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By using electrotelluric time series, that is, data sets of the electric self-potential variations in a place close to the Middle American Tectonic
Trench, we compare two methods of dynamical analysis. First, we calculate the spectral exponent e by means of fast Fourier transforms,
and on the other hand we calculate the fractal dimension D of the time series by using the so-called Higuchi’s algorithm. We find that the
second method has remarkable advantages over the spectral analysis.
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Comparamos dos métodos de anilisis dindmico mediante series de tiempo electroteldricas, es decir, conjuntos de datos de variaciones
del autopotencial eléctrico de un lugar cercano a la Trinchera Mesoamericana. Primero calculamos el exponente espectral a mediante la
transformada rdpida de Fourier y por otro lado calculamos la dimensién fractal D de la serie de tiempo usando el algoritmo de Higuchi.

Encontramos que el segundo método tiene notables ventajas sobre el anélisis espectral.

Descriptores: Fractales; potencia espectral; andlisis electroteldrico

PACS: 01.50.K; 05.45

1. Introduction

Nowadays, many natural phenomena are investigated through
the collection of a discrete set of values of some charac-
teristic variable in the course of time. This set of values is
called a time series. For many physical systems, when this
series is unfolded in the time axis, one finds a very irregu-
lar or “chaotic” aspect. Nevertheless, it is possible to look
for valuable physical information contained in this data set
by means of the techniques developed in the context of the
theory of chaos and nonlinear dynamics [1-5]. One of the
main signatures of the nonlinear behavior of one system is
the great sensitivity of its temporal evolution on the initial
conditions [1-3]. This property represents a great limitation
on the predictability of the future evolution of the system. In
spite of these restrictions the theory of nonlinear systems has
much to do about the analysis of very irregular time series.
Some of the most usual quantities for characterizing discrete
time serics are for example, the power spectrum, the frac-
tal dimension and the Lyapunov exponent among others. The
power spectrum (PS) of a fluctuating quantity is a measure
of the power in each bandwidth or “intensity per Hertz” and
itis calculated by squaring the normalized Fourier transform
of the time series [6]. The power spectrum is very useful to
characterize the kind of noise contained in a time series. This
is accomplished by plotting in a log-log graph the PS versus
the frequency. When this graph is a horizontal straight line,
we have white noise and when the slope of the straight line is

different from zero, we have a noise of color. These behaviors
are summarized by means of a relationship of the following
form (i.e. a power law):

o (J) &2 % M

where S(f) is the power spectrum of the time series (usually
calculated by means of fast Fourier transform), f is the fre-
quency and « is an exponent that defines the kind of noise
involved, for example o = 0 for white noise, which is un-
correlated and has a power spectrum that is independent of
the frequency. Other relevant cases are @ = 1 for the so-
called flicker or 1/f noise, which is moderately correlated
and a = 2 for Brownian noise which is strongly correlated.
Another very important concept in time series analysis is the
stationarity. A time series is stationary when it shows similar
behavior throughout its duration. One definition of similar
behavior is that the mean and standard deviation remain the
same throughout the time series [1]. In general a white noise
is stationary, and a fractional Brownian noise is non station-
ary [7). If a time series is non stationary, then many analysis
techniques as the spectral ones for example are of question-
able application. Many time series have fractal properties [3],
and in general they are of the kind of the statistically self-
affine fractals, which are not isotropic, in contrast with self-
similar fractals which are isotropic. Self-affine fractals in a
2-dimensional xy-space have the property that f (rz,r"y)
is statistically similar to f (x,y), where r is a scaling factor
and H is known as the Hausdorff measure or the Hurst expo-
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nent [3, 4]. For self-affine fractals H and its fractal dimension
D are linked by [3]

H=2-D. @)

This relation can be taken as the basic definition of the
fractal dimension for a time series. For D in the interval
1 <D <2, it is required that 0 < H <1 which are the
ranges for D and H for the so-called fractional Brownian
noise [1,8]. The exponent in expression (1) is also linked
with H and D by means of the following relationships [3],

a=2H+1=5-2D. (3)

A very understandable demonstration of relations (2) and (3)
can be found in chapter seven of Ref. 3.

Since five years ago, a research group [9, 10] has taken
registers of the fluctuations of the electric self-potential of
the ground (the so-called electrotelluric field) in several sites
of Mexico. These registers are taken by means of electrotel-
luric stations whose details are in Ref. 9. Some stations are
located along the coast of Guerrero state, near of Middle-
American trench which is the border between the Cocos and
the American tectonic plates. Another stations (control sta-
tions) were located at Cholula, Puebla and Mexico City more
than 300 Km distant from the trench. The first is a very seis-
mically active zone [11], while the second one has a moderate
seismicity [12]. In a typical electrotelluric station thousand
of data are taken each two or four seconds during periods
in the scale of months and years. Those electrotelluric time
series are analyzed by means of several techniques. Among
these methods are the calculation of the power spectra and
the fractal dimension. The PS are obtained by means of fast
Fourier transform (FFT) and the fractal dimension by means
of a method developed by Higuchi [13]. In this paper we
compare the results of analyzing electrotelluric time series by
the both mentioned methods and conclude that the Higuchi
method has notorious advantages over the FFT spectral tech-
nique. We believe that this comparison has pedagogical con-
sequences with regard to the care that must be taken when a
time series analysis over field data is made.

2. Comparison between spectral and fractal
analysis for electrotelluric time series

If a voltage time series v(t) is specified over the interval of
time 7', the mean signal ¥ (t) is given by

T
7(T) = ~[0 v (t) dt. @)

The variance of the signal V' (t) is defined by

T
V(T) = %fﬂ [v(t) — 7)* dt (5)

and the standard deviation o is the square root of V'(t).

The mean and the variance are the first two moments
of the time series. If the time series is a self-affine fractal
then [3, 8]

o(T)~TH. (6)

As is well known, for Brownian noise (random walk) o ~
T [14]) and thus D = 3/2 and & = 2 [Eq. (3)]. For frac-
tional Brownian noise the corresponding values are in the fol-
lowing intervals: H € (0,1); D € (1,2) and a € (1, 3) [see
Eq. (3)).

The time series v (t) can be seen in the frequency domain
in terms of the amplitude A (f, T") which is the Fourier trans-
form of v (¢)

A(f,T) = [m v(t) e2ift gy, (7

=00

The inverse Fourier transform is
vi)= [ AT ey ®)
-0o

The quantity |A (f,T) |2 is the contribution to the total energy
of v(t) from the components with frequencies in [f, f + df].
In real time series the samples are picked up in a finite inter-
val 0 < t < T, in such a way that the effect of finite time
series shall be taken into account, the FFT method is the ap-
propriate for this kind of analysis [15]. The power spectral
density of v (t) is defined by

S(f)=Jim ZIA(fT)E. ©)

The quantity S (f) df is the power in the time series associ-
ated with the frequency in the interval [f, f + df]. If the time
series is fractal then it satisfies relation (1) [3].

In Fig. 1, we show a typical segment of an electrotel-
luric time series registered at Ometepec-station (16.71 N,
98.45 W) near of Pacific coast in Guerrero state. As it can
be seen the time series of self-potential differences between
two electrodes E-W oriented is notoriously non-stationary.
In contrast the corresponding N-S time series has some seg-
ments which are approximately stationary. If we calculate the
PS [Eq. (9)] by means of the FFT (we use the Excel Microsoft
package) of this data set we obtain in a log-log graph Figs. 2
and 3 for the E-W and N-S lines respectively.

The best least-squares fit for these graphs are
ans = 0.2693 + 0.224 and agw = 0.6132 + 0.28, with
correlation coefficients R4 = 0.034 and Riy = 0.102

respectively, which are very poor results, even for the N-S
line which has quasistationary segments. In Figs. 2 and 3
the power spectra obtained by the FFT-method show noisy
fluctuations superposed on the power law spectrum. Thus the
unambiguous determination of the exponent « is difficult.
Usually « is considered to be the index for representing the
irregularity of a time serie [13], although the fractal dimen-
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FIGURE |. Time series of electric self-potential differences v(#) be-
tween pairs of electrodes E-W (upper graph) and N-S (lower graph)
oriented at Ometepec-station. The voltage files correspond to 36 hr
of data registered each four seconds.

sion D can be also used as index of irregularity. In fact, in
many cases the use of D is more appropriate than «a for deter-
mining irregularity indices, as we will see below. The frac-
tal technique developed by Higuchi [13] gives stable indices
even for a small number of data.

Higuchi [13] considers a finite set of time series observa-
tions taken at a regular interval:

v(1),v(2),v(3), -+ ,v(n).

From the given time series, one first constructs a new time

series, v, defined as follows

N —
ot s o(m),v(m + k), o(m + 2k), - - ,7'(”' + [L_A—“—}])

withm = 1,2,---  k, and where [ ] denotes the Gauss no-
tation, that is the bigger integer, and & and m are integers that
indicate the initial time and the interval time respectively. For
a time interval equal to & one gets k sets of new lime series.
For example, for k = 4 and N = 100, four new time series
are obtained,

J

[ L",%'L

2

1=1

Lwil(k) =
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FIGURE 2. Log-log plot of the power spectrum against frequency
for the N-S time series. The straight line is the best fit of the spectral
data.
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FIGURE 3. Log-log plot of the power spectrum against frequency
for the E-W time series. The straight line is the best fit of the spec-
tral data.

vg 2 v(1),0(5),v(9) v(97)
v3 1 v(2),v(6),v(10), - .v(98)
vi :v(3),v(7),v(11) ©(99)
vi :v(4),v(8),v(12),--- ,v(100). (10)

Higuchi [13], defines the length of the curve associated to
each time series, v,"* as follows:

“-\." s 1
ECO

(1)
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FIGURE 4. Log-log plot of (L(k)) against k for the N-S time series.
The slope D of the fitted straight line is the corresponding fractal
dimension.

where the term (N — 1)/ [#5] k represents a normaliza-
tion factor, then the length of the curve for the time interval &
is taken as the average value (L (k)) of the lengths associated
to the time series given by Eq. (11). If (L (k)) ~ k=P, then
the curve is fractal with dimension D. The Higuchi’s algo-
rithm can be applied even over time series that are not sta-
tionary and this fact represents an advantage over the spectral
techniques. In order to illustrate this, we apply the Higuchi’s
method over the same time series (Fig. 1) used for calculating
the spectral exponent by means of FFT (Figs. 2 and 3). The
fractal dimensions obtained by using the Higuchi’s method
are:

Dns = 1.61 £0.0006 and Dgw = 1.52+0.002 (12)

with correlation coefficients

R} = 0995 and Riw =0.999

respectively (see Figs. 4 and 5). That is, the D-calculations
have a remarkable better precision than the a-calculations
by means of FFT. If we use Eq. (3), we immediately obtain
(NS = 1_?8;0;_.;“: = 1.96 and I'INS = 039, hr].;w = 0.48.
As can be seen the values of D, a, and H for the E-W seg-
ment (see Fig. 1) correspond very closely to typical Brownian
noise values, that is « = 2, H = 0.5, and D = 1.5. These
values can not be obtained by means of FFT-analysis. All
the values of D, o, and H obtained by means of Higuchi’s
method in fact correspond to typical fractional Brownian
noise [8]. In Fig. 6, we depict the behavior of Dys and Dew
at Ometepec station during the interval May 12 up to Decem-
ber 2, 1993. As can be seen the values correspond to frac-
tional Brownian noise mixed with intervals with D) = 2, that,
is a white noise behavior [13].
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FIGURE 5. Log-log plot of (L (k)) against k for the E-W time se-
ries. The slope D of the fitted straight line is the corresponding
fractal dimension.
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FIGURE 6. Plot of D against time (from May 12 to December 2,
1993) for both N-S and E-W voltage time series taken at Ometepec-
station. The dominant behavior correspond to fractional Brownian
noise and thus to 1/ noise, but as it can be seen, time intervals
with white noise (D = 2) arc also present.

3. Discussion and conclusions

By means of electrotelluric time series taken from a location
near of Middle American trench, which is a very seismically
active zone, we compare two analysis techniques, the spec-
tral exponent a calculated by means of FFT and the fractal
dimension calculated by using the Higuchi’s algorithm. We
show that the FFT-method leads to very poor correlation coef-
ficients. On the other hand, the usage of the Higuchi’s method
leads to very precise values of the fractal dimension I of the
electrotelluric time series. This fact consequently permits to
calculate very precise values of o and H . It should be pointed

Rev. Mex. Fis. 45 (3) (1999) 298-302



302 F. CERVANTES DE LA TORRE e al.

out that this fact is mainly due to the Higuchi’s definition
for the length of the time series curve, which corresponds to
overlaped averages over several time intervals and this pro-
cess smooths the estimated lenght.

For the case studied in this article, we find that D, H, and
a correspond to typical values of fractional Brownian noise.
A possible explanation of these results has to do with the
concept of self-organized criticality (SOC) [16]. The SOC-
concept was developed for complex systems [3, 16] which
are reminiscent of typical geological structures. The notion
of SOC was proposed by Bak et al. [16] as a general prin-
ciple governing the behavior of spatially extended dynami-
cal systems with both temporal and spatial degrees of free-
dom. According to this principle, composite open systems
having many interacting elements organize themselves into
a stationary critical state with no length or time scales oth-
ers than those imposed by the finite size of the system. The
critical state is characterized by spatial and temporal power
laws. According to Bak et al., the temporal “fingerprint” of
the SOC-state is the presence of 1/ noise, with o in the

range of fractional Brownian noise. Thus, a possible reason
of our a-values is that the system generating the electrotel-
luric fluctuations is in a SOC-state. This assertion must be
taken as a conjecture, because our evidences are preliminary.
However, the main objective of this paper is the comparison
of the nonlinear analysis techniques mentioned. In a previ-
ous work [10] we showed that in control stations (Cholula
and Mexico City) the predominant noise is of the white-type,
while in the stations close to the Middle American trench is
common to find fractional Brownian noise. That is, seem-
ingly the levels of seismicity are linked with the type of elec-
trotelluric fluctuations. It is convenient to remark that in the
coastal stations also appear intervals with white noise but the
possible meaning of these facts are discussed elsewhere [17].
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