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We discuss Kaplan’s conservative approach to time driven dynamical systems in relation with Hamilton’s Principle and the symmetries of
the associated action integral. We show how the symmetries of Kaplan's “extended”. conservative, dynamical system “conspire” so as to give
rise to the symmetries of the original, time driven system. These considerations provide, via Noether’s Theorem, an alternative path between
the conservation laws of both the “extended” and the driven system
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Estudiamos el tratamiento conservativo de sistemas dindmicos forzados en relacién con el Principio de Hamilton y las simetrias de la integral

de accién asociada. Mostramos cémo las simetrias del sistema dindmico conservativo “extendido” de Kaplan se combinan dando origen a
las simetrias del sistema forzado original. Estas consideraciones constituyen una forma diferente de vincular, via el Teorema de Noether, las

leyes de conservacién de los sistemas “extendido” y forzado.
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1. Introduction

Recently Kaplan has introduced an interesting approach to
time driven systems [1]. Given a dynamical system character-
ized by a time dependent Lagrangian (or Hamiltonian), Ka-
plan’s proposal is based on the introduction of an ad-hoc “ex-
tended”, conservative, dynamical system that incorporates (at
least) one additional degree of freedom to those of the orig-
inal system. In the limit when the “inertia” associated with
these new variables tends to infinity, the equations of motion
of the original system are recovered within Kaplan's formal-
ism. The explicit time dependence of the original Lagrangian
arises from the “motion” associated to the new dynamical
variables, whose behaviour becomes “decoupled” from that
of the “old” ones, that pertain to the original system.

Actually, Kaplan’s approach paves a quite natural road
towards understanding time driven systems. It is possible to
argue that most time driven systems encountered in nature
(if not all of them) admit a description a la Kaplan, in terms
of an extended conservative system. After all, physical sys-
tems are generally assumed to be governed, at a fundamental
level, by a time independent Lagrangian (or Hamiltonian).
The associated law of energy conservation is the most impor-
tant general principle of Physics. When a dynamical system
requires a non conservative description, this is so because the
system of interest is interacting with “something else™;

One of the appealing features of Kaplan's procedure lies
in the fact that it provides a physical understanding of the ori-
gin of the integrals of motion of time driven systems [1, 2].

These time dependent integrals of motion are shown to arise
as appropriate linear combinations of the integrals of motion
of the extended conservative system. On the other hand, it
is well known that many important conservation laws of La-
grangian dynamical systems are related, via Noether’s the-
orem, to the symmetries of the concomitant action inte-
gral [3-6]. The purpose of the present note is to investigate
the relationship between Kaplan's approach and Noether’s
procedure. Such a study would pave the way for establishing
useful connexions between Kaplan’s beautiful approach and
some of the main ideas of contemporary physics, that stress
the relevance of symmetries in understanding physical pro-
cesses. The pedagogical value of Kaplan's approach should
in such a manner be greatly increased. To this end, we study
how the symmetries of the action integral characterizing the
original time driven system can be obtained from the symme-
tries of the action integral associated with the extended sys-
tem. The important example of Jacobi’s Integral of motion
for rotating potentials [7,8] is considered along these lines.
The application of Kaplan’s approach to a particle moving in
a plane-wavelike potential is also studied.

2. General formalism

Let us consider a Lagrangian
L(q,q,A), (h

which depends on a small parameter A, q and q standing
for the sets of generalized coordinates and velocities, respec~
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tively. The Lagrangian governing Kaplan’s “extended” dy-
namical system can be cast in this form, the small parameter
A being proportional to the inverse of the “inertia” character-
izing the new degrees of freedom [2].

The action integral, given by

to
s= [ LaaNa, @
ty

contains all that relevant information about the system which
is independent of its precise dynamical state at a given time.
Through the Lagrangian L, the action is a functional of the
paths q(¢, A). Notice that once a path is given, the velocities
q(t, \) are immediately obtained.

If S is invariant (to first order in the small parameter ¢)
under the infinitesimal symmetry transformation given by

q' =q+¢K(q,q',t),
t' =t+el(q,q,t), 3)

then, according to Noether’s theorem [4], the system admits
the following integral of motion:

K -p-TE, 4)

where p = JL/dq stands for the generalized moments as-
sociated to the generalized coordinates g, and E denotes the
energy £ = 3" p - q— L. It is useful, for later discussions,
to observe explicitly that, if the action integral S remains in-
variant under the transformation (3), for every A value, the
partial derivatives 9"S /OA™ remain invariant as well. Notice
that these derivatives correspond to a given “fixed” trajectory
q(t). This means that they only take into account the explicit
A dependence in (2).

According to Hamilton’s principle, the actual motion of
the system is such that the variation of the action for arbitrary
dq is zero,

ta

L(q,q,A)dt = 0. (5)

31

6S=4

Let q(t,A) be a “real” path of the system, that is to say, a
trajectory for which the action is stationary. On expanding
q(t, A) in powers of the small parameter ),

a(t,A) = qo(t) + Aqu(t) + Xqz(t) +...,  (6)

the equations of motion for qo(t), q1(t), . . ., are obtained by
recourse to a power expansion (in A) of the action integral S

S=S0+AS1 + XS +..., (7
and requiring afterwards that
05 = 0(1'=0,1,2, ... .}, (8)
for arbitrary infinitesimal variations

5q; =0(j =0,1,2,...). 9)

Therefore, Eq. (8) constitutes an expression of Hamilton’s
principle whenever power series expansions about a small pa-
rameter are utilized.

We consider now the particular instance of a Lagrangian
given by

L= La(‘la‘ Cln) + )\Lb(QaaQasz‘ (-Ib)v (]0)

where L, depends only on a subset q,, q, of the complete
set (q,q) = (Qa, Ya, gs, Qi) of generalized coordinates and
velocities. Here the pertinent Kaplan's extended system is de-
scribed by a Lagrangian of the form (10), where q, denotes
the “new” generalized coordinates, while q; stands for the
“old” coordinates of the original time driven system. The ac-
tion integral corresponding to the Lagrangian (10) reads

S=8:+ A5
=S[)+/\Sl+..., (11)
where
t2
Sa = La(qa,4a)dt,
ty
ta
Sb = / L?J (QGaqﬂaqb?qb) dt:
ty
iz
So = / La(940,9a0)dt, (12)
ty
and

t21/9L AL
S :[ l:( ﬂ) l ! + ( .ﬂ) . .n :| dt
! t a{In 0 q g 8(10 0 q !

ta
2 / Ly (Qa0, a0, Qso, qeo) dt.  (13)
ty

Hamilton’s principle requires that 4.5y vanish identically for
any infinitesimal variation dq,. This requirement yields the
equations of motion for q,n, which are easily seen to coincide
with the ones corresponding to the Lagrangian L,. Notice
also that, 6S; = 0 for arbitrary variations 6q.0, 4q.;, and
dqpo, which should provide the equations of motion for qq;
and qpo. It is interesting to point out that the Euler-Lagrange
equations for q,;, associated with the variational requirement

45, =0, are
a8l aL.
i () = a0

o= |(5ar), e (32), o] 09
& aqu 5 Ja1 aqﬂ . a1 | ,

which are just the Euler-Lagrange equations for q,q derived
from 6Sp = 0. On the other hand, the Euler-Lagrange equa-
tions deduced from 65, = 0 when considering arbitrary
variations of q,, actually yield the set of differential equa-
tions for qq;. Interestingly enough, this series-expansion-
procedure generates the differential evolution equations for

where
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a0, 9b0, a1, - - - It should be noticed that, on imposing the
condition 65, = 0, one is led to the equations of motion
for quo that would have been obtained from the Lagrangian
L (440, Ga0, Ao, Gro) considered just as a function of both
quo and quo, when qqo(t) has been replaced by a solution of
dSg = 0. This is a time driven system, as the Lagrangian
explicitly depends on time.

3. Rotating potentials

In Ref. 2 we have shown how Kaplan’s approach illuminates
the discussion of a problem which has important applications
in dynamical Astronomy: the motion of a particle of mass
m in a uniformly rotating potential mV'(r, 6 — wt). Here V
denotes the potential per unit mass, (r,#) are the polar co-
ordinates of the particle, and w the rotation angular velocity.
The concomitant Lagragian reads

1 ; 5
L= ém(f2 +1r26%) —mV (r,0 — wt). (16)

In order to obtain Kaplan’s “companion” conservative sys-
tem to the original time driven one, we have introduced a
plane rigid rotator of moment of inertia /. The position of the
rotator, which has a fixed point and lies on the same plane
where the particle moves, is given by the angular coordi-
nate ¢. Hence, the configuration space (r,8,¢) of our ex-
tended dynamical system is of a three-dimensional character.
We assume that the interaction between our rigid rotator and
the particle is given by the potential mV (r, 6 — ¢). Thus, the
concomitant Lagrangian of our model is

L= %I(p“) + %m(?”z - rzgz) —mV(r,0 — ¢), (17)
or

L=11¢+ %b\(f-? +122) — V(- @), (18)

where we have introduced the quantity A (that should serve
as a small expansion parameter), defined as the ratio

(19)

between the mass of the particle and the moment of inertia of
the rotator. On comparing the Lagrangian (18) with Eq. (10),
we make the identification

_1.5
Ly = 2196 (20)

and
L= %I(:f"2 +r292) —IV(r,8 —¢). 21

We recall now that the Lagrangian (18) is invariant (and so is
the concomitant action S) under the infinitesimal transforma-
tions

t' =t+e, (22)

rigid rotator

FIGURE 1. A plane rigid rotator and a particle both contained in
the XY -plane. The position of the rigid rotator is characterized
by the angular coordinate ¢ and that of the particle by the polar
coordinates r and 6.

associated with the conservation of energy, and
8 =0 +e,

¢'=¢+e, (23)

related to the conservation of the z-axis-component of angu-
lar momentum L.

Since the above referred to invariance holds for arbitrary
values of A, both L, and Ly, individually, share the invari-
ance property, a fact readily verified by simple inspection of
Egs. (20) and (21). From the stationary condition 65y = 0,
the appropriate Euler-Lagrange equations yield

¢p = w = constant, (24)
so that
do(t) = ¢o(0) + wt. (25)
Moreover, since we also have 65, = 0, it follows that the
action

So = Su(¢o,70,00)

ta [ . .
= f [21( 2 4 1262) — IV (10,00 — do)| db,  (26)
iy
with ¢ (1) given by Eq. (25), must verify
652 =0, (27

for arbitrary infinitesimal variations d7 and 6. (Notice that
Sg # So.) The condition (27) furnishes the equations of mo-
tion for ro(t) and fy(t). These are precisely the equations of
motion for a particle moving in a uniformly rotating potential
whose Lagrangian is (16).

The action Sj, which can be cast in the form

ta
.= / Ly [do(t), ro(t), 6o (1)) dt, 28)

t
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remains invariant under the infinitesimal transformations (22)
and (23) when performed upon ¢g, 7o and 6. However,
whenever ¢q(t) is fixed, the invariance of S5 under (22) and
(23) is lost. Let us now analize just how each one of the previ-
ous transformations contributes to the variation of S§, when
they are applied upon ¢q(t). The result of applying (22) to
@o(t), to first order in €, is

tz

A5y = Ly [po(t +€),ro(t),Bo(t)] dt

ty

tz
= [ Ly [o(t), ro(t), B0 (£)] dt

ty

- aL,,) -
= —— dt,
/M ( 90 0¢’0€

where (JL;,/d¢), stands for the partial derivative with re-
spect to ¢, evaluated on ¢ (), 7o(t), and 8y (¢). Thus we have

2 fOL,
AS*:E/ (_) it.
0 w " 3¢ O(

On the other hand, when ¢q(t) is subjected to the transfor-
mation (23) we obtain

(29)

(30)

+ta

AS: = / Ly [60(t) + &, ro(t), 6o(t)] dt

i

t2
—/ Lb[éo(i),?‘o(f),go(ﬂ](lt, 3D
Sl

so that
ASE = S/f (%—IJ)O(H. (32)
Therefore, on applying both
t'=t+e (33)
and
Po = ¢o + Ew (34)
onto ¢y (t), one is led to
ASg = 0. (35)

Now, since S remains invariant either when the transforma-
tions

t'=1t+e, (36)

0 =6 +ew, 37)
and

¢ = o+ ew, (38)

are performed upon the whole set ¢ (), ro(t), 8o (t), or when
both (36) and (38) are applied only onto ¢q(t), it is clear that
S also remains invariant when the transformations (36) and

(37) are applied upon ro(t) and 8q(t). Therefore, Noether’s
invariant, given by Eq. (4), provides us with Jacobi’s Integral
of motion [7, 8]

Cr=FE-wL,, (39)

where L, is the z-component of the angular momentum.

4. Plane-wavelike potentials

We now consider the motion of a particle of mass m in a
plane-wavelike external potential

mV (x — vt), (40)
v being the uniform wave propagation velocity. Following
Kaplan's procedure, we introduce a particle of mass M, its
position denoted by y, and assume that the interaction be-
tween both particles is given by the potential mV (z — y).
The concomitant "extended” Lagrangian reads
1,..5 1 .5

L.= EMy' + aMme" — mV(z —y). (41)
On introducing the quantity A, defined as the ratio of the
masses

m

=g (42)
the Lagrangian (41) can be recasted in the form
L=1L,+ ALy, (43)
where
L,= %,u;f, (44)
and
L, = %M.%z - MV(z-y). (45)
It is easily seen that the infinitesimal transformations
t'=t+e¢, (46)
and
!l =imtg,
vy =y +e, (47)

leave the Lagrangian (41) invariant, which entails that both
L, and L, are, individually, invariant too. From the station-
ary requirement 65y = 0, the Euler-Lagrange equations pro-
vide us with

Yo = constant (48)

so that

yo(t) = yo(0) + yot. (49)
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Additionally, from the condition 4S; = 0, we conclude that
the action

So = Su(vo, zo)

to 1 R
= [ [EM.I'a - A/Jrl'f(:l'ﬂ -_ yg)] dt, (50)

with yo(t) given by (49), must be of a stationary character.
On applying (46) upon y,(t) we obtain, to first order in ¢,

b 8Ly
ASS =/ (—) Yo € dt
0 i ay GJU

t2
:yosf (?) dt, (51)
t1 Y /o

where (0L, /dy), stands for the partial derivative with re-
spect to y, evaluated on yp(¢) and (). On the other hand,
when the traslation (47) acts upon yo(t) one finds

tz2 /9L
AS? =£/ (—*’) dt, (52)
t1 9 /o
which entails that, when both transformations
t'=t+e¢ (53)
and
y =y+ev (54)

(where v = 1jp) are applied to yo(t), one is led to

are applied to the whole set yq(t), 29(t), or when (56) and
(58) are performed just onto (1), it is clear that Sg also re-
mains invariant when the transformations (56) and (57) are
applied only to x(t). Then, according to Noether’s theorem
(see Eqn. (4)), the symmetry transformations (53) and (54)
provide us with the invariant

E —vp, (59)

where p = i is the conjugate momentum associated to z.
Notice that the variational problem S = 0 yields, for z(#),
the same solutions as those corresponding to a particle mov-
ing in the wavelike potential (40).

5. Conclusions

We considered Kaplan’s approach to time driven systems in
connection with: i) Hamilton’s principle and ii) the symme-
tries of the associated action integral. The symmetries of Ka-
plan’s “extended” conservative system were shown to arise
as an appropriate linear combination of the symmetries of
the original time driven system. As an example, Jacobi’s in-
tegral of motion for rotating potentials was considered in this
regard. The application of Kaplan’s ideas to the motion of a
particle in a plane-wavelike potential was also discussed.
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