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Within a reformulated virtual crystal approximation, that takes into account the correct alloy dependence of the band gap value of the II-VI
pseudobinary compounds, and using the surface Green'’s function matching method we calculate the bulk- and surface-projected local density
of states of the ZnSe; . Te, alloy. We show that our approach gives correctly the band gap value and the electronic band structure of these

ternary alloys.
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Mediante una reformulacién a la aproximacién del cristal virtual, con la cual describimos adecuadamente el cambio de la banda de energia
prohibida como funcién de la concentracion, y haciendo uso del método de empalme de la funcién de Green de superficie calculamos la
densidad electronica local de estados de la aleacion ZnSe; -, Te,. Mostramos de esta manera la utilidad de nuestra aproximacidén.

Descriptores: Aleaciones de compuestos 11-VI; densidad local de estados

PACS; 71.15.Fv; 71.22.4i; 73.20.At

1. Introduction

The study of the physics of surfaces, interfaces, quantum
wells, and superlattices of semiconductors has been of inter-
est in recent years [1-8]. This interest has not only focused
on binary compounds but also on ternary and quaternary al-
loys [9-13].

In this work, and based on a corrected electronic band
structure description of the binary compounds, we develop
a method which serves as a basis to a clear and simple de-
scription of more complicated compounds and systems. A
theoretical starting point, for the study of these systems, is
an accurate description of the electronic band structure of the
binary compound. This goal can be achieved using the em-
pirical tight-binding method [14-19].

In previous work we have used the tight-binding method
to study the band gap dependence with the alloy concen-
tration in the ternary [12] and quaternary [13] alloys of the
I1-VI compounds. The tight-binding method in conjunction
with the known surface Green’s function matching method
(SGFM) [20] was successfully used to study the electronic
band structure of the (001) surfaces [19, 21], and derive the
local density of electronic states (LDOS) at the surfaces and
interfaces [22, 23].

In the II-VI ternary alloys we have shown that the tight-
binding method, together with a reformulated virtual crystal
approximation (VCA), gives full account of the non-linear
dependence of the band gap value on the molar fraction [12].
Later this theory was also successfully applied to the 1I-VI
quaternary alloys [13]. In this work we show an useful ex-
tension of our reformulation, namely, the calculation of the

LDOS in ternary alloys. One of the distinctive features of
this scheme, in comparison with other schemes, is its effi-
ciency and strong predictive power. The method, in compar-
ison with the ab initio calculations that takes long time in
supercomputer machines [24, 25], does not need supercom-
puter performance. We show that by modelling the ternary
alloy as a pscudobinary compound we can use, in a straight-
forward way, the SFGM method and obtain, for example, the
L.DOS. In particular we have applied our model to study the
LDOS of the (001)-surface of the ZnSe; _, Te, ternary alloy.
An application of our approach could be done straight out to
study the electronic and optical properties of graded compo-
sition heterostructures. Sometimes, graded heterostructures
arc obtained due to unwanted diffusion of a chemical ele-
ment, other times this effect is due to a deliberate design
(for examples of these effects, in III-V quantum wells, see
Refs. 1-4 in [26]). On the other hand, the compositionally
graded interfaces appear to have some favorable effects. For
example, Al,Ga,_,As/GaAs quantum wells exhibit an en-
hanced quantum confined Stark effect, and the absorption in
these systems is seen to decrease significantly with increased
intermixing. These are favorable features for device applica-
tions, hence the interest in these systems. In recent work, the-
oretical study of these heterostructures have been done with
the tight-binding method in the frame of the VCA [26, 27].
Although, the results obtained in that framework seems to
be acceptable, it is possible that a refinement of these results
could be attained using the approach described in the present
work. The rest of the paper is organized as follows: In Sect. 2
we present the approach the method used. For completeness
in Sect. 2.2 we give a brief description of the approach used
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for the study of the ternary alloys. Section 3 shows our results
and make a brief comment in reference to other calculations.
We show explicitly how the results of our simple descrip-
tion compares to complex calculations. The conclusions are
drawn in Sect. 4.

2. Method
2.1. The surface Green function method

To describe the surface of the ternary alloys, we will assume
a pseudobinary compound. Within this picture, we can use
the tight-binding Hamiltonians that we have proved to give
correctly the band gap behaviour in the ternary and quater-
nary alloys. The use of the SGEM method allows us to do a
detailed study of the surface. The SGFM method takes into
account the perturbation caused by the surface or interface
exactly, and we can use the bulk tight-binding parameters
(TBP). The difference between the bulk parameters and the
surface ones is taken into account through the matching of
the Green’s function [20, 28]. We use the method in the form
cast by Garcia-Moliner and Velasco [20]. They make use of
the transfer matrix approach first introduced by Falicov and
Yndurain [29]. This approach became very useful due to the
quickly converging algorithms of Lopez-Sancho et al. [30].
Following the suggestions of these authors, the algorithms
for all the matrices needed to deal with these systems can be
found in a straightforward way [30, 31].
The surface Green’s function is found to be [20]

G;' = (wl — Hy) — Hn T, (n

B

and the projected bulk Green’s function, [20]
= = 1 =
b e G, - Hy, T, (2)

where w is the energy eigenvalue, Hpo and Hy, are the
tight-binding Hamiltonians that describe the layered sys-
tem. We adopt the customary description in terms of prin-
cipal layers, and retain first nearest neighbors interactions
between principal layers. It is well known that this method
gives a correct electronic description of surfaces and inter-
faces [19,21-23, 32].
It is customary to define the transfer matrices as

("'k+]‘p = TGR']M k = P > 0

Gi-1,; =TGy, j>i>0. 3)
These matrices can be calculated with the quick algorithm
of Lopez-Sancho er al. [30] and Baquero [31], (see Refs. 22
and 23 for a compilation of the formulae and details of the
algorithms used).

For any of the Green’s functions given above the corre-
sponding density of states, projected at a given layer, can be
obtained from the usual formula

Nk,w) = v%hn [tr Gk, w)], (4)

where k is the 2D wave vector and w is the energy eigenvalue.
In the study of the (001) surface, for simplicity, we assume
an ideal truncation. This approximation seems reasonable be-
cause it 1s widely accepted that the structural disorder effects
in the ternary alloys are generally small [25,33]. The total
projected density of states is then obtained by integrating in
the two-dimensional (2D) first Brillouin zone (BZ) using the
method of Cunningham [34]. Here we have used a set of 9
special points in the BZ. For numerical convergence a small
imaginary part of 0.001 eV to the real energy variable was
added.

2.2. Our approach

In order to make this work self-contained we present here our
treatment for the ternary alloys. Briefly speaking, we have
used the tight-binding method and, under the conditions ex-
plained below, the VCA to study the ternary alloys. In this
approach we take into account first nearest neighbor interac-
tions, in the Slater-Koster language [14]. We use an orthog-
onal basis of five atomic orbitals (sp®s*) and, in our band
structure calculations, we have included the effect of the spin-
orbit interaction [17].

For the study of the ternary alloys we have included an
empirical bowing parameter in the “s” on-site TBP of the
substituted ion. This procedure give us the correct behaviour
of the band gap as function of the composition. More exactly
for the TBP of the ternary alloy we take their virtual crystal
expression given by

En,a’('r):;?:f;“)

e + (1= ')Er(.zix a,a =s,p%, 5%, (5)

for all but the “s™ on-site TBP of the substituted ion. In Eq. 5
E{l‘ ((;”J are the TBP for the compound 1 (2); a,a’ are the

atomic orbitals used in the basis set.

For the “s™ on-site TBP we use the following expression:

E; . (v,b,) =E; (2) +2(1-2)b,, v=a,c, (6)

where E () is given by Eq. 5, and b, is an empirical bow-
ing parameter per each different substitution. From Eq. 6
is clear that b, has energy units. This parameter could be
thought as an heuristic description of the disorder effects. We
can justify this approach by appealing to the simplicity of the
treatment and the quality of the results, as we will show in
the next secction. The empirical bowing parameter used for
the anion substitution in ZnSe; _, Te, is b, = —6.964 (com-
plete and detailed treatment for other 1I-VI ternary alloys will
be published elsewhere). With this Hamiltonians we can then
calculate the band gap value and, of course, the electronic
band structure for all the molar fraction in a straightforward
way.
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FIGURE 1. Band gap dependence on the molar fraction of
ZnSe; ., Te... The points are the experimental data of Ref. 33. The
solid line shows the results of our calculation.

3. Results and discussion
3.1. The band gap calculation

Figure 1 shows our band gap calculation for the ZnSe; . Te,
system. In the figure the experimental data are showed by
points and the full line represents our calculation. The figure
shows good agreement between the experirnental and the the-
oretical curve, in particular in the & < 0.5 range. The exper-

imental curve shows a minimum around z%" =~ 0.65 which
min

is very close to our calculated value 2% ~ 0.66. At this -
value we obtain a band gap value of 2.47 eV, this is about 0.08
¢V underestimated with respect to the experimental one [35].
We also have calculated the optical bowing parameter of the
system and obtained the value of 1.51 eV, which is in good
agreement with the experimental one, namely 1.507 + 0.10
eV [35]. Asis evident, our error is within the known accuracy
of the method.

3.2. The electronic band structure

Within our approach, as explained in Sect. 2.we have calcu-
lated the electronic band structure for the case x = 0.5, and
compared it with the extremal cases, namely, ZnSe (2 = 0)
and ZnTe (z = 1).

Figure 2 shows our electronic band structure calculation
for this case. From this figure is clear that the calculated struc-
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FiGURE 2. Electronic band structure for: a) ZnTe, b) ZnSeo 5Teo.s,
and ¢) ZnSe. The electronic band structure for the ternary alloy has
been calculated as explained in Section IT B. The energy scale is
referred to the maximum in the valence band.

ture, Fig. 2b, is representative of a semiconductor compound
with a direct band gap. At the same time, Fig. 2b shows that
in the upper valence band region it is very similar to the cor-
responding ZnTe case, see Fig. 2a. The lowest valence band
resembles the ZnSe one, see Fig. 2¢, but with energies values
that are mixed between them.

In the conduction band region the lower conduction band
is similar to the corresponding ZnTe one, as we have com-
mented above, Scct. 3.1, for low Te-concentration. The rest
of the bands are similar to the ZnSe case.

3.3. The LDOS calculation

Figure 3 shows our calculated bulk-projected LDOS for the
ZnSe,_,Te, alloy. We will concentrate our discussion only
on the valence band region. Mainly, as is well known, be-
cause the tight-binding method gives a poor description for
the upper conduction states.

We can observe in the figure the change of the bulk-
projected LDOS going from ZnSe (z = 0) to ZnTe (2 = 1).
We obtain three peaks in the valence band region and four
peaks in the conduction band region. The upper valence band
widthis ~ 5 and ~ 6 ¢V for ZnSe and ZnTe, respectively. For
all the alloys we obtain an appropriate combination of these
values, with exception of the = 0.6 case. At this concen-
tration we find a small upper valence band width. In this case
we obtain a band width of about 3 eV. We should remind that
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FIGURE 3. Bulk-projected local density of states for the (001)-
surface for ZnSe,_. Te,. The calculation is showed at different x
values.

this concentration corresponds to the minimum in the band
gap value. At the same time, as we can see from the figure,
we have a large increase of states in the bottom of the valence
band. That is to say, the states “are moving” from the upper
valence band states to the lower states. If we integrate the
LDOS through out the valence band region, [ N |(w;z) dw,
we realize that the number of states in this case is the same
that for the other z-values. As it should be expected: we have
conservation of states for each different z-value, but we also
get a redistribution of the electronic states.

In the lower valence band region, we find a wide gap in
the valence band LDOS. This gap is ~ 7 and ~ 5.5 eV for
ZnSe and ZnTe, respectively. We remark that these values
are very close to the ones obtained in bulk, ~ 6 and ~ 5.4 for
ZnSe and ZnTe, respectively [36, 37].

On the other hand, it is worth to comment that our LDOS
shows almost the same pattern found by Li and Potz [24] us-
ing a large cluster approach, based on a tight-binding sp*s*
model, within an ab initio calculation, or the molecular co-
herent pseudopotential approximation (MCPA) of Lempert et
al. [25). However, because our model is empirical and 2D in
nature, we make no attempt to compete directly with more
fundamental a priori approaches. We only show that our
tight-binding and reformulated VCA approaches reproduce
known features of the calculated density of states (DOS). In
principle, we could think that in the calculation of the LDOS
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FIGURE 4. Local density of states projected on the first princi-
pal layer of the (001)-surface for ZnSe;_.Te.. The calculation is
showed at different = values.

we should lose important information on the DOS, due to
the losing of the Z-coordinate. However, in this work we are
showing that the process lets us retain the main features of
the DOS.

Finally, Fig. 4 shows our calculated LDOS projected onto
the surface principal-layer. The main result, that can be ob-
served from the figure, is the general narrowing of the band
width. As is well established, this is mainly due to the loss
of half of the first nearest neighbors for this surface [22].
Another peculiar result, showed in the figure, is the highly
energy-localized surface state in the middle of the fundamen-
tal band gap for all concentrations, approximately. This fact
was reported previously in the Ref. 32 for other II-VI bi-
nary compounds as well. At the same time we find a sur-
face resonance near the top of the valence band. This sur-
face resonance is characteristic of an anion terminated sur-
face [21,32]. (For a cation terminated surface, not showed
in this calculation, there should appear a surface resonance in
the middle of the valence band {21, 32]). A final resonance
state is obtained in the bottom of the valence band, by look-
ing at Figs. 3 and 4 we see that this resonance state moves
together with the lowest bulk band as a function of x (see
Ref. 21 for a detailed discussion of the valence band elec-
tronic structure of these and other II- VI semiconductor com-
pounds).
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4. Conclusions

In conclusion, we have shown that an adequate tight-binding
description of the II-V1 ternary alloys can be achieved within
a reformulated virtual crystal approximation. This approach
allow us to reproduce important properties of these systems,
as the LDOS and surface states. Our confidence rests on the
fact that we start from an adequate description of the bulk
bands of the binary compounds. Our results are consistent
with other more complicated calculations, and the method is
not so expensive than these. In general, the valence band fea-
tures, within our formulation, are in good agreement with the

molecular coherent pseudopotential approach calculations.
We will show in the near future other useful applications of
our approach.
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