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A comparison between spectral and fractal methods in electrotelluric time series
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By using electrotelluric time series. that is. data sets of the electric self-potential variations in a place c10se to the Middle American Tectonic
Trench, we compare two methods of dynamical analysis. First, we calculme the spectral exponent el by means of fast Fourier transforms.
and on the other hand we calculate the fractal dimension D of the time series by using the so-caBed Higuchi's algorithm. \Ve find that the
second method has remarkable advantages over the spectral analysis.
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Comparamos dos métodos de análisis dinámico mediante series de tiempo electrotelúricas. es decir. conjuntos de datos de variaciones
del autopotencial eléctrico de un lugar cercano a la Trinchera Mesoamericana. Primero calculamos el exponente espectral O' mediante la
transformada rápida de Fourier y por otro lado calculamos la dimensión fractal D de la serie de tiempo usando el algoritmo de Higuchi.
Encontramos que el segundo método tiene notables ventajas sobre el análisis espectral.

Descriptores: Fractales; potencia espectral; análisis electrotelúrico

PAes: 01.50.K; 05.45

different from zera, we have a noise of color. These behaviors
are summarized by means of a relationship of Ihe following
fonn (i.e. a power law):

where SU) is Ihe power speclrum of the lime series (usually
calculaled by means of fasl Fourier transform), / is the fre-
quency and Ct is an exponent lhal defines Ihe kind of noise
involved. for example o = O [or white noisc, which is un-
correlated and has a powcr spectrum that is independent 01'
Ihe frequency. Other relevanl cases are Ct = 1 for lhe so-
called flicker or 1// noise, which is moderately conelaled
and Q = 2 for Brownian noise which is strongly correlated.
Another vcry important concept in time series analysis is the
stationarity. A time series is stationary when it shows similar
behavior throughout its duration. One definition of similar
behavior is that the mean and standard deviation remain the
same throughoul lhe lime series [1]. In general a while noise
is stationary, and a fractional Brownian noise is non station-
ary riJo If a lime series is non slationary, then many analysis
techniques as the spectral ones for example are of qucstion-
able application. Many time series have fractal propcrtics [3],
amI in general lhey are of lhe kind of Ihe slatistically self-
affine fractals. which are not isotropic. in contrast with self.
similar fractals which are isotropic. Self-affine fractals in a
2-dimensional Ty-space have Ihe property lhat / (rT, rH y)
is slalistically similar to / (T,y). where r is a scaling factor
and H is known as Lhe Hausdorff measure or the Hurst expo-

1. Inlroduction

Nowadays. many natural phenomenaare investigated thraugh
the collcction of a discrete set of values of sorne charac-
teristic variable in the course of time. This set of values is
called a time series. For many physical systems, when this
series is unfoldcd in the time axis. one finds a very irregu-
lar or "chaOlic" aspecl. Ne\'ertheless, il is possible lo look
for valuable physical information contained in this data set
by means of Ihe lechniques devetoped in Ihe conlexl of the
Iheory of chaos and nonlinear dynamics [1--5J. One of the
main signatures 01' the non linear behavior of one system is
the great sensitivity of its temporal cvolution on the initial
conditions {1-5J. This praperty represents a great limitation
on the prediclabilily of lhe fUlUre evolution of lhe systern. In
spite of thcse restrictions the theory of non linear systems has
much to do about the analysis 01' very irregular time series.
Somc of the most usual quantities for charactcrizing discrete
time series are for example, the power spectrum. the frac-
tal dimension and the Lyapunov exponent among olhers. The
power speclrum (PS) of a flucluating quantily is a measure
of the power in each bandwidth or "intensity per Hertz" and
it is calculated by squaring the normalizcd Fourier transform
of the time series [6]. The power spectrum is very useful to
characterize the kind of noise contained in a time series. This
is accomplished by plotting in a log-log graph lhe PS versus
lhe frequency. When lhis graph is a horizontal slraighl line,
we have white noise and when the slope of the straight ¡inc is

S(!) ~ /-0, (1)
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nem [3, 4J. For self-affine fraelals H and its fractal dimension
D are linked by [3]

If a vollage lime series v(t) is specified over the interval of
time T, the mean signal ji (t) is given by

2. Comparison between spectral and fractal
analysis for electrotelluric time series

This relation can be taken as lhe basic definilion of the
fractal dimension [or a time series. For D in the interval
1 < D < 2, it is required that O < H < 1 whieh are lhe
ranges for D and H for the so-ealled fraetional Brownian
noise [1,8]. The exponent in expression (1) is also linked
with H and D by means of the following relationships [3],

(9)

(6)

(7)

a(T) _ TU

A (J, T) = ¡:v(t) e2"/' dt.

The mean and the variance are the first two moments
of the time series. If the time series is a self-affine fractal
then [3,8)

The inverse Fourier transform is

The quantily S (J) di is lhe power in the time series assoei-
ateu with lhe frequeney in the interval [J, I + dlJ. ¡flhe time
series is fraetallhen it salisfies relation (1) [3J.

In Fig. 1, we show a typieal segment of an eleetrolel-
lurie lime series registered al Ometepee-slalion (16.71 N,
98.45 W) near of Paeifie eoast in Guerrero state. As it can
be seen lhe lime series of self-polenlial differenees between
two eleclrodes E-\V orienled is notoriously non-stationary.
In contrast the corresponding N-S time series has sorne seg-
ments whieh are approximately slalionary. If we ealculate lhe
PS [Eq. (9)] by means of lhe FFT (we use the Exeel Microsoft
package) of this data set we obtain in a log-Iog graph Figs. 2
and 3 far the E-\V and N-S Iines respeetively.

The besl least-squares fit for these graphs are
Q;-.;s = 0.2693:!: 0.224 and QEW = 0.6132:!: 0.28, with
eorrelalion eoeffieients R~s = 0.034 and R~w = 0.102
respeelively, whieh are very poar results, even for lhe N-S
line whieh has quasistationary segments. In Figs. 2 and 3
the power speetra obtained by the FFT-method show noisy
fluctuations superposed on the power law spectrum. Thus lhe
unambiguous delermination of (he exponent Q is difficult.
Usually a is eonsidered to be the index for representing lhe
irregularity of a time serie [13), allhough the fractal dimen-

As is well known, for Brownian noise (random walk) a _
T! [14) and lhus D = 3/2 and a = 2 [Eq. (3)]. For frae-
tional Brownian noise the corresponding values are in the fol-
lowing intervals: H E (O, 1); D E (1,2) and a E (1,3) [see
Eq. (3)].

The time series v (t) can be seen in the frequeney domain
in lerms of lhe amplitude A (J, T) whieh is the Fourier trans-
form of v (t)

The quantity lA (J, T)12 is lhe eontribution to the IOtalenergy
of v(t) from the eomponenls with frequencies in [J, 1+ dll.
In real time series the samples are picked up in a finite inter-
val O < t < T, in sueh a way thm lhe effeet of finite time
series shall he taken imo aeeounl, lhe FFT method is the ap-
propriale for this kind of analysis [15J. The power speetral
densily of v (t) is defined by

S (J) = !im -TI lA (J, T)12 .
T~co

,,(1) = ¡:A (J, T) e-2"/' dJ. (8)

(5)

(4 )

(2)

(3)

H = 2- D.

a = 2H + 1 = 5 - 2D.

V(T) = 2. (T [v(l) _ jiJ2 dt
T Jo

and the standard devialion a is the square root of V (1).

ji (T) = 2. (T V (t) dI.
T Jo

The varianee of the signal V (t) is defined by

A very underslandable demonstralion of relations (2) and (3)
can be found in ehapter seven of ReL 3.

Sinee five years ago, a researeh group [9,10] has taken
regislers of the ftuetuations of the eleetrie self-polential of
the ground (lhe so-ealled eleetrotelluric field) in several sites
of Mexieo. These registers are taken by mean s of eleetrotel-
lurie stations whose dctails are in Ref. 9. Sorne stations are
loealed along the eoasl of Guerrero stale, near of Middle-
American trench which is the border between the Cocos and
the American tcctonic pIates. Another stations (control sta-
tions) were loemed al Cholula, Puebla and Mexieo Cily more
lhan 300 Km distant from lhe treneh. The first is a very seis-
mieally aelive lOne [llJ, while lhe seeond one has a moderale
seismieity [12J. In a typieal eleetrotellurie station lhousand
of data are taken each 1wo or fOUT scconds during pcriods
in the seale of monlhs and years. Those eleetrotellurie lime
series are analyzed by means of several teehniques. Among
these methods are the calculation of the power spcctra and
the fractal dimensiono The PS are obtained by means of fast
Fomier lransform (FFT) and the fraelal dimension by means
of a method developed by Higuehi [13J. In this paper we
compare the results of analyzing clectrotelluric time series by
the both menlioned melhods anu eonelude that lhe Higuehi
methou has nOlorious advantages over lhe FFT speelral teeh-
nique. \Ve believe thal lhis eomparison has peuagogieal eon-
sequenees with regard lo lhe eare that must be taken when a
time series analysis ayer field data is made.

Re\'. Mex. Fís. 45 (3) (1999) 298-302
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F1CiUI{E l. Time series of clectric ~c1r.potcnlial difrcrcnccs v(t) he.
¡wcen pairs of clcclrodes E-W (urpcr graph) anu N-S (Iowcr graph)
ori"'lltcu al Ornctepcc-slation. The voltagc liles corrcspond (o 36 hr
nI' data rcgislcrcd cach four secanos.

sion D can he also lIscLl as imlcx of irrcgularily. In fado in
many cases the use 01'D is more appropriatc than o for dctcr~
mining irrcgularily indiccs, as wc will sec hclow. Thc frac-
tallcchniquc dcvcloped by Higuchi 1131 givcs slablc indiccs
cven for a small number 01' data.

Higuchi 1131 considers a f1nite set 01' time series ohserva-
liollS lakcll al a regular intcrval:

,,(1), v(2), v(3), - , v(1l).

Frolll lhe givcn time series, one firsl conslructs a ncw lime
series. l1t. dr.::lltlcd as follows

\\'¡Ih 111 = 1.2 .... ,k, and wherc ( ] denotes lhe Gauss no-
tal ion, that is Ihe biggcr integer, and k and m are intcgcrs that
indicalc lhe illiliai time and lhe intcrval Lime rcspcctivcly. Por
a lime intcrval cqualto k one gCIs k seIs 01' ncw time series.
Por cxamplc. for k = 4 and N = 100, four ncw lime series
are ohlaincd. •

Fl(;URE 2. Log-!og plot 01' lhe power spcctrum agains( frcquency
for lhe N.S lime series. The slraightlinc is Ihe beSI fil of lhe spcctral
Jata.
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FIGURE J. Log-Iog plol 01' lhe powcr spcl:trum ag.linsl frcqucncy
for Ihe E.W time series. The straight l¡nc is thc bcst lit uf (he spcc-
tral data.

1': : ,,(1),1,(5), v(9),' - - , v(97)

v.i : v(2). ,,(G), 1'(10),. - - _v(9S)

3"4 : ,,(3), ,,(7), v(l1), - - - ,1'(99)

,i:: 1I(.I),I'(S),v(12),--- ,1'(100)_ (10)

Higuchi 113]. defines lhe length of lhe curve associated to
each time series, lIt as follows:

L", (k) =
[
I¥J ] N - 1I: 1"(/Il+ik)-"[IIJ+(i-l)k)1 [\_]
i=l ~ k

k
( I 1)



A Cmll'ARISON RETWEEN SPECfRAL AND FRACTAL ~IETHOIlS IN EI.ECTROTEI.LURIC TiME SERIES .1111

4 I

I
3

2

o

-,
-2

05

log(k)

45 ¡4

35
.

3

25.-:< 2::r
v
¡;; 15
o-'

0.5

o
-0.5

05

-,
Log(k)

frCiURE 4. Log~log pl01 of (L(k» againsl k for the N-S time series.
The slopc D of lhe littcd straighl line is the corresponding frnclnl
dimcnsion

FIGURE 5. Log-Iog plot 01' {L (J.:)} again-;t 1.: for the E-W timc se-
ries. Thc slopc D 01' thc titled slraight line is the corrcsponding
fraclal dimensiono
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whcrc lhe tcrm (8 - 1)/ [N"km] k rcprcscnts a normaliza-
¡ion factor, then lhe lcngth 01'lhe curve for lhe time inlcrval "
i, taken as Ihe average value (L (k)) ofthe lcngths assoeiated
lo the time series given hy Eq. (11). Ir (L (k)) ~ ,,-v, then
lhe curve is fractal with dil1lcnsion D. Thc Higuchi's algo-
rilhm can be applicd cvcn over time series lhal arc n01 sta.
lionary and Ihis fm:t rcprcscnts un advantagc ovcr lhe spcctral
tcchniqucs. In oroer lo ¡!lustrate this, wc apply Ihe lIiguchi's
Illclhod over lhe S:lIllC time series (Pig. 1) uscd for calculating
the 'peetral exponent hy mean s of FFT (Figs. 2 and 3). The
fraclal dimcnsions oblaincd by lIsing thc lIiguchi's Il1clhod

are:

DNs = I.Gl 1: O.OOOG aud DE\\' = 1.521: 0.002 (12)

0.5

o
O 100 200 300

t

400 500 600

wilh correlalion coefficicnls

¡¡~s = O.D95 aud ¡¡i;w = O.DDD

respectively (see Figs. 4 and 5). That ¡s, lhe D.calculations
ha\'c a remarkahle hcucr precision than the o-ca1culalions
hy 11leans of FFT. H we use Eq. (3), we imlllcdialcly ohtain

"NS = 1.78; (ll';\\' = I.DG and /lNS = O.:W, IJE\\' = O.-lS.
/\s t'an he secn the valucs of D, o, and H for lile E-\V scg-
ment (sec Fig. 1) correspond very closely lo lypical13rownian
Iloise vallles, lhal is o = 2, JI = 0.5, and D = 1.J. ThesL'
\'alucs can nol he ohlaincd hy Il1cans of rFT-analysis. 1\11
lhe valucs 01' D, o, and JI ohlained hy Illeans 01' lIiguchi's
mclhod in fael eorrcspond lo lypical fraclional Brownian

noisc (8]. In Fig. 6, \Ve depict lhe hehavior nI' DNs and DE\\'

al Omclepec station during Ihe intcrval r-.lay 12 IIp (O Dcccl1l~
her 2, 1993. As can he seen lhe values eorrcspond lo frac-
tional Brownian noisc mixed with inlcrvals wilh D = 2. tha!,
is ti white noise hchavior (131.

r:[(iURE 6. 1'10101"[) again~t timc (from ~1ay 12 lo Decclllhcr 2,
19(3) fm 1"1<)111 N.S and E.W vnltage time series lnkcn at Omelepcc-
stalion. Tl1c dominanl hchavior cmrcspnnd lo I"raclional Browni;lll
noisc amllhus to 1/F' noise, hui as it can he seCll. time intervals
with whilc I\oisc (D = 2) are also prescnl.

3. DisClIssioll ami COllclllSiollS

By means 01' c1eclroleilurie lime series takcn from a iocalion
!lear 01' r-.1iddle American Ircnch, which is a vcry scismically
aClive tone, \Ve compare I\\'o analysis lechniques, Ihe spec-
Iral exponenl n calculaled hy means 01' FFf and lhe fractal
dimcnsion t'alculated hy llsing Ihe Higuehi's algorithm. \Ve
show thallhe FFT-method Icads lo ver)' 1100r t'orrclation t'oer~
licicnts. On Ihe other hand, Ihe llsage 01' Ihe Higut"hi's mcthod
lcads lo very precise values 01' lhe fractal dimension D 01' the
eleetrolcllurk lillle series. This faet eonsequenlly permits 10
l'alculale very precise vallles nI' (\ and JI. It should he poinlcd

Rc\: Mcx. Fís. -15 (1) (1999) 29R-J02
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out IhJ.t this faet is mainly due lo the Higuchi's dcfinilion
for (he Icngth of the time series curve, which corrcsponds to
ovcrlapcd avcrages ovcr several time intervals and this pro-
eess smooths the estimaled lengh!.

For the ease studied in lhis article, we find lhat D, H, and
o corrcspond lo typical values of fractional Brownian ocise.
A possihle explanation of these resuhs has lo do with the
eoneepl of self-organized eritieality (SOC) [16J. The SOC-
eoneept was developed for eomplex syslems [3, 16) whieh
are rcminisccnt of typical gcological structurcs. The nOlion
of SOC was proposed by Bak el al. [16] as a general prin-
cipie governing lhe behavior of spatially extended dynami-
cal systems with both temporal and spatial degrees of free-
domo According lo this principie, composite open systems
having muoy interacting clements organize themselves ioto
a stationary critical state with no Icngth or time scalcs oth-
crs than those imposcd by the finitc size of the system. The
erilieal state is charaelerized by spatial and temporal power
laws. According to Bak el al., the lemporal "fingerprint" of
lhe SOC-state is the presenee of 11 JO noisc, with a in the
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rangc 01' fractional Brownian noisc. Thus, a possible reason
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