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Propagation of waves in a cylindrical liquid crystal optical fiber
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We describe analytically the propagation of optical fields in a cylindrical nematic liquid crystal cored waveguide. In the limit of low incident
beam energy we calculate the ray trajectories, the cutoff frequency, the maximum number of modes and the propagation constant of the
field distributions, for a core with positive dielectric anisotropy (cyanobiphenil). We first compare our calculated values of the propagation
constants with recent numerical estimations and show that the agreement is excellent within an error of 0.8%. The field distributions are
also compared and we find that the differences between both approaches are larger. We discuss what we belive are the reasons for this
discrepancies and comment on the advantanges and limitations of our precedure.
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Se describe analiticamente la propagacién de campos dpticos en una gufa de ondas con niicleo liquido cristalino. En el limite de bajas
energias incidentes se calculan las trayectorias de rayo, las frecuencias de corte, el mdximo mimero de modos presentes y las constantes de
propagacién de las distribuciones espaciales de los campos dpticos, cuando el niicleo tiene una anisotropia dieléctrica positiva (cianobifenil).
Se comparan los valores calculados de las constantes de propagacién con estimaciones numéricas recientes y se muestra que el acuerdo entre
ambas es excelente, dentro de un error del 0.8%. También se comparan las distribuciones de los campos y se encuentra que la d*‘erencia entre
ambos enfogues son mayores. Se discuten las razones que creemos son las responsables de estas discrepancias y se comentan las ventajas y

limitaciones del método propuesto.

Descriptores: Cristales liquidos; guia de ondas; campos épticos

PACS: 42.65.Jx; 61.30.Gd; 78.20.]q

1. Introduction

The propagation of a laser beam through a nematic liquid
crystal is a phenomenon that exhibits some very unique and
highly nonlinear optical properties [1, 2]. It has been exper-
imentally verified that a sufficiently strong linearly polar-
ized laser field induces an orientational transition, the so-
called Optical Freedericksz Transition (OFT), in a nematic
film [3]. Above the transition threshold, a linearly polarized
incident beam distorts the initial alignment by reorienting the
molecules against the elastic torques. For a circularly or ellip-
tically polarized beam, also a variety of nonlinear dynamical
regimes may arise during the reorientation process [4].

In recent years a great deal of attention has been given
to a different aspect of this process, namely, the possibility
of producing a wave guiding effect in optical fibers with lig-
uid crystalline cores [5, 6]. The basic idea is to take profit of
the nonlinear optical properties of liquid crystals to produce
this effect without restoring to the usual mechanism based on
total internal reflection.

In a series of papers we have developed an analytical
description of the propagation of optical fields in nematic
cored plane cells [7-9], nematic droplets [10], and cylindrical
waveguides [11,12]. However, for the cylindrical geometry
we, arbitrarily, considered only the case of a core with a neg-
ative dielectric anisotropy, €, < 0, with e, = € — €1, where
€, €, denote, respectively, the dielectric constants parallel
and perpendicular to the long axis of the molecules. The op-

posite choice could have been equally plausible, simply we
were not aware of any experimental or numerical results, ei-
ther for positive or negative dielectric anisotropy, to compare
with and assess the validity of our approach. Recently we
have become aware of interesting numerical work on nematic
cylindrical waveguides [5,0, 13, 14] for the case of a posi-
tive birefringence, €, > 0, a fact that offers the possibility
of comparing the results of our analytical approach with the
numerical one. Here lies the main motivation of the present
work. More specifically, we use the formalism we have de-
veloped to compare quantitatively the propagation constants
and the field amplitudes calculated analytically but in an ap-
proximate way, with the exact but numerical results obtained
by Lin et al. As will be shown below, our approach offers
a better physical insight on the whole propagation process
and allows to calculate physical properties of the waveguide,
such as dispersion relations, cut-off frequencies or maximum
number of guided modes, that are of importance for the de-
sign of the guide itself. For this purpose we will quote and
use previous results of our own work providing for the spe-
cific references where a more detailed derivation of them may
be found.

Let us consider a waveguide with a quiescent nematic
liquid crystal core confined within a cylindrical region of
radius R and length L, surrounded by an infinite homoge-
neous isotropic dielectric cladding with dielectric constant
€, as depicted in Fig. 1. The equilibrium orientational con-
figurations are determined by minimizing the corresponding
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FIGURE 1. Schematic of a linearly polarized laser beam propagat-
ing through a nematic liquid crystal cylindrical waveguide.

total Helmholtz free energy functional and we assume that the
initial state is given by the so called scape configuration [15],
fl (z) = 2arctanz, with = r/R. Under these conditions
a linearly polarized laser beam of amplitude F is incident
into the guide with an angle « with respect to the axis of the
cylinder. If the optical field is intense enough so that the in-
cident polarization is greater than the orientational transition
threshold E., the initial state will be distorted by reorienting
the director. However, in this work we only consider the case
of a low intensity beam where the initial orientation prevails.

The dynamics of the optical field propagating through
an anisotropic nematic is described in terms of the corre-
sponding Maxwell’s equations without sources. Following
the usual procedure [16] it is straightforward to derive the
following wave equation for the magnetic field

Ele,,(‘):ﬁ g =1
L+ Vx [V x d] =0, (1

with a similar equation for E. The vectors D and E are re-
lated by the following constitutive relation

D)= F_,-j[f)(?‘)]EJ, (2)

where ¢;; is the spatially varying dielectric permittivity tensor
which for an uniaxial nematic is given by

€ij = EL(SI‘J- + €atin;

where 7i denotes the director field. Furthermore, since for
many nematics the magnetic susceptibility is much smaller
than the dielectric one, we have assumed a nonmagnetic
medium, thatis B = ,ugﬁ, with o = 1.

Although the incident beam in general is neither planar
or Gaussian, we shall assume that the normal modes within
the cavity are cylindrical plane waves propagating along the

z axis, namely,
Ei(z,r,t) = Ej(r, ko) exp[i(Bz — wit)], 3)
Hj(z,r,t) = Hj(r, ko) exp [i(Bz — wt)], 4)

where the subindex j = z,r, ¢ identifies the cylindrical co-
ordinates z, 7 and @. /3 is the propagation constant and w
is the angular frequency of the wave. For each value of 3
there is a specific field distribution described by E; (r, ko) and
H(r, ko) which remains unchanged with propagation along
the guide. These distributions are referred to as the modes of
the waveguide.

As will be shown below, for the geometry under consid-
eration it is more convenient to describe the propagation of
waves in the fiber in terms of the complete representation
provided by the transverse magnetic (TM) and electric (TE)
modes [16]. The important issue to emphasize here, is that
only the transverse magnetic components F,, E. and H,
of the optical field will couple to the reorientation dynam-
ics, while the TE modes do not and may, therefore, be ne-
glected in the description. The TM modes have only one mag-
netic transverse component and are defined by the conditions
H. = 0 everywhere inside the cell and E;lr:R = Eg’d[rzR
on its boundary. Likewise, the corresponding TE modes are
E4, H, and H, and satisfy the conditions E. = 0 in every
pointinside cell and 9H, /dz|,_p = OHI/dz| _, onthe
fiber boundary; in this case the electric field has only one
transverse component.

Substitution of the above expressions for the fields, (3)
and (4), into the wave equations for E and g, Eq. (1), leads
to the following dimensionless set of equations for the trans-
verse magnetic (TM) modes Hy, E, and E.,

d>Hy & ('fﬂ- " de,,

dH,
€rr - T
dx? x dx

dx

- 2ifpk07?,e,.:)

+ {(kg'f\")'“) (eren — pPesz) — 6:;

. dfr: €rz
—,'])A'()R ( d + T)] H¢ = Oe (5)

-

€. (dH H
E, = bl £ 6
s {pe'_ ¢+:'k0_R ( T + = )], (6)
1 . Epp (EH¢ H¢,
E, =~ ped g + 1 — 4+ — |,
e, [pﬁ* “‘kon(d;c * 5 M
and for the transverse electric (TE) modes
d*Ey 1dE, e 9 1|
p s TT + Ii(nt.(]]?,) (EH =) ) = F} Eé = O, (8)
H, = B& 9)
(\I
1 dEy Ey
H=-——[—+4+—2
- ekoR ( dx * i )’ et
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where ko = w/c, p = B/ko and z = r/R. Note that Egs. (8),
(9) and (10) do not depend on 6 and therefore, they are not
coupled with the reorientation, as was commented above,

There are two important dimensionless parameters in our
description. One of them is ¢ = E2R?/87K, which is
equal to the ratio between the electric, E, /8, and elastic,
KL/R*L, energy densities, where K is the nematic’s clas-
tic constant. It measures the strength of the coupling between
the director and the optical field. The above mentioned low
intensity beam limit is defined by ¢ < 1. The second rele-
vant dimensionless parameter is ko R which allows us to de-
fine both, the optical OL and WKB limits. In the former one
(OL) all the contributions of order 1/koR are neglected so
that only a geometrical description of the phase fields is ob-
tained, while in the WKB limit these contributions are taken
into account to provide additionally the spatial variations of
the field amplitudes.

In Ref. 11 we obtained the eikonal equation and the ray
trajectories in the OL [Eq. (23) of Ref. 11], from the equa-
tions for the TM mode amplitudes. In that situation where
€. < 0, we showed the existence of a cylindrical caustic at
. which restricts those regions of the fiber where a trajectory
is defined, to the central part of the fiber, thatis, 0 < z < z,.
In contrast, for the case under consideration in this work,
€qo > 0, we can show that the position x, remains the same
as in the case for ¢, < 0, but the region of the cylinder where
the ray trajectory is real is now the outer part of the cylinder,
namely, . < = < 1. The behavior of the trajectories in this
case is illustrated in Fig. 2 where we plot two ray trajecto-
ries of a beam entering the guide at the interface between a
cyanobiphenil core (e, > 0) and the cladding, with incidence
angles o« = 15 and 30° , respectively. It can be seen that in
the former case the trajectory does not reach the axis of the
cylinder, suggesting a sort of inverse wave guiding effect in
which the ray is always confined in the interval 2, < x < 1.
In contrast, for « = 30° there is no caustic and the ray bends
towards the central axis and eventually reaches the other side
of the cylinder. In both Figs. 2 we have included as a refer-
ence, the trajectory corresponding to the isotropic (e, = 0)
limit represented by the straight lines.

Here, we calculate the amplitudes of the TM modes for
the different regions inside the cylinder and in the cladding
up to WKB order, since this is the required order to make
the comparison with the numerical results later on. It can be
shown that for 0 < z < 1/(koR), that is, in the vicinity
of the axis of the cylinder, the amplitude Hy(x, ko) may be
well represented by a third order Frobenius expansion [17] in
powers of x, that is,

Hy(z, ko) = Ae'l (z+Cz?+...). (11)

Therefore, the resulting approximation for Hy(z, ko) is no
longer a global one for this geometry and it is not valid in the
whole domain. As we shall see below, the main consequence
of this fact is to produce a slow converge of the approxima-
tion.
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FIGURE 2. a) Ray trajectory for cyanobiphenil for an incidence
angle o« = 15° (solid line). The broken line corresponds to the
1sotropic limit with €, = 0. b) The same as in fig. 2a for a = 30°.

Similarly, as the caustic is approached from the central
axis, 1/(kgR) < = < 2, we find that -
A
VE (P2 — €y
and between the caustic and the cladding when =, < z < 1,
Hy (2, ko) is given by

Hy(z, ko) = e'fe=koR [< dnT(G ko) (19

A el g—koR JZednT(n.ko)—3%
1

\/1_ (frr == P%) 2
% 0B [A'O‘R f ) z.’:;f(n,kg)]. (13)

Finally, for the interval 1 < x which corresponds to the
cladding, we have

Hy(z, ko) =

m

Hle ky) = Cexp(—vRz). 14

o(z, ko) IRz p(—vRx) (14)
In these equations €.. = €| + €,c05%8, €, = €, +
.92 . . .

€aSin“ 0, e;. = e,sinfcos#, are the cylindrical compo-

nents of the dielectric tensor of the nematic, p, = 3/ko and
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f(x, ko) = il'(x, ko) is defined by

eve (err — P7)

flz k) =

Err

The constants A, C' and « are to be determined by using
the boundary conditions at the nematic cladding interface

Hy(z = 1,ko) = Hy(z = 1, ko),

i d[zHy(x =1, ko)] 1 d [SUH;,(T =1, .('.0)]

€,1 dx € dzr

which requires continuity of the Hy; and E. components.
Here the upperscript (") denotes the fields in the cladding.

For the purpose of comparing our analytic but approx-
imate predictions with the exact but numerical results of
Ref. 13, we now use the above expressions for Hy(z, ko)
to calculate the amplitudes of the first two TM modes H 40,
and H 42 that may exist in the waveguide for the chosen val-
ues of the relevant parameters in the numerical approach.
For this purpose we use the same value of the parameter
R/A = 2 as used in Ref. 13, where A is the wavelength
of the beam in free space. Note that this value amounts to
taking ky’R = 4w ~ 13.6 in our description. This choice cor-
responds to the WKB limit, since koR is one order of mag-
nitude larger than 1.

To calculate the modes distributions it is necessary to de-
termine first p,, as a function of the number mode n. This
is accomplished by solving the trascendental equation ob-
tained by imposing the boundary conditions at the interface
between core and cladding on the above given expressions
for Hy(x, ko). This yields

1 / —2
/ dn E’"E’" L (15)
Jz. e

kR’

,/€”6J_

where n is an integer number.

Note that from the definition of €,.., the right hand side
of the above equation will be real if €, < P < €| (strong
regime SR); however for 0 < p* < ¢, propagation is still
possible (weak regime WR) [7]. From now on we shall re-
strict ourselves only to the SR case. Then the solution of
Eq. (15) is given in Fig. 3 for the same values of the di-
electric constants of cyanobiphenil as used in Ref. 6 and for
koR = 4m = 13.6. Since p = [3/ko, from Egs. (3) and (4)
it follows that the condition of propagation of waves along
the axis of the cylinder is p > 0. In order to obtain the
maximum number of propagating modes, recall that when
pn = [/k = 0 propagation is no longer possible. Therefore,
substitution of this condition into Eq. (15) yields the follow-
ing cutoff frequency wey,

o %’rn (16)

0 L -
15 155 16 165 L7

FIGURE 3. Number of modes n as a function of the values of p for
which n is an integer.

where we have used the abbreviation

=1
— { [&El €l €a -1 ( [Ca

Q_—_( —ln,/— — ——tanh ( —)) « (ET)
€1 €1 ALEL €l

From the above expressions it thus follows that the max-
imum number of propagating modes for a given frequency w
is determined by comparing w with w,,, . That is, if wem <
W < We(m+1), the maximum number of modes within the
cell is m. Thus, from this inequality and Eqs. (16) and (17)
we have

QkoR

= ! (18)
™

If we now substitute the numerical values of the material con-
stants of cyanobiphenil on the right hand side of Eq. (17), we
find that the maximum number of modes is m = 2. Actu-
ally, this result is already contained in Fig. 3, which shows
that only two modes may propagate simultaneously in the
guide. From Fig. 3 it also follows that p,—; = 1.63 and since
Pn = fc/w, this yields 3R = 20.47. On the other hand, for
P/Py = 0, Fig. 6 in Ref. 6 gives JR = 20.64; comparing
these two values of I? yields a difference that amounts to a
0.8% error. We thus conclude that our analytical calculation
of the propagation constant is in excellent agreement with the
exact numerical result.

Now, the amplitudes of the modes Hgyo, and Hgoo as
functions of = in the WKB limit are obtained from Eqs. (11)-
(14) and the values of p, given in Fig. 3. This yields the
curves shown in Fig. 4. Note that the position of the caustic
xr. = 0.56 is appreciably different from the value given in
Ref. 6, which is x. = 0.75. Therefore, in this case the agree-
ment between our results and those in Ref. 6 is not as good
as for the propagation constants. We discuss this point below,
but before doing this it should be pointed out that in contrast
with the numerical method, our formalism allows us to cal-
culate the spatial distribution of the electromagnetic energy
density in the WKB limit. This quantity is defined by

1
— (6 EiEj + Hyj Hyj) . (19)

“‘ff’.’n(‘rw k[]) = oy
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FIGURE 4. a) Amplitude of the TM mode H o) vs. the radial coor-
dinate . b) Same as in Fig. 4a for the mode H 0.

Figures 5 show plots of the normalized energy density @ =
zr/[(;’O 2mrueyde as a function of 2 for both modes Hyp,
and H 2. Note that as before, these curves show that the en-
ergy is confined within a region around the caustic and not
along the central axis of the cylinder, as occurs for the case
where ¢, < 0 [11].

In summary, in this work we have derived analytical ex-
pressions for the ray trajectories in the optical limit and for
the amplitudes of the only two allowed modes Hyo; and
H ;02-We have also obtained explicit expressions for the elec-
tromagnetic energy distribution, the cutoff frequency and
the maximum number of modes in the cylindrical nematic
waveguide. To elaborate on these results and on their com-
parison with the results of Ref. 6, the following comments
may be useful.

First, it should be stressed that our dimensionless and
coupled equations for the orientation and field amplitudes
contain two parameters with a well defined physical interpre-
tation. The first one, ¢, measures the strength of the coupling
between the nematic and the external field, while the second
one, k'R, defines the optical and WKB limits. Although our
calculations were carried out only for the case of a low inten-
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FIGURE 5. a) Normalized clectromagnetic energy density & =
u/ [° 27rudr for the TM mode H o, vs. = for cyanobiphenil. It
corresponds to an incidence angle a = 14°. b) Same as in Fig. 5a
for the mode Hyoz . Here the incidence angle is @ = 26°.

sity beam, ¢ < 1, our approach can be used beyond this limit
by carrying out a systematic expansions in powers of koR
and ¢ that would allow us to study analytically also the non-
linear case. In this iterative scheme one starts from a direc-
tor configuration that minimizes the elastic free energy and
then use the corresponding dielectric tensor to obtain the dis-
tributions of the propagating fields. Then the changes in the
dielectric tensor arising from the torques produced by these
modes are calculated by solving Eqs. (11)—(14) for the fields
again. Actually, this procedure was performed exactly numer-
ically by Lin and Palffy-Muhoray by using an adaptation of
the shooting method. However, it should be mentioned that in
a previous work we have carried out analytically the first step
in this iteration (weakly nonlinear limit) [18, 19] for a planar
nematic cell, instead of a cylindrical one. We showed that in
that case there may exist propagating optical solitons in the
waveguide and it would be of interest to investigate whether
the same result holds for the cylindrical geometry considered
here. The effects of the hydrodynamic backflows associated
with the reorientation have also been considered before [20]

Secondly, we should also point out that in our calcula-
tions we used the same value of the expansion parameter
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koR = 13.6, which was used in the numerical calculations of
Lin er al. Note that although strictly speaking it is one order
of magnitude larger than unity, and that it lies within the in-
terval where the WKB approximation is valid. However, the
reason why the calculated amplitudes in the WKB limit be-
have differently than those in the numerical approach, lies in
the fact that these amplitudes are not well defined in the vicin-
ity of the origin. This can be seen by noting that the cylin-
drical differential equation from which Eqs. (12) and (13)
were calculated shows a singularity at the origin. As a result,
our approximations (11), (12) and (13) are not well behaved
in the neighborhood of the origin. Therefore the approxi-
mation (11) looses globality and its convergence decreases.
Therefore, since the local behavior of the solution is essen-
tial around the origin, the solution of the equation can not be
well described by a global approximation. One way of avoid-
ing these difficulties would be to include higher order terms
in the development (11), in this case, however, the analyti-
cal calculations become more involved. Also, it would be of
interest to extend the exact numerical calculations to higher

values of ko'R ,where the validity of the WKB approximation
is better defined and see if the comparison improves.

Thirdly, although our analytical method is an approxi-
mate one, it provides for a better physical insight into the
mechanisms of propagation along the fiber in terms of more
intuitive concepts like optical beam ray trajectories and the
analytical expressions for the TM modes. In contrast to the
purely numerical method, our approach also allows us to
calculate some additional physical properties of the waveg-
uide, such as the waveguide dispersion relation, the cutoff
frequency, the maximum number of modes and the spatial
distribution of the energy density, which are important in the
design of a waveguide.
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