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The ponderomotive force of a high frequency field acting on an isotropic plasma

C. Gutiérrez-Tapia
Instituto Nacional de Investigaciones Nucleares, Departamento de Fisica
Apartado postal 18-1027, 11801 México, D.F,, Mexico

Recibido el 20 de marzo de 1998; aceptado el 12 de diciembre de 1998

Using the hydrodynamic approach to describe a plasma, an expression for the ponderomotive force of a high frequency field acting on an
isotropic plasma is obtained and shown in a simple way. Non stationary terms and the effective collision frequency between particles are

taken into account. The collisionless approximation is analyzed.
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Usando el modelo hidrodindmico para describir un plasma, se muestra en forma simple la obtencién de una expresi6n para la fuerza pondero-
motriz de un campo de alta frecuencia que actiia sobre un plasma isétropo incluyendo términos no estacionarios y una frecuencia efectiva de

colisiones. Se analiza e limite no colisional.

Descriptores: Fuerza ponderomotriz; plasma isétropo

PACS: 52.35. Mw

1. Introduction

Two non-linear mechanisms, excluding non-linear wave in-
teractions, responsible of high frequency (HF) field momen-
tum and energy transfer to the plasma particles can be clas-
sified. The first one consists in the transfer of momentum
p = Nk and energy W = fw by a mechanism related to
the inhomogeneity of the HF field amplitude. Here, k, w and
I are the wave vector, the frequency, and the Planck constant
divided by 27, respectively. It is known that a time averaged
force [1,2]
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acts on plasma particles, where e, and m,, are the charge
and mass of the particles, respectively. Eg is the HF field
amplitude.

Al this point it is important to specify two concepts used
in this work: the valid frequency range of the method used
and the validity of the assumed linear relation between the
current and the HF electric field. The approximation of a
HF field assumed in our theory is: the oscillation frequency
w of the electromagnetic field is large compared with the
Larmor (cyclotron) frequency ) = eB/m.c and with the
reciprocal transit time v/L, where v is the particle veloc-
ity and L is the characteristic length of the device [3]. In
the collisional case, it can be imposed the additional con-
dition w > 1, where v is the effective collision frequency
between particles. There exist several applications, where
the study of the motion of charged particles in a HF fields
is important as found in focusing and trapping of particles,
for example. These processes mean that particles are elas-
tically bound to an axis or a coordinate in space if a bind-
ing force acts on them increasing linearly with distance r,

i.e., F = —ecr, where ¢ is a constant [4]. In practice, fo-
cusing is obtained using a parabolic potential of the form
® ~ (az® + By? + vz2), in cartesian coordinates [3, 4]. The
components, along the =, y and z directions, of the equa-
tion of motion of the particles moving in a parabolic poten-
tial as above can be written in terms of the Mathieu equations
[1,4]. The analysis of the coefficients of the Mathieu equa-
tions determines both the stable regions (focusing and trap-
ping) and the instable regions (acceleration) of particle mo-
tion respectively [5]. A particular case of particle motion in
a parabolic potential is the 2-dimensional quadrupole spec-
troscopy where the focusing of particles is realized using a
HF electric field [4]. In these devices, the most relevant fre-
quency region occurs when w > (1/rg)+/2eV/m, where V'
is the HF voltage applied and rq is the half-distance between
electrodes. To achieve a strong focusing (trapping) of parti-
cles (3-dimensional quadrupole field), is recommended (6]
to use rotating magnetic fields {3, 7, 8] where, the frequency
of rotation w is comparable with the Larmor frequency. An-
other area of application of HF fields is found in wave guides
and resonators theory [5]. If w <« wy, - where e =
dmn.e?/m, is the electron plasma frequency, within the
framework of the linear theory—the HF field can be intro-
duced as far as the skin penetration depth and the approxima-
tion of the ponderomotive force is no longer valid.

The assumption of a linear relation between the HF field
and the current is valid when the influence of the HF field on
the plasma is small. In an isotropic plasma, this condition is
expressed as £y < E. [9], where

E. — WLe E}:
T ok 93/2°
Here & = w/c and E, = 3T,m.w?/e>. T, is the electron
temperature and i, is the electron mass. In the opposite
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case, for a large-amplitude HF field (Ey > E.), we cross
into the region of non linear interaction of a HF field with a
plasma where the interaction between waves becomes impor-
tant. One of the most interesting processes of the non-linear
interaction of waves is the parametric resonance. This pro-
cess is related to the action of a strong (large-amplitude) HF
field inducing a strong periodic time variation of the plasma
parameters. These fluctuations, in conjunction with the ex-
ternally imposed HF field can resonantly couple (parametric
resonance). When the plasma parameters oscillations become
sufficiently strong, some plasma mode is driven unstable
by the externally imposed HF field at a different frequency
(parametric instability). Parametric instabilities of this kind
have been investigated intensively in relation to the laser-
plasma interactions [10].

To show the influence of the force on a plasma, it will be
considered the force (1) per unit volume of plasma (practi-
cally on electrons),

{£) = N (for)
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where N, and w}_, = 4nN,eZ/m, are the density and

the plasma frequency of the species a respectively. In a
cold isotropic plasma the dielectric permittivity has the
form [9,11]
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In this case the expression for the ponderomotive force acting
on a unit volume of plasma has the form

1 2
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In a more general form the expression (3) can be written as
o
= —L__YVE,,Ey,, 4
(fa) T6m 0; Eo; 4)

where £;; and 6;; are the dielectric and unit tensors respec-
tively. As can be seen from (1), (3) or (4) this force has a
potential form. In general, the dielectric tensor strongly de-
pends on geometry of the electric and magnetic fields. Sev-
eral methods to obtain this tensor are shown in Refs. 9, 11,
and 12.

The second nonlinear mechanism is related to the time
dependence of the HF field amplitude. In particular, the force
acting on the plasma particles arises when the HF field ampli-
tude increases with time. Due to the time dependence of the
amplitude in the expression for the stationary ponderomotive
force (1), (3) or (4) new terms will appear. In the literature,
the expression for the ponderomotive force, which includes
time dependent terms, is known as the non-stationary pon-
deromotive force.

It is a fact that the magnitude of the ponderomotive force
is small but with the advent of new radiation sources like

lasers and masers capable of delivering peak powers [13, 14],
exceeding the tera-watt level the concept of the ponderomo-
tive force has acquired a renewed interest. Recently, the
problem for obtaining an expression for the non stationary
ponderomotive force of a HF field has been discussed ex-
tensively [15]. Among the most important applications are
the following: the beat-wave and weak field particle accel-
eration methods [16-18], the ion cyclotron isotope separa-
tion [19-22], the generation of intense magnetic fields using
the inverse Faraday effect [23-25], the generation of driven
currents by non inductive methods [26-28] and recently a
method has been proposed using the ponderomotive force,
to produce a plasma edge rotation in tokamaks in order to
suppress, by a forming thermal barrier, the turbulence result-
ing from the anomalous transport and increasing the energy
confinement time in these machines [29-31].

An expression for the ponderomotive force can be real-
ized using single particle [32-34], hydrodynamic [15, 35, 36]
or kinetic approaches [15,37]. As can be found in the lit-
erature, the expressions for the non-stationary ponderomo-
tive force obtained in these approaches differ. This consti-
tutes the origin of controversy between the expressions for
the energy-momentum tensors proposed by Minkowski and
Abraham [38, 39].

This paper is organized as follows: in Sect. 1 the basic
equations are obtained. In Sect. 2 an expression for the non
stationary ponderomotive force is obtained where the colli-
sionless limit is analyzed.

2. Basic equations

The interaction of a HF field with plasma particles will be
described using both the hydrodynamic plasma model pro-
posed in Ref. 40, considering a collisional term and Maxwell
equations:

% 1
a + (Vo V)vg = £ [E+_vn X B:l = VaVa, (3)
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where v, is the effective collision frequency between parti-
cles. Assuming that electric E and magnetic B fields, the
velocities v, and the densities n, have all a slow and rapid
time dependences, they can be written in the form

E = (E) + E, B = (B) + B,

V(I == (Vn> +_ V(vt ﬂ[i == (”Q) + ﬁ(ﬁ ([0)
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where the angle brackets denote an averaging over time [40]

1 [ttto
(B(t)) = —/ () dt'.
to Ju

The time interval # is large compared with the characteristic

time 7 of variation of the fast variables and is small compared

with the characteristic time of variation of the slow variables.
It will be considered that the slow and fast variables vary

sufficiently smoothly in space, i.¢e.,

L A =
=, = > [{va)l, [{Va)l
T~

where L and A denote the characteristic distances over which
these quantities vary, respectively. In this case, it can be
shown [40] with respect to the HF field amplitude Ey, that
in the equations for the slow variables it is sufficient to con-
sider the linear approximation and in the equations for the fast
variables it is necessary to use the quadratic approximation.
Substituting (10) into Egs. (5)-(9) and averaging in time,
the following equations for the slow quantities are obtained:

P =
3 (Vo) + ({Va) - V){va) = Me

(E) = (Vo V) Va)

4 Lo <vﬂxB>-uﬂ<vn>, (11)

Me

a e
o (na) + V- ({(na) {(va) + (1aVa)) =0, (12)

V x (B} = ——= (B}, (13)

V x (B) = 4(—” > ea (1) (Va) + (FaVa))

L10
c ot
V- (E) =0. (15)

(E), (14)

Equations (11)-(15) were obtained using the cuasi-neutrality
condition. Also, it can be noticed that the influence of the
rapidly varying motion on the slow motion is taken into ac-
count in terms of the high frequency pressure and the non-
linear force in (11) (second and third terms on the right hand
side) and in terms of the drag flow (n,v,) in (12) and (14).

3. Non stationary ponderomotive force
It will be assumed that the HF field is described as
~ 1
E(r, )= = [Eo (r,t) exp (—iwt) + c.c], (16)

where Eq (r,t) is the slowly varying HF field amplitude.
Considering the terms to first order in temporal derivatives,

the following equations for the fast variables are obtained
from (5), (6) and (8)

Vo  €a = .
—BT = EE_V(IV(I:
i o
Bt + (na)V - vq =0,
- 10B
VXE—*ZE

Solutions of these equations within the approximation men-
tioned above are the following:

Va =

€a g __ L 9E
e Wa —iw) | | Vo —iw O

x exp (—iwt) + c.c., (17)

{(Na) €a

C 2ma (Vo — iw)

« 1. [Eﬂ_ (1+;_) 3Eo]
w W Ve—iw/) Ot

Ty =

x exp (—iwt) + c.c. (18)
a2 ic 1 ()E() .
= —i)-v X (En = ;E—) GXI)(—TW?) + G (|9)

Using (17) and (18) as well as the notation introduced in
Ref. 35, the drag flow {1,V ) takes the form

S 1.
(Pl V) = = +Ta, (20)

where
' e g (B x B 21
= e X
J dmiw (V2 + w?) 0 0> 1
is the magnetization current and
P)
(n) ez

T dm2w (12 + w?)

x {i (Eo - V) E} —éEg (V- OEO)

ot
1 IE§ OEq "
o [En (v-52)+ 5 (V.EO)]
w OE‘ OED
S S | | . : (LI s E:
u;-:+w2[ - (v at ) a v E")]
+c.c.}. (22)

Introducing the relative velocity [35] which describes the
conductivity current

u, = (va) +

(rl(‘)l"m (23)
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and assuming that (E) = 0, the equation (11) takes the form
Il aua
Ma (Na) 7y + Vallg + (un - V) u,
t
o = e (: et - ’
= —Mg (Na) (Ve - V) Vo) + % {(na) <vn 5 B> - mﬂ% + Vagmal'e = f,. (24)
This expression constitutes the general form of the ponderomotive force. Substituting (17)-(19) in (24), it takes the form
(o) €2 2
| e — S .- i S, "y
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(ne) e {ivn Vo — iw OBy vq +iw OE
—=2 —[E V x Ej TR — — . 0 e O *
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Vo + iw OES\ i (va +iw)’ OE i 9
e A g, i | v ) o B iy PP o (g P
w? 2 ( * Bt) w2 +w?) ot X(VXE0)+w8t(E() VE)

Vo 1 IE;, w d W dE;, IR
LY [ 0, S| W .- i B - — , ol g e ;
w { w ° ot v +w? ot (EoV - Eg) V2 + w? (EQV ot ot v EO)] +CILH}' 25)
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10.

Ll

In the collisionless limit (v, = 0), the expression (25) is reduced to that obtained in Refs. 35, 36 (in the case of an isotropic
plasma). The first term in (25) is the known stationary ponderomotive force (3).
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