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We present a formal study aimed to the validation of theoretically obtained results concerning the steady state surface aggregation pattern
for unbound Low Density Lipoprotein receptors near coated pits. The receptors will be assumed to move by diffusion and radial convection
toward the center of the endocytic traps. Their insertion is assumed to occurr uniformly in restricted annular regions sourroundig the traps.
The fundamental properties of the mean capture time and the steady state concentration density of unbound receptors as functions of the
involved parameters are formally studied. The implications of the derived results are disscused.
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Presentamos un estudio de las propiedades matemdticas de la funcién de distribucion radial de estado estable para receptores libres de
lipoproteinas de baja densidad. Dicho estudio se requiere en el proceso de validacion de resultados tedricos que caracterizan a los patrones
de agregacion de los receptores en torno a las trampas endociticas. EI movimiento de los receptores se supone controlado por un proceso
de difusién con conveccién radial dirigida hacia el centro de las trampas. La insercion de los mismos ocurre uniformemente en regiones
anulares cercanas a las mismas. El estudio formal de las propiedades de la funcién distribucidn de estado estable y del tiempo promedio de
captura de los receptores se lleva a cabo considerando la dependencia de estos respecto con los pardmetros pertinentes. Se discuten también

las implicaciones de los resultados obtenidos sobre el sistema real.

Descriptores: Endocitosis via receptores; reinsercion restringida; distribucion superficial

PACS: 87.10; 87.22.F; 87.15.K

1. Introduction

The low density lipoprotein (LDL) endocytic cycle is the pro-
cess which permits to the human fibroblastic cells the uptake
of cholesterol needed in metabolic processes. The large LDL,
particles produced in the liver carry about two thirds of the
cholesterol circulating in the bloodstream [16]. Before its in-
ternalization, the LDL ligand macromolecule binds to its cell
surface receptor. The so formed complexes move in the plane
of the cell membrane until they are trapped. This occurs in
specialized membrane sites known as coated pits. In a fur-
ther step, the ligand-receptor units are transported to the inte-
rior of the cell in glosed vesicles formed by the invagination
of the coated pits. At lysosome level the bindings are syn-
thesized. The ligand is retained, and in many experimental
situations including the LDL system, the receptor is inserted
back in to the cell membrane to perform again their endocytic
tasks. This sophisticated internalization process is known as
Receptor-Mediated Endocytosis it is used by a number of bi-
ologically active molecules, to gain entrance to the cell [17].

Deficiencies in the LDL endocytic cycle are responsible
for the ailment known as familial hypercholesterolemia. This
is characterized by high levels of circulating LDL and the

cholesterol deposition in arteries and tendons [5]. This condi-
tion provokes coronary disease and the incidence of strokes.
Because of its medical importance the receptor mediated en-
docytic cycle for LDL particles in human fibroblastic cells
has been extensively studied at both experimental and theo-
retical levels. This has produced a great deal of data and the
conceptual framework which permits the mathematical mod-
eling of the process.

A widely accepted assumption considers that the re-
ceptors move by diffusion in the plane of the cell mem-
brane [2]. Nevertheless some authors claim that additionally,
other mechanisms could influence their transport to coated
pits from the sites were they are inserted [4]. An important
theoretical problem pertains to the estimation of the rate at
which LDL receptors hit coated pits. A faster rate will per-
mil a greater removal of the LDL ligand. Besides diffusion,
as a fundamental mechanism for the transport of the LDL
receptor, a local radial flow assumed to be produced by the
invagination of the coated pits has been invoked [8, 14]. Con-
trasting the hypothesis of a uniform insertion of the receptors
all over the cell membrane in [1], and following experimen-
tal results, it was conjectured by Robeneck and Hesz [19]
that a preferential insertion of receptors in sites near coated
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pits must exist. Furthermore that insertion mechanism would
necessarily induce an observable surface aggregation pattern
for these particles around the endocytic traps. These surface
clusters were called plaques.

If the receptors are inserted in sites close to the endo-
cytic traps it is expected that their mean capture time will be
shorter, this independently of their transport device. Preferen-
tial insertion was modeled by Wofsy et. al. Ref. 21 assuming
that the receptors were inserted uniformly in annular regions
surrounding coated pits. The effect of this insertion mode on
the reduction of their mean capture time was evaluated. In
that study it was assumed that the movement of the receptors
was controlled solely by diffusion. As a result, preferential in-
sertion is a mechanism which could dramatically reduce the
mean capture time based on diffusion and uniform insertion
all over the cell membrane. Nevertheless the characterization
of the corresponding steady state surface aggregation pattern
for the unbound receptors near coated pits was not addressed.
We will maintain throughout the term preferential insertion
to label an insertion mode similar to the one considered in
Ref. 21.

In order to evaluate the effect of radially convective diffu-
sion and a preferential insertion mechanism a suitable model
was presented in Ehavarria-Heras [8]. It was concluded that
within physiological limits the local radial flow induced by
the invagination of the coated pits would have only a negligi-
ble effect on the aggregation rate of LDL receptors in these
structures. Although this last study contributed in the discus-
sion about the influence of convective transport in the aggre-
gation rate of the receptors in coated pits, the characterization
of the surface aggregation patterns for the unbound receptors
near coated pits remained as an open problem.

Following the theoretical discussion presented in Ref. 11
Solana et. al. [20] introduced a method based on the com-
puter graphics technique of ray tracing [7] to generate the
surface aggregation patterns of unbound LDL receptors near
coated pits. These patterns were obtained associating a gray
tone scale to the values of the steady state concentration func-
tion receptors at a radial distance from the centre of a coated
pit. In each case black was associated to the maximum pos-
sible value for the referred concentration. The study in [20]
invoked a radially convective diffusion transport device sim-
ilar to the one addressed in [8] but considered instead, a gen-
eralized radially symmetric insertion mode [10, 11]. In that
framework preferential insertion could be included as a par-
ticular characterization of the insertion mode. It was con-
cluded that preferential insertion was unable to generate the
observed plaques unless the radial flow could take strengths
far beyond its expected physiological limit. It was also con-
jectured that within physiological limits, these plaques could
be induced by a continuous and decreasing insertion mode.
It is worth to point out that this assumption regarding the
form of the insertion mode was not derived from experimen-
tal studies as it occurred with preferential insertion. Conse-
quently the further exploration of this paradigm deserves our
attention.

In that order of ideas, in this paper considering again
the model introduced by [8] and generalized by [20] and
assuming the case of a preferential insertion mode we will
present the study of the fundamental mathematical properties
of the associated steady state concentration function for un-
bound receptors. The formal study presented here will test the
consistency of the analytical methods employed to simulate
the surface aggregation patterns reported in [20]. The conse-
quences of the behavior of the aforementioned steady state
concentration function on the corresponding mean capture
time functional are also presented. This will also contribute
to the corroboration of the adequacy of the preferential-
insertion radially-convective diffusion model to represent the
LDL receptor dynamics. This includes the characterization of
the associated surface aggregation patterns. Furthermore, on
the basis of the formal analysis presented here we will cor-
roborate in a rigorous way the conclusion that preferential
insertion is not an adequate paradigm to induce the observed
plaques. Consequently according to Solana er al [20] the fact
that within physiological limits a continuous and decreasing
insertion mode could induce these aggregation patterns leads
to the consideration of additional experimental effort aimed
to the characterization of the correct insertion mechanism.

The mathematical model is described in Sect. 2. The stud-
ies of the properties of the derived steady state surface dis-
tribution and the mean capture time functional for unbound
LDL appear in Sects. 3 and 4 respectively. For completeness
of the presentation in Sect. 5 we will provide the behavior of
the mean capture time and the associated surface aggregation
patterns for LDL receptors near coated pits. This will be done
using in the parameters pertinent to the LDL system in human
fibroblastic cells. These results are discussed in Sect. 6.

The present authors corroborate that the surface aggrega-
tion patterns reported in Ref. 19 could be explained by dif-
fusion, the radial flow and uniform insertion but only in the
case where the flow has strength values beyond its physiolog-
ical limits. The invoked preferential insertion mode besides
diffusion is not capable to induce the reported plaque form
surface aggregation patterns. The combination of diffusion,
radial convection and preferential insertion of the form con-
sidered here could do so but only under suitable flow strength
values. For details on the biological background as well as the
theoretical framework used to build the model presented here
the reader is referred to Refs. 9 and 11.

2. The model

In the experimental system used to study the receptor-
mediated cycle for LDL particles in human fibroblastic cells,
coated pits cover only 1% of the cell surface and appear to be
partially aligned over cellular fibers. Hence the set of coated
pits can be approximated by a two dimensional dilute, and or-
dered system of traps. This induces periodicity properties. If
we also invoke symmetry conditions, a simplification could
be introduced. As explained in [9] using the Berg-Purcell ap-
proximation method [3] we can reduce the real multiple-trap
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situation and consider a single trap of radius a surrounded
by a circle of radius b. This is calculated according to the
surface density of endocytic traps. In the problem studied by
Berg and Purcell [3] the particles were supposed to move by
the influence of diffusion and were inserted uniformly over
the reference annulus @ < r < b. The internal boundary at
» = a was absorbing and the external at r = b reflecting.
The last boundary condition reflects the fact that due to the
involved periodicity, on average, it takes the same time for
the particle to be trapped by a neighboring sink than what it
takes to reach the coated pit closer to the site where it was in-
serted (see Ref. 9, for a detailed explanation of the rationale
of this approximation).

Following [8] we assume here that in the reference annu-
lus @ = {(r.8)|a < r < b} about the trap, a steady state
concentration density of particles is maintained by the bal-
ance between the number of particles lost to the traps and
the number inserted. A radial flow directed toward the cen-
ter of the traps will be assumed to influence the diffusion
transport of the receptors. Also we will assume preferential
insertion, i.e. the receptors are assumed to be inserted uni-
formly in annular regions surrounding coated pits [19, 21].
We will also consider that the coated pits has an infinite life-
time. This assumption will correspond to the consideration of
the maximum effect of the radial flow on the trapping rate of
1.DL receptors by coated pits. The study of the receptor me-
diated endocytic cycle taking into consideration the transient
behavior of the traps was studied in Ref. 13. It was found that
the infinitely-lived trap model is consistent with experimental
data for the rate of aggregation of the LDL receptor in coated
pits.

We review now, the radially convective diffusion and
preferential insertion model for receptor mediated endocyto-
sis introduced in [8]. The velocity of the membrane flow into
the trap is supposed to have the form

V (r,0) = v, (N

where |V | has the units of distance/time, v, is a scalar func-
tion of » and 17 is the unit vector pointing out radially from
the origin toward (r,8) .

The scalar function v,, must be negative because the flow
is towards the trap and /7 points out. Now the amount of mem-
brane A, passing » per unit time is expressed in terms of v,
by means of

A, = |27rv,,

for @ < 1 < 0. It is has been hypothesized [12] that
within experimental conditions the coated pit recycling pro-
cess maintains a steady state surface distribution. If we want
the amount of membrane per unit area to remain constant,
then the scalar function A, must be constant. Hence v, must
have the form

H (2

Uy = ——) 2)

where the scaling factor j is a positive constant which we call
“flow strength constant”. Substituting this expression into
Eq. (1) we obtain

= L

V(r,8) = -Li. 3)

—

-

The equation for the steady state concentration C(r, pt)
of particles at a distance r from the center of the trap moving
under the influence of diffusion and radial convection with
strength g is [22],

~div (DC) + div (CF’) = S(r), )

where D > 0 is the diffusion coefficient of the particle un-
der study, assumed to be a positive constant with units of
cm?/s. and S(r) the rate of particle production in units of
particle/cm?-s, at a distance r from the center of the trap.

To model insertion in plaques [19] following [21] we
could assume that S () has the form

Sty = 5 a<vr<ima )
0 ma<r<hb,
where S is a positive constant related to the total number of
particles inserted.

Substituting Eq. (3) into Eq. (4) one gets that C(r, p1) sat-
isfies the equation

pv2e + 2% L s =o. (6)
r or

As we already pointed out using the involved periodicity
and symmetry properties the single trap approximation can
be obtained if we assume that the flux across the boundary at
» = b vanishes. This generalizes the Berg Purcell [3] reflect-
ing boundary condition and expresses the proper boundary
condition for C'(r, p¢) atr = b.

The magnitude of the flux vector J gives the net number
of particles per unit time per unit length crossing a bound-
ary: its units are particle/cm-s. There are two contributions to
the flux, one due to diffusion and the second due to the flow.
Hence

J=-DVC +VC.
Since by radial symmetry the steady state concentration

depends only on r. we get that a flux vanishing boundary con-
dition at r = b is equivalent to

acC It
—— —~C(b, ) = 0.
o |, + ) C(b, 1) (7)
The absorbing boundary condition at r = a is,
Cla;, p) = 0. (8)

Notice that the assumption that S (r) has the form (5)
makes it necessary to add continuity conditions: at r = ma,
Le.,

C'(r, jt) continuous at r = ma, (9)
aC(r, i) )
— continuous at r = ma. (10)
Jr
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Summarizing, the steady state concentration density
C'(r, ) of particles diffusing on Q0 under the additional in-
fluence of a radial flow into the trap at = a with uniform
insertion restricted to the regiona < r < ma < b, an ab-
sorbing boundary at r = a and with the flux of particles
across the boundary at » = b set to zero, can be modeled
by means of Eq. (6) for S(r) as given by Eq. (5) and taking
into account the boundary and continuity conditions given by
Eqs. (7) through (10). We throughout refer to Eq. (6) and its
associated set of boundary and continuity conditions simply
as the model.

3. The fundamental properties of C(r, p)

In this section we obtain C(r, i) and establish some of its
properties. These will be needed to test the theoretical con-
sistency of the model. This can be also achieved studying the
behavior of the associated mean capture time functional. In
the next section we will define such functional in terms of the
number of unbound receptors averaged over the approxima-
tion circle 0 < r < b. The required properties of positiveness
and monotonicity for the dependence of 7 (p,m) on p will
|

follow from the corresponding ones on C (r, ;). By proving
these properties we will test that the model adequately repro-
duces the behavior of the real system.

Replacing V2C by 1/r{[d/8r][r(8C/dr)]} in Eq. (10)
we have that C'(r, i), under condition (2.5), is given by

Sr?

ICar—#/D
. 2(n+2D)

KD

C(r,u) = = a<r<ma (11
J
K,D

K80 4 = ma <1 <b,

G

where I, IV, I3 and I are integration constants. Apply-
ing the boundary and continuity conditions over a < r < b
we obtain that these constants are,

S (m."" - 1) a®/D)+2, L 9DS (1 - m“/D) m2a(n/D)+2

Ky =

2p(p+2D)

. Sa*m?
K = 5D (12)
Ky, =0, (13)
Ky = a*/P+25 (2m®D + pm? — p) ‘ (14)
20 (p+ 2D)
(15)

As shown in the next section, to obtain the mean capture time 7 (g, m) predicted by the model we need to calculate the
number of diffusing particles averaged over the approximation circle 0 < » < b. In order to do so, we will need the integral,

b
/,; rC(r,pu)dr = 2D D

whichis valid for1 <m < b/a,u > 0,D > 0,and p # 2D,
and follows from Eqs. (11)—(15) after some algebraic manip-
ulations. The result can be easily extended to the whole do-
main g > 0 (see proposition 4.1).

To check on the positiveness of C' (r, i), from Egs. (6)
and (5) using the polar coordinates form for the Laplacian
we obtain

d
Dy -
g [I Clr, ,u)l

Sm2a? — §r?

2D
0 ma <r < b

(/D) =1 -
)r a<r<ma a7

Hence for a < v < ma we must have

% [1.11/00(7.?“)] > 0.

Consequently ##/P C (r, u) is increasing and necessarily

TI[L/DC(T\ n) > au/D(j{a, = D,

$.8 _ 950
s (m*a* — a?) +b2a2(

/D p y
a)‘ [(,u 4+ 2D)Ym? — pu — 2DmB/P)+2 (16)

b 2u(p+2D) '

=
Then

C(r,p) > 0.

Similarly for ma < r < b from Eq. (11) it follows that

constant

C(T‘, '“) = ri/D

By the continuity of C' (r, 1) at ma, the constant must be pos-
itive. Then fora < r < b, u > 0, D > 0, we have,

C(r,u) > 0. (18)
Using direct algebraic manipulation it is not difficult to

demonstrate that there exist a function ¢(a, m, D, u) which
does not depend on j¢ and defined through,

/ l flro)Clr, p) dr = ¢la,m, D, u), (19)
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where

=B B
f(r"“)( uD D-r)’

fora < ma < r < u < b.Thenfora < r < wu and
jo > 0, D > 0 we have

af (ryp)

< 0.
o = 0 (20)

f(r,u) <0, and

Since the partial derivative of C'(r, 1) with respect to s exists
and is bounded, it follows from Eq. (19) that

[—Cw,u dr—i~ffu, fd:—{) 21)

By virtue of inequalities (18) and (20) from the above equa-
tion we must have

" oG
[ (1 (w1 g dr <0

Invoking inequality (20) again and considering that the
above inequality holds for all w such thata < r < u < bwe
must have that for ¢ > 0 and D > 0, C(r, p) satisfies,

/ —dr <0. (22)

Now since C(r, i) satisfies Eq. (6), using the polar coor-
dinates form of the Laplacian it can be easily shown that for
a<z<r<u<b D>0,pu>0,wehave

“10C (r, 1) ﬁC (r, ) 3
[ [ ar +D » dr=R(u,S,m,a,D,z) (23)

where
Ri(i,8, 0, 0.0, 2) =

A  Sa?m2—Sr2 )
{.L (sl ) ar a<:

0

ma

<u
% & u < b,

IA 1A

<r
as<z

Notice that R (u, S, m, a, D) does not depend on p. Inte-
gration in Eq. (23) yields

Y C(ryp)
Eiakoeill L1l
D r '

=R (u,S,m,a D, z).

Cu,p)—C(z, 1)+

Taking the partial derivative with respect to s in the above
equation we have fora < z < u < b,

aC (u,p)  9C (z, )
Ap o

Y C () | g OC(z ), _
+[( or T D on dr =0. (24)

Now define, the real valued function g (r) through,

oC (r, p)
e “=

g{r)= &b

We now show that g (r) is negative for 4 > 0 and
a < r < b. Suppose firstly without loss of generality that
g(r) > Oonaset P C Q2 and assume that g(r) < Oonaset A
such that PU A = . We show now that P = ¢. Assume that
P = [q,b] where a < ¢. Since inequality (22) holds in 2 our
assumption regarding the sign of ¢ (r) in the interval [a, ¢
is correct. Since ¢ (r) is continuous, the form of P implies
¢ (q) = 0. Now from Eq. (24) we have fora < ¢ < u < b.

“p 8C(r, 1)

Dr op dp=

g
AC (u, )
[ &
Since we have chosen ¢ < u < b then obviously [q,u] C
P and since i/ Dr > 0 the left-hand side of Eq. (25) must
be positive. Since by virtue of inequality (18) C (r,pn) > 0
then the right-hand side of Eq. (25) must be negative. As a
conclusion P cannot be taken in the form P = [¢,b]. In a
last possibility we could have g (r) changing signs several
times. Without loss of generality lets consider for instance
that P = U P, forn > 1 and where P N P; = ¢,
for k # j. We now show that P, = ¢ for all k such that
1 < k < n. In fact, assume that g () is positive in a set of
the form Py— [cx, di| C [a, b] then inequality (22) will imply
that ¢ (r) is negative in an interval before P and also in an
interval after Py and by continuity,
ac _ac
BI r=cj - Oﬁt ‘r:dk
Equation (24) will now give

vy, _{Lac' (?.‘ ,l.'.) - /da C(T’, [J:) .
s Dr  Op e 5 D -

This is again a contradiction because in the above equa-
tion the right-hand side is by virtue of inequality (18) nega-
tive and the left-hand side needs to be positive since by our
assumption [k, di] C P. As a conclusion P = ¢ . Hence for
a<r<bandp>0,D >0, we must have

) (26)
o —
The next result will be needed to study the behavior of the

second derivative of 7 (g2, m)with respect to po. From Eq. (21)
we have

“af (r,p) 9C (r,p) /“ 3C
- Ir ,7) 75— dr = 0.
J T I u-l-ﬂf(,(:?)a'uzu
Now since inequalities (26) and (20) hold fora <r < u
from the above equation we conclude that

b 92
[ el g

/ ‘;}S dr >0 @7

O, p)

q

=0.

9

This implies

fotg < L u<h
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4. The fundamental properties of 7 (u, m)

In this section we will state and prove several properties of
the mean capture time 7 (y2, m) for diffusing receptors under
radial convection of the form (3) and preferential insertion as
shown in (5). We derive first, the explicit form of 7 (i, m).

— Definition 4.1. we define k.4 as the diffusion convection
limited forward rate constunt depending on uniform particle
insertion over the region a < r < ma < b. It is given by

ac
QJTDG,—,(T’ “)
ar

(C(r, p))

where (C'(r, ) for every fixed value of y, stands for the
number of unbound receptors averaged over the approxima-
tion region 0 < r < b. It is given by,

knm+ = =t ) (28)

b
22[ 27rC(r, p) dr. (29)

(C(r,p)) =

m

We notice that ky,,,+ can be interpreted as the flux of dif-
fusing particles into the trap divided by the average concen-
tration (C'(r, pz)) or equivalently, as the number of particles
hitting the trap per unit time per diffusing particle. Since the
steady state assumption implies that the number of particles
trapped equates the number inserted into the reference annu-

lus €2, we must have,

27 fﬂb rS(r)dr

(Clr, ) =

km ut =

( ) 2D m?a? — a? - b?
) =
Tt p—2D 8D (m2—1)

— Definition 4.2. Let T (11, m) be the mean capture time for
particles under the assumptions of the model. Then

b2

mp+

(31

7(p,m) =

This definition can be explained straightforwardly. If p
stands for the trap density on the cell surface, then the prod-
uct

[ — (C(T» w) p (32)

gives the mean number of hits to the trap per unit time per
unit area. This quantity equates the ratio

{C(r, 1))

T(u,m) 33

The result of Eq. (31) is established by noticing that ac-
cording to the single trap approximation the outer radius b of
the annulus €2 must be obtained from the relation

1

P= e (34)
wh?
(See [9] for details).
Using Egs. (30) and (31) we get for 7(p, m),
b
C(r, Ir
Fa0) -dn  CAELY 35)

[ab rS(r)dr

Using Eq. (26) we easily conclude that for g > 0, D > 0,
p# 2D, and 1 < m < b/a we have

E)“/” [(u +2D) m? — i — QD’“WWZJ } (36)

b 2 (pe+2D)

From Eq. (35) and using inequality (18) it can be easily seen that whenever 1. # 1 we have 7 (y¢,m) = 0. On the other

hand From Eq. (36) implies,

(jt +2D)m> = p = 2Dn(n/D)+2

3 1\ 1/ D
lim 7(p,m) = b2 (ﬂ)J lim [

m—+1 b m-—+1

Hence for the case of m = 1, using the result of Eq. (37)
we can set 7 (y2, 1) = 0. This will give

T (fym) 2 0, (38)
forpp > 0and 1< m < b/a.

For 7(ye, ) as given by Eq. (36) we also have,

ul ‘5;! m (39)

(m?* = 1)2p{y1 + 2D) ] =0 @7

To show this, observe that by virtue of Eq. (35) we must
have,

dripm) 2 /b 9C (rp)
e (m2-1)a2S J, J op "

Hence for m # 1 inequalities (32) implies the result of
inequality (39). If m = 1 using the result of Eq. (37) to define
7 (p1. 1)will permit to complete the proof.

Rev. Mex. Fis. 45 (3) (1999) 276-284



282 HECTOR ECHAVARRIA H., ELENA SOLANA A., AND CECILIA LEAL R.

Let 7(p,m) be given by Eq. (36) then for p > 0, and
1 < m < a/b we have,

o7 (p,m) 9
ap?
The result follows from Eq. (35) and inequality (27).
Let 75, be the limit of the mean capture time 7(y,m)

when ;¢ approaches 0. It is straightforward to show that for
fixed m we have

(40)

We summarize the above results in the following,

— Proposition 4.1. Let 7 (p,m) be given by Eq. (36) for
D>0,p>0pu+#2D, 1< m < b/aThen 7 (u,m)
satisfies the properties (37)-(41) and takes the additional lim-
iting values,

lim 7(u,m) =
pn—2D (; )

Wm_l) {[312log (%) - 256]m?

7. = lim 7(p,m)
il Jje—0
2 9 2 g 2 ’ a 4
_ b'mPlog(m) 20" + (m*-1)a @ + [192 — 256 log (m) — 156 log (3)] m
T 2D (m?-1) 8D ) .
i b1 e
We notice that when m approaches b/a, T5, approaches * [64 1561og (b)] } (43)
the mean capture time 7 obtained by Berg and Purcell [3], i.e.
Ti= Hm T lim 7 (g, m) =0 (44)
m—h/a t—00
2 2o 2 2 _ 2 P
_ P(b/a) 10.;., (0/a) 2b6*+ ((b/a)* —1)a @ lis 7 o) = T2 8 45)
2D ((b/a)* - 1) 8D D=0 4y
| lim 7(u,m)=0 (46)
D—o00
2 B - a? b)? oD | (4 +2D) B2 — pa? — 2 (2) P 12
lim 7(p,m)= L ke ‘()“ ) - (f)F (n )b - Ha , (a) 4 (47)
m—b/a u—2D 8D (b2 —a2) \b 2ta® (ju+ 2D)

Using these limiting values, 7 (y¢,m), can be extended
to a continuous function in the region D > 0, u > 0,
1 < m < b/a. The proof of these results can be easily ob-
tained.

5. Results

On first hand we briefly review the implications for recep-
tors dynamics derived from the model. In order to do so, we
need to characterize the expected physiological value for the
flow rate scaling factor yi. The radial flow originates when
the portions of the cell membrane associated to coated pits
invaginate to internalize the trapped ligand-receptor com-
plexes. Since experimental results [6, 12, 15] indicate that the
coated pit has an average lifetime of approximately 5 min-
utes, we expect that in order to keep the amount of membrane
in the neighborhood of the coated pit at a constant level, in
that amount of time the flow must transport into the region
occupied by the coated pit an amount of membrane equal to
its surface area. Since the flux into the trap at r = « due
to the flow is 27y and this corresponds to the net amount
of membrane crossing » = « per unit time in the direc-
tion of the center of the coated pit our requirement will be
satisfied by a flow of strength o satisfying 107y = ma?,
that is, i = (107"") em?*/min. The parameter values [12]
for the LDL system are @ = 10 %cm, b = 10~*cm and
D = 2.7 x 10~ "em? /min. Maximally there are 10° LDL re-

ceptors in the cell surface [18]. The ratio of receptors bound
in coated pits to unbound ones [12] is 2.2. Hence for a fixed
value of p¢ Eq. (16) can be used to estimate the constant
S in Eq. (5). Using these parameters values Eq. (36) gives
7 (po.b/a) = 2.91157 min. that is, a radial flow that has the
physiologically plausible strength 1o will have only a negli-
gible effect on the mean capture time 7 obtained on the basis
of pure diffusion and uniform insertion all over the cell mem-
brane (cf. Eq. 42 which gives 7 = 2. 911833 min).

For a radial flow of strength 1y a non-uniform insertion
function of the form (5) would require a preferential insertion
radius of 3.3a, in order to halve r (see Fig. 1). This implies
that in the presence of the flow induced by membrane loss as
coated pit form vesicles, insertion of receptors must be ex-
tremely restricted in order to produce a substantial effect on
the mean capture time calculated based on pure diffusion and
uniform insertion all over the annulus (2.

Using the computer graphics technique of ray tracing [7]
we can reproduce the corresponding expected steady state ag-
gregation pattern for LDL receptors near coated pits. To do
so, for each p fixed we rotate the plot of the concentration
function C'(r, 1) with respect to an imaginary axis through
r = 0 and perpendicular to the interval a < r < b. Next,
for the so generated surface = = C(r, 1) the value of z will
correspond to a level of gray proportional to the value which
C'(r, 1) takes on a circle of radius r, for every value of .
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FIGURE 1. The potential of the preferential insertion mode (35) to
reduce the mean capture time 7 calculated on the basis of diffusion
and uniform insertion all over the cell membrane. We observe that
for a flow of strength jio halving 7 requires a plaque radius of 3.3a.
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FIGURE 2. The steady state surface aggregation pattern for un-
bound LDL receptor near coated pits induced by diffusion and a
preferential insertion mode of the form given by Eq. (5). Differ-
ent values of the insertion radius ma were considered. The smaller
the value of m smaller the depletion region for the concentration
of unbound receptors about coated pits (see ¢). This gives an idea
of the effectiveness of the preferential insertion mechanism to en-
hance the trapping rate induced by diffusion and uniform insertion.
Nevertheless assuming diffusion, the sole action of this mechanism
fails to induce the reported surface plaque form receptor aggrega-
tion patterns.
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FIGURE 3. The combination of diffusion, preferential insertion and
radial convection can induce the reported surface aggregation pat-
terns for LDL receptors. (Sce Ref. 19). This will occur only for
values of the flow strength yr of the order of 1004¢0. For that value a
plaque begins to form. (sce b). A clearly depicted plaque is shown
for ;p = 10004:0. (See ¢). To produce these figures a preferential
insertion radius m = 3.3a was considered.

Black will be associated to the maximum value of C'(r, p1).
The projection of the so constructed surface over the annulus
Q0 will simulate the expected aggregation pattern.

The preferential insertion mechanism unaided by the
radial flow fails to produce the observed annular cluster-
ing of the LDL receptors surrounding, coated pits called
plaques [19] (see Fig. 2). Furthermore, the diffusion, radial
flow and preferential insertion mechanism will fail to pro-
duce the plaque effect unless p takes extremely high values.
Figure 3 shows an example obtained for m = 3.3 and dif-
ferent values of ;1. We can observe that a surface aggregation
pattern similar to the reported plaques will form only if g
takes values far beyond the physiological expected value .
It is shown in Fig. 3c, that the plaques reported by Robeneck
and Hesz [19] will show up for p > 100p.

6. Conclusions

Proposition 4.1 summarizes the behavior of the mean capture
time 7 (4, m) for diffusing particles inserted uniformly into
aregion of a < r < ma about a trap of radius a, and mov-
ing under the additional influence of a radial flow with con-
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stant strength p [¢f. Eq. (2)] and directed toward the center of
the trap. For instance, as a function of 1, 7 (y2, m) decreases
monotonically and its graph does not have inflection points.
The theoretical exploration of the dependence of 7 (pt,m)
with respect to m can be easily obtained as well. We conclude
that (g, m) as given by Eq. (36) possesses all the desired
properties to model the behavior of the mean capture time for
diffusing and drifting LDL receptors among the periodic set
of endocytic traps. Consequently the formal analysis summa-
rized in proposition 4.1 permits to conclude that the model
of Eq. (6) and its associated set of boundary and continu-
ity conditions exhibits the theoretical consistency required to
model the receptor mediated endocytic cycle that we have ad-
dressed. Hence the aggregation patterns induced by C(r, i)
are expected to resemble the clusters that under physiological
conditions must be observed in the experiments.

The invoked receptor transport and insertion mechanism
will in fact reduce the mean capture time 7 (see Eq. 42) for
suitable values of m and the expected value of j. Never-
theless, the device will fail to produce a plaque form sur-
face aggregation pattern unless p takes extremely high val-
ues. The ability of the cell to sort the recycled LDL recep-
tors to different targets within the cell or its surface has been

reported [17]. This conceptual framework permits to con-
sider a generalized form for S(r). As its has been shown by
Echavarria and Solana [10,11] a continuously decreasing in-
sertion rate function acting along with diffusion proved to
be a more efficient mechanism than a step function of the
form (5) for the reduction of the mean capture time 7. At
a theroretical level, the results reported in [20] extend the
conclusions of the present study. According to these findings
a continuous and decreasing insertion mode could generate
within physiological limits the observed aggregation patterns.
Nevertheless, the existence of a particular form for the in-
sertion rate function with these features remains an open re-
search question. Particularly more experimental exploration
could elucidate the matter.
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