p.hi”y) =Po (26)

where, in the present case,

Po = VZME. (27)
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Therefore,

(=2pops, —2popy, P* + Pj)

P’ -1 '
Since p > po [see Eq. (1)], n, > 1. Under the correspon-
dence given by Egs. (26) and (28), the region p > pg of
the plane is mapped into the hyperboloid (25) with n. > 1.
Thus, we can write n = (sinh # cos ¢, sinh 8 sin ¢, cosh @)
and from Eq. (26) we obtain

(28)

n = (ng,ny,n:) =

P = —po coth (e) (cos @, sin @), (29)
2
therefore
#
p = po coth (5) 30)
and

pxdx + pydy = —po coth (g) (cos ¢ dx + sin ¢ dy)
= d[—po coth (E) (x cos ¢ + ysin @)]
2
- lp esch? (g) (zcos ¢+ ysing) df
sPo L YA Y

(]
— po coth (—) (zsin ¢ — y cos ¢) do.
2
Hence, 8, ¢ and

Po=—3po csch® (g)(:r cos ¢ + ysin @),

Pe = —po coth (g)(msin ¢ — ycos ) (31)

are canonical coordinates and from Egs. (31) and (30) we ob-

tain
.14 (8 =
1-‘3+y3— 4 sinh (2) 2, p‘;
. 7 ? " sinh?#

_ 2po )2 P+ Py
P -pd %7 sinh%4g

which implies that Eq. (2) is equivalent to

1{, 7D 1 (.ﬂu‘k)2
2l gy 0} o [ 32
2 (}l’g sinh"G) 2\ po e

[ef Eq. (9)). The left-hand side of Eq. (32) is the Hamiltonian
of a free particle of unit mass on the (maximally symmetric)
two-dimensional Riemannian manifold defined by Eq. (25),
for n. > 1, with the metric induced by the Lorentzian met-
ric (dn,)? + (dn,)? — (dn.)? and, hence, is invariant under
SO'(2,1).

It can be readily seen that the functions

l, = sin¢ pg + cothfcos ¢ pg,

l, = — cos ¢ pg + coth@sin ¢ pg,

I = pgs (33)

have vanishing Poisson brackets with the Hamiltonian

1({,
h=-=1|p;+ ; 34
=g (? %7 sinh? 9) %)

l, and [, generate Lorentz transformations on the nyn.- and
n.n.-plane, respectively, and /. generates rotations on the
ngny-plane. These functions satisfy the Poisson bracket re-
lations {iz,1,} = —L., {ly,l:} = lay {I2,0:} = I, and are
constants of the motion. Making use of Egs. (29) and (31)
one finds that pp = (zps + ypy)/sinh @, py = xp, — yp.,
which, together with Egs. (33), (14) and (2) imply that

ly = ——, l_-, = TPy — YPz- (35)

Again, the orbit is easily obtained using the constants of
the motion. From Eq. (33) we have [, sinhfcos¢ +
lysinh@sing — I. coshf = 0, or, lyn, + lyny — l.n. =0,
which, owing to Eq. (28), amounts to 21, pop. + 2l,popy +
1:(p2 + p2 + p§) = 0. Noting that 12 + 12 - 12 = pj +
pi/sinhl 6 = (Mk/pg)? and assuming [, # 0, we can also
write

L Lpo\® [ ME\’
(pz+ l”“) +(py+%) =(z ) (36)

[cf: Eq. (15)], which is the equation of a circle of radius
MFk/|l.| whose center is at a distance from the origin given
by Eq. (16); however, in the present case, the hodograph is
not the complete circle (36) but only the arc contained in the
region p > po.

Finally, from Eq. (35) we find that |A| = poy /13 + 1} =

Mky/1+ (2E12)/(Mk2) [¢f Eq. (16)], therefore, the ec-
centricity of the orbit (17) is greater than 1.

3. The zero-energy Kepler problem in three di-
mensions

The procedure shown in the preceding section can be applied
to the three-dimensional Kepler problem (and, in fact, to the
Kepler problem in any number of dimensions). As an illus-
tration, we shall consider here only the case where the energy
is equal to zero. Starting from the Hamiltonian

1 5 5 » k
= {22 Ry — - S—— 3
H = 5o (pz + 9y +92) S (37)
one finds that the condition /{ = 0 is equivalert to
2ME\?
z? +u? + 2P = ( = ) s (38)
P

where p = /2 + 1% + 2.
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Introducing the vector u = (uz, uy,u:) by

u
u= [JD%, or P= ,On’_,,, (39)
P u*

where po is a constant with dimensions of momentum and
P = (Px,py.p:), making use of the notation r = (2,y, z)
we obtain

u-dr

padx 4+ pydy + p.dz = p-dr = pg 3

=d[pgu]+P-du,

ul

where

P=(P.PyP)= 00 wu-u'). @0

Thus, the new variables P, u are related with p, r by a
canonical transformation. From Eq. (40) one easily sees that
P? = p3r?/u*; therefore, making use of Eq. (39) we find
that Eq. (38) amounts to

1, 1 (2Mk\?
§(P12+P§+P§)=§( = ) (41)
[¢f. Eq. (21)]. Clearly, the left-hand side of Eq. (41) is the
Hamiltonian of a free particle in three-dimensional space,
which is invariant under the Euclidean group SE(3). This in-
variance is related to the conservation of Py, P, P; and of
the components of the angular momentum L = u x P.
Using Egs. (39) and (40) one finds that

L=ux5%[2(r~u)u_u2r]:%rxu:rxp, (42)

which generate the “obvious™ (rotational) symmetry of (37),
and that the remaining constants of the motion amount to

1 2
P=—_2(r p)p-pr]

Po
2 i
e [p x(rxp)- ;p‘r]
Po <
2 Mk %
=-= (pr_ ”‘r)z—&, (43)
Po r Po

where we have made use of the fact that £ = 0 and A is
the HBLRL vector [¢f: Eq. (23)]. Thus, the translational in-
variance of (41) corresponds to the “hidden symmetry” of the
Hamiltonian (37) when E = 0.

4. Concluding remarks

We have shown that by means of suitable coordinate trans-
formations in phase space, the Kepler problem can be related
to the problem of a free particle in a homogeneous space.
These transformations can be regarded as the analogs in clas-
sical mechanics of Fock’s transformations. A slight differ-
ence between the classical and the quantum Kepler problem
with positive energy comes from the fact that in the latter case
both sheets of the hyperboloid (25) have to be taken into ac-
count; the sheet with n. < —1 corresponds to the classically
forbidden region.
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