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The color spin-orbit (LLS) contributions to the energy of the heavy-light (2, ¢) and light-light (¢, ¢) semi-classical systems confined by both

an scalar potential and a time-like vector potential, are calculated. It is found that in the limit of a very high orbital angular momentum, they

are very sensitive only to the presence of an scalar potential, and that, if this potential is very strong. they spoil the confinement regime.
Itis shown also that for a confinement potential dominantly time-like vector, the LS contributions are only neglibile relativistic corrections

consistent with the quark confinement. Within this scheme a time-like vector confinement is prefered over one of scalar type.

Kevwords: Heavy-light and light-light semi-classical systems; semiclassical hamiltonian

Son calculadas las contribuciones de espin-orbita (LS) de color a la energia de los sistemas quark pesado-quark ligero (@, q) y quark
ligero-quark ligero (g, ¢) confinados por potenciales vectoriales y escalares. Se encuentra que en el limite de un momento angular orbital

alto, ellas son muy sensibles solo a la presencia de un potencial escal

ar, y que si este potencial es muy fuerte, ellas estropean el regimen

de confinamiento tambien. Es demostrado que, para un potential de confinamiento dominantemente vector, las contribuciones LS son solo
correcciones relativistas consistentes con el confinamiento de los quarks. Dentro de este esquema un potencial semi-cldsico vector es preferido

sobre uno de tipo escalar.

Descriptores: Sistemas excitados quark pesado-quark ligero y quark ligero-quark ligero; hamiltoniano semi-clasico

PACS: 12.39.-x; 12.39.Hg; 12.39.Pn

1. Introduction

The study of quark-antiquark systems in high orbital angular
momentum states (i.e. highly excited mesons) has been used
in the past to explore the nature of confinement. Detailed kno-
wledge of the characteristics of the confinement has many
implications for a deeper understanding of the mesons pro-
perties, hence the importance of such a studies. The main ap-
proaches so far used for analyzing excited mesons have been
mainly based on two different points of view: a semi-classical
one [1] and a second which uses a Dirac-like equation [2, 3).
Although in principle, it seems more realistic to work within
a Dirac-like approach for a very excited a quark-antiquark
system, a semi-classical approach proves to be valid too.

It is currently believed that the Lorentz nature of the con-
finement potentials can be either linear scalar or vector linear,
embedded in a Dirac equation. In order to investigate which
of these two potentials is really the responsible of the confi-
ning. in Ref. 2 it was studied a (Q, 7) mesonic system in the
limit of very high orbital angular momentum states. By assu-
ming that the heavy quark-light quark system is described by
a Dirac Hamiltonian and confined by either a scalar or vector
potential, in Ref. 2 it was shown that, only the scalar potential
has physically admisible solutions.

Through a different approach, consistent of a semi-
classical Hamiltonian, it was pointed out in Ref. I that a to-
wer degeneracy is allowed, in the limit of very high orbital
angular momentum, only in presence of a scalar confinement

potential. This fact helps to support the preference for a sca-
lar confining potential over a vector one in the description of
a quark-antiquark system.

However, it is important to emphasize at this point, that
the spin-orbit contributions to the mesonic energies have not
been calculated so far. These contributions are very impor-
tant, mainly when the system is in the so-called Regge limit:
a very large value, of the orbital angular momentum. There-
fore, without taking them into account, any inference about
confinement from the Regge limit, could not have validity at
all. For that reason, the purpose of the present work is to cal-
culate the LS contributions to the energies of both the (Q, 7)
and (g, q) mesonic systems, in the limit of a very high or-
bital angular momentum (L). Once these contributions are
calculated, it is possible then to have a more complete model
Hamiltonian to study the confinement and other related as-
pects, such as Regge trajectories. Calculations are carried out
by using of the semi-classical formalism introduced in Ref. 3
in which the quark-antiquark system is confined by both a
time-like vector potential and a scalar potential,

The way we proceed in this work is as follows, in Sect. 2,
we calculate the LS contributions while in Sect. 3 we discuss
the implications on confinement of such a contributions.

2. Hamiltonian with spin orbit term

The Lagrangian of a classical quark of mass m moving
with a velocity v in presence of an effective scalar potential
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S(r) = k4r, a time-like vector potential V' (1) = k,7 and a
color Coulomb potential U(r) = —&/r is

—[m+S(r))vV1-v2-V(r)-U(r), (1)

where v? = 72 4+ w?r?. Since the nonperturbative linear po-
tentials S and V, in the above equation, are the responsible
of the confinement of the two quarks inside the meson, con-
sequently Ky > O and K, > 0.

Equation (1) describes a (Q.g) system with the heavy
quark at the origin r = 0. In the case of a two light
quarks system, the center of mass is equidistant between
the quarks which have a relative displacement r. The res-
pective Lagrangian describing this (g, q) system would be,
Ly = —(2m + S)/1 —v%/4 — V(r) — U(r). While these
changes do not modify substantially anything of the follo-
wing discussion, in what follows we will continue working
with the Lagrangian (1) and quoting whenever necessary, any
difference with the (g, ) systems.

The canonical momenta obtained from (1) are

Lo =

1Lg
= 001 = [m + S(r)]r, (2)
= OLo = [m + S(r)|ywr, (3)
Ow

where v = (1 — v?)~1/2,
The respective Hamiltonian derived from (1)—(3) is

Ho =rpr +wd — Ly
[m + S(r)ly + V(r) + U(r). (4)

Through the relation
p? =p} +J?/r?
= [m + S(r)*?
=[m+S(@)PH* - 1), (5)

the velocities can be eliminated in (4) to obtain

Ho = /[m + S(r)

MP+p2+ 22+ V() +U(r). ()

In the case of a two light quark system, the corresponding Ha-
miltonian is: Hy = /[(2m)2 + S(r)]2 + (2p)2 + V(r) +
U/(r). Let us observe that this hamiltonian can be obtained
from (6), simply by making the replacement m — 2m and
P — 2p.

While studying the Hamiltonian (6), in Ref. 3 it was
found that, only the scalar confinement leads to meson to-
wers, where mesons of different angular momentum lie on
top of each other.

In order to have a further understanding of the Hamilto-
nian (6) in the limit L > 1, it is more wnveniem to make a
first order expansion in powers of p?/[(m + S)? + J?/r*] in
such an equation. After doing this, it is obtained the familiar
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FIGURE 1. Potential Vg (r) plotted when L = 50 for three dif-
ferent cases: ¢) S = 0, i)V = 0, and iii) S = V. The coupling
constants x, and &, are in units of GeV?. The value of the strength
of the color Coulomb potential is £ = 0.445.

expression
p; off
Hy = M, + Vg (), 7
where
Vef(r) = Mo + V(r) + U(r), (8)
and

My =+/[m+ S(r

A primary condition for the confinement potentials, V' and S,
is that they must be very strong in order to compete with the
intense centrifugal forces. This requirement means that their
strengths must be of the order of the angular momentum L,
Le. Ky kg2 Ly

In Fig. 1 the potential (8) is plotted for the three different
cases: {) S = 0,i) V =0, and iii) S = V. From that figure,
it is easily seen that the classical turning points of the light
quark are finite. In other words, to first order of approxima-
tion, the semiclassical potential Vi (r) allows for perfectly
consistent bound states, indepently of which of the two po-
tentials, S or V' is the dominant.

Let us investigate now the consequences of the spin-orbit
interaction on the confinement of a quark-antiquark system.
In order to calculate the spin-orbit term, we assume that the
quark has a color magnetic moment
€q9
2m

N2+ J2fr2. 9)

- (10)

where ¢, is the light quark color charge, ¢ a color gyromag-
netic factor, and S is the quark spin. This magnetic moment,
together with the Coulomb color interaction with the static
source at the origin, induces a Thomas precession effect. The
corresponding potential associated to this interaction is [4]*

U'=-p-H' +8 -wy, (11)
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where H' is the color magnetic induction measured from the
quark rest frame and wr is the Thomas angular velocity of
rotation. These quantities are defined as follows

9

H’:y(H—vxE)f’Y_Flv(v-H}, (12)
and
o= Lgaxy, (13)
where
a=0/1_[E+vxH-(v-ENV. (14)
m

The color electromagnetic fields E and H in Egs. (12)-(14)
are measured from the origin.

Since we are not considering any external magnetic field
(i.e. H = 0) and due that ¢, E = —¢dU(r)/dr, it is straight-

forward to see that

H\ﬂan (r)]? + ]J"+-J*+‘()+U(T)+.41.‘;Ii%—

Since the total angular momentum can take only the va-
lues J =L+ 1/2and J = L — 1/2 then

§:L=(J%=1%-8%/2
_JLj2 J=L+1/2
a {—(L+1)/2 J=L-1/2 (19
|
L‘z
= \/[m + S+ + F+ V) +UM) £

where we have made S - L ~ +[/2 and

1= () (pereg) 2

In what follows, we shall assume that in the limit L > 1,
the LS coupling term, can be treated semi-classically. This
means that the quantum mechanic operators can be thought
as semi-classical canonical variables.

Let us consider the following Hamilton equations”:

]..:(_72: i { m+ S Pr 21
(mr) (\/_+m+ S)

dpr ¢’

IMPLICATIONS OF THE COLOR SPIN-ORBIT INTERACTION TERM ON THE CONFINEMENT OF . ..

9 S-leU(T).

CH ==
H 2m? r o dr (15)
and
1 1 1dU(r)
S W = g L— g
: m2 1+~ r dr (16}

By substituting (15) and (16) in (11) it is obtained the LS
interaction potential

1 /g il 1dU(r)
o ol B i Vi e,
. m? (2 ¥+ 1) Lr dr

We must observe two things at this stage. The first one
is that that the spin-orbit interaction potential (17) is valid
for both the (@, ) and the (g, @) systems. The other is that
Eq. (17), is a complete relativistic expression. In fact, it is
straightforward to check that if one turns off the scalar po-
tential (i.e. S = 0) and takes the nonrelativistic limit in (14),
the familiar first order expression of ordinary quantum me-
chanics is obtained [3].

From (6) and (17), we find the complete hamiltonian in-
cluding the spin-orbit term H = Hy + U’

(i7)

m+ S(r)

\/[rr1+5 N2+ p2+ 2 +m+ S0

£

2m?2r3

Sl

! From Eqs. (18)-(19), it can be seen that the spin-orbit
contribution is no longer a correction term to the energy when
the meson system is in high angular momentum states. Also,
it is observed that the LS term is highly sensitive only to the
presence of an scalar confining potential.

Now, we calculate the Regge limit (i.e. L > 1) of the
Hamiltonian (18). In that limit it can be written as

[g m+ S(r) }L (20)
\/[m+3 (m]? +p-+—-r+m,+5( r)

(22)

. OoH ¢
i=2 - ey L5

T aL (mr) (\/‘_,_1“4_ g)

where ¢ = (m + S)? + p? + (L?/r*
that the angular velocity,

m+ S }J.L

). We shall also assume

f=w, (23)

has a nonzero value, which is a very reasonable assumption in
the limit where the orbital angular momentum is very large.
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FIGURE 2. Potentials Vj,(r} plotted in the case ks =~ L* GeV* and k, ~ L GeV®, for several values of the orbital angular momentum,
color gyromagnetic ratio, and quark mass running in the ranges 10 < L < 20, 0.1 < g < 4.1, and 10 < m < 300 MeV, respectively.
The value of the strength of the color Coulomb potential is € = 0.445. In (a), the V,J () potentials associated to the states (L = 10, g =
4.1,m = 10 MeV and (L = 10, g = 0.1, m = 300 MeV) bound from top and bottom respectively, to the rest of the potentials associated
to other states. In (b) all of the V_(r) potentials lie between the curves associated to the states (L = 20,9 = 0.1,m = 10 MeV) and

(L =20,9g=4.1,m = 10 MeV).

The quotient of (21) and (22) gives the radial moment as
a function of the radial velocity 7, and the tangential velo-
city rw
g s (24)
r rw
It is not difficult to verify that, through a first order ex-
pansion in powers of p?/[(m + S)* + (L/r)?], Eq. (20) can
be written as

2

2 ==
H = 5+ VE(), (25)
where
VE@) = a+ 82+ (L/r)2+V +U
&L g m+ S (26)
2im%r3 | 2 \/(m +S82+(L/r)2+m+ S L
.q 2 2
A = Vv (m+S) +(L{r) 7
14+ 50 o

[ (-m+.‘-')'-’+(L/r)2+m+S:[2

The form of Eq. (25), reminds us the familiar radial equa-
tion of a particle of effective mass M, moving in a field of
forces I‘Lﬁ(_ 2.

As it can be appreciated from Eqgs. (25)-(27), the LS term
is very sensitive only to the presence of a scalar confine-
ment potential. As we shall see below, this single dependence
of the LS term, restricts in a considerable way the strength
of S(r).

In Figs. 2-4 are plotted the potentials ‘l/;ﬁ.(r) for several
relevant values of #, and #,. In these figures the quark mass,

the orbital angular momentum and the color gyromagnetic
ratio are allowed to run in the ranges 10 < m < 300 MeV,
10 < L < 20,and 0.1 < g < 4.1, respectively. In the-
se figures, the strength of color Coulomb-like potential re-
mains fixed in a value £ = 0.445. Thus, in Figs. 2a and 2b
the potentials V| (r) and Vg (r) are plotted respectively for
the case of an scalar potential stronger than the vector po-
tential. With the purpose of taking representative values only,
we have considered the case where x, and &, take the va-
lues ki, >~ L* GeV? and k, ~ L GeVZ?. In Figs. 3a and
3b we have plotted the same potentials but now for the case
in which the potentials S(r) and V(r) compite in strength:
ks =~ k, = L GeVZ. Finally in Figs. 4a and 4b, we have
plotted the potentials ’t{_,ﬁ.(-r-) for the case ks ~ L GeV? and
ty =~ L? GeV?, e.g. when S(r) is weaker than V (r).

Figures 2 and 3 show that, while more dominant is the
scalar potential, the more difficult is to generate a two quarks
bound state. In other words, if we consider for instance, me-
sonic energies of order 2 ~ 1 TeV from Figs. la, 1b, 2a, and
2b it is observed that the classical turning points of the quark
would be at infinity, for any value of ¢ and m in the ran-
ges stated above”. This behavior means that if the meson is
confined by a dominantly scalar potential, the LS interaction
would break the meson. This unphysical behavior discards
the scalar potential as a good confinement potential.

In Figs. 4a and 4b, we have plotted the potentials Vj(r)
in the situation where now, the vector potential is the do-
minant one, i.e. K, > k. With the purpose of illustrating
the corresponding behavior, we have taking the representati-
ve values: x, = L? GeV? and k, = L GeV2. From these
figures, it is evident that, when the confinement potential is
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FIGURE 3. Potentials Kff(r) plotted in the case ks ~ Ky, = L GeV?, for several values of the orbital angular momentum, color gyromagnetic
ratio, and quark mass running in the ranges 10 < L < 20, 0.1 < g < 4.1, and 10 < 7n < 300 MeV, respectively. The value of the strength
of the color Coulomb potential is £ = 0.445. In (a), the Ve'{,}(-r) potentials associated to the states (L = 20, g = 4.1, m = 300 MeV) and
(L =20, ¢ = 0.1, m = 300 MeV) bound from top and bottom respectively, to the rest of the potentials associated to other states. In (b)
all of the V_;(r) potentials lie between the curves associated to the states (L = 20, g = 4.1, m = 10 MeV) and (L = 20, g = 0.1, m =
10 MeV).
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FIGURE 4. Potentials Veﬁ(r) plotted in the case ks =~ L GeV? and k., ~ L*? GeV?, for several values of the orbital angular momentum,
color gyromagnetic ratio, and quark mass running in the ranges 10 < L < 20,01 < g < 4.1,and 10 < m < 300 MeV, respectively.
The value of the strength of the color Coulomb potential is £ = 0.445. In (a), the V:,’,{r) potentials associated to the states (L = 20, g =
4.1, m = 10 MeV) and (L = 10, g = 0.1, m = 300 MeV) bound from top and bottom respectively, to the rest of the potentials associated
to other states. In (b) all of the V_;(r) potentials lie between the curves associated to the states (L = 20, g = 0.1, m = 300 MeV) and

(L =10, g=4.1, m = 10 MeV).

dominantly vector, the classical turning points for a givenpo- 3. Conclusions
sitive quark energy, are finite. This result implies that the LS
interaction does not fragment the meson, and still it allows

for physically admisible bound states. This behavior of the From Eg. (18) it is possible to conclude that, within a sche-

’ i ) . me of a very excited quark-antiquark system described by the
potentials Vi (r) assures that the vector potential resist the Lagrangian (1), the color LS contributions are only very sen-
most important test, the one of confinement. sitive to the presence of a scalar confining potential.
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As can be seen from Figs. 2 and 3, the dependence of

the LS term on S(r) makes that, with a dominant confine-
ment potential of scalar nature, the LS contributions would
lead to the unphysical fragmentation the meson into free
quarks. The confinement regime might be restored if the co-
lor gyromagnetic ratio in (26) acquires an unusual value,
g ~ S/(S++/S?+ (L/r)?), to cancel out the term pro-
portional to £ in such an equation. Since this possibility is
very remote, we can conclude that within the semiclassical
approach of Eq. (1), the scalar potential is discarded as a go-
od confinement potential.

On the other hand, the vector potential V' (r) is less res-
tricted than the scalar potential S(r). The only restriction it
has, is to be not weak. This restriction is very reasonable and
it is just the necessary for avoiding the quark deconfinement,
due to the intense interquarks centrifugal forces. As it can be

appreciated from Fig. 4, with a time-like vector confinement
potential and large values of L, the LS contribution do not
put at risk the confinement regime.

To conclude, let us observe from Eq. (27), that the con-
finement of a light quark in a region smaller that its Comp-
ton wavelenght, Acc = 1/m is only an apparent paradox.
This fact is due that, as a consequence of the confinement in-
teraction, the light quark acquires an effective mass greater
than its current mass. Therefore, we can conclude that within
this semi-classical approach a time-like vector confinement
is prefered over one of scalar type.
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() In the case of a (g, §) system there exist an interaction term of
this kind for each light quark degree of freedom.

) The other two Hamilton equations p, = —(9H/dr) and
J = —(0H/dw) are not necessary for the present discussion.
However, it should be observed from (17) that consistently it is
obtained, J = 0.

These energies could be available in a near future with the ad-
vent of the LHC,
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