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Metallic behavior of Ni clusters
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We have studied the nonmetal-metal transition in small nickel clusters (N < 38) for a large variety of different structures reported in the
literature. A self-consistent tight-binding method for the s, p, and d valence electrons in the mean field approximation has been used to
caleulate the density of states. The prescription employed to identify the nonmetal-metal transition was Kubo's criterion, that establish that
the small clusters may remain insulating until the density of states at the Fermi level exceeds 1/(ksT). We compare our results with some
experimental results.
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En este trabajo hemos estudiado la transicién no metal a metal en ciimulos pequefios de niquel (N < 38) para una amplia variedad de
estructuras reportadas en la literatura. Un método auto-consitente de amarre fuerte para los electrones de valencia s, p y d en la aproximacién
de campo medio se utiliza para el cdlculo de la densidad de estados. La condicién empleada para identificar la transicién no metal a metal ha
sido el criterio de Kubo, el cual establece que cimulos pequefios se mantendrdn como aislantes hasta que la densidad de estados en el nivel
de Fermi excede el factor 1/(knT'). Comparamos nuestros resultados con algunos resultados experimentales.

Descriptores: Transicion no metal a metal; cimulos pequeiios de Ni.

PACS: 36.40.Cg; 65.90.+i

1. Introduction

Nowadays, in the case of small cluster sizes, there are many
theoretical results in the literature about Ni clusters that pro-
vide a great variety of structures, depending on the inter-
atomic potential and on the method used in the calculation, in
general these structures are different in sizes and in geomet-
rical shape. A general discussion on the geometrical shape
of Ni clusters can be found in Refs. 1-12, and papers quoted
therein. However, for small atomic clusters there are other in-
teresting problems regardless of the knowledge of the struc-
ture. One of these deals with the metallic behavior of such ag-
eregates, and can be formulated in the following way, what is
the cluster size at which the atomic clusters becomes metal-
lic? The understanding of the development of the metallic
behavior with increasing particle size has been one of the key
questions in the physics of atomic aggregates for many years
since it was formulated by Frohlich more than sixty years
ago [13].

A key step to understand the metallic behavior of atomic
clusters was first given by Kubo and co-workers [14], who
pointed out that a cluster presents metallic behavior when
the average spacing between the electronic levels becomes
smaller than &, T and the discrete energy levels begin to form
a quasi-continuous band, or formulated in terms of the den-
sity of electronic states D(E): a cluster presents metallic
behavior when D(E) at the Fermi level exceeds 1/(kgT').
Although the Kubo criterion is in principle simple to apply,
there are many materials for which the critical cluster size is

still unknown, that is mainly due to the absence of calcula-
tions of D(E ) and to the lack of a precise knowledge of the
cluster geometry, as it was quoted above.

Recently, it has pointed out that the development of the
metallic character of small atomic clusters is driven primarily
by the mean coordination number [15]. With the aim to clar-
ify this dependence on the metallic behavior, a theoretical cal-
culation [16] has been carried out within Friedel’s model and
Kubo’s criterion; the main conclusion of this work is that crit-
ical cluster size N, (size at which the cluster develops metal-
lic behavior) for the nonmetal-metal transition is proportional
to \/Z(N.)G(T), where Z(N,.) is the average coordination
number of an N-atoms cluster at the critical size and G(T') is
a function that depends on the temperature and bulk proper-
ties of the system. Although the calculation quoted before is
based on a very crude approximation for the D(E) it shows
that the nonmetal-metal transition depends mainly on the ge-
ometrical structure and particularly on its average coordina-
tion number. An excellent review of the experimental and the-
oretical works on metallic behavior of finite size particles can
be found in Ref. 17.

In the case of nickel clusters, and in spite of the partial
agreement in the geometrical structures predicted by recent
calculations [5-12], some discrepancies exist between them,
e.g. inter-atomic distance, local coordination number, aver-
age magnetic moment, etc. These discrepancies are mainly
due to the high number of parameters that have to be taken
into account in the calculations, the methods of calculation,
and the various types of potentials used to obtain geometrical
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shapes and electronic properties such as the spin polarized
state. The main goal of this work is to find out how these
discrepancies modify the metallic character of Ni clusters.

As an attempt to shed some light into the problem of the
nonmetal-metal transition in Ni clusters, in this work we per-
forms electronic structure calculations using a tight-binding
Hamiltonian for different geometrical structures proposed for
Ni clusters in the literature. We use structures calculated by:
Nayak er al. using a Finnis and Sinclair (FS) many body po-
tential [5], Hu et al. using Lennard-Jones (LJ) and Morse (M)
pair potentials [6], and Lépez and Jellinek using a Gupta (G)
type potential [11]; all these structures has been suggested
for Ni clusters based on ditferent energy criterion. Although,
the application of the pair potentials (as LT and M) for metals
such as Ni has been criticized, we do not discuss this point
here, however the reader can get more details in Refs. 2, 3,
6 and papers quoted therein. The electronic density of states
was calculated using a self-consistent tight-binding method,
formulated for the 3d, 4s, and 4p electrons and applying
Kubo’s criterion to determine the critical cluster size.

In Sect. 2 we describe the theory used in this work, the re-
sults are presented in Sect. 3, and a summary and conclusions
are given in Sect. 4.

2. Theory

The spin-polarized electronic structure of nickel clusters is
determined by solving a self-consistent tight-binding Hamil-
tonian for the 3d, 4s, and 4p valence electrons in a mean field
approximation. In the usual second quantization notation, this
Hamiltonian has the following expression:

H=3% eomive+ Y, 6880, M
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where (frf(m (€00 ) is the creation (annihilation) operator of an
electron with spin o and orbital state o at the atomic site 4,
and 1, is the number operator.

The hopping integrals t;‘f between orbitals o and /3
at sites 7 and j are assumed to be spin-independent and
are obtained using the Slater-Koster approximation taking
the two-center hopping integrals from Papaconstantopoulos,
who fitted them to reproduce the band structure of fee bulk
nickel [18]. The variation of the hopping integrals with the
inter-atomic distance r;; is assumed to follow the typical
power law (ro/ri;)'t'+1 where ry is the bulk equilibrium
distance and [, and " are the orbital angular momenta of the
(o) and (j30) states involved in the hopping process. The
spin-dependent diagonal terms take account for the electron-
electron interaction through a correction shift of the energy
levels

o
0
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Here, € are the bare orbital energies of paramagnetic bulk
Ni. The second term is the correction shift due to the spin-
polarization of the electrons atsite i (p;3 = (ni31) — (nigy)).

In this term, J, 3 are the exchange integrals and z,, is the sign
function (z4 = 1, z; = —1). The exchange integrals involv-
ing s and p electrons are neglected and Jy,4 is determined in
order to reproduce the bulk magnetic moment [19]. The site-
and orbital-dependent self-consistent correction {};, assures
the local electronic occupation, fixed in this model by inter-
polating between the isolated atom and the bulk according
to the actual local number of neighbors. The spin-dependent
local electronic occupations are self-consistently determined
from the local densities of states

(”iao’) = / ’ BPioa (E)df 3 (3)
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which are calculated at each iteration by using the recursion
method [20]. In this way, the distribution of the local mag-
netic moments (ju; = Z“ [Lin) and the average magnetic mo-
ment (j1 = Za 11:/IN) of Niy clusters are obtained at the end
of the self-consistent cycle. The total density of states (DOS)
at the Fermi level, Dy (Er) = 3,4 Piac(EF) results also
from the self consistent calculation and we have used it to de-
termine the nonmetal-metal transition according to the Kubo
criterion [14], thatis Dy (Eg) > 1/kgT for the development
of metallic behavior.

This one particle Hamiltonian neglects correlation effects
beyond the mean field approximation and the dependence of
the DOS with the temperature. This assumption seems to be
adequate since previous calculations at finite temperature in-
cluding correlations effects for bulk Ni [21] demonstrate that
the DOS does not change appreciable near the Fermi energy
for temperatures lower than 640 K: The Fermi energy always
lies on a pronounced peak characteristic of the fcc structure.
Therefore, changes in the DOS are expected to occur only
as a consequence of the finite size and geometry of the clus-
ters. It is also important to mention that it is assuming that
there are not structural transitions in the temperature range
here considered.

3. Results

Considering that the number of electrons that contributes to
establish the metallic behavior is proportional to the num-
ber of atoms N in the aggregate and that such dependence
might hide some effects, we show in Fig. 1 the normalized
DOS at the Fermi level, that is Dy (Er)/N. The geometries
used in the calculation are those calculated by Nayak et al. [5]
(represented by e in the figure) who had calculated them us-
ing a semi-empirical pair potential developed by Finnis and
Sinclair (FS) based on tight-binding total energy calculations
and containing many-body terms. A second set of geometries
in this work are those calculated by Hu and co-workers [6],
these structures had been obtained combining molecular dy-
namics and Monte-Carlo method with a Lennard-Jones (x)
and Morse (x) pair potentials. A third set of geomelries are
those calculated by Lopez and Jellinek from molecular dy-
namics simulations with a Gupta type potential (a) [11].
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TABLE 1. The five different structures for clusters with N' = 8 that shows different results obtained using different parameters, methods and
potentials. Structure with (e) symbol corresponds to Ref. 5 obtained by molecular dynamics. Those quoted with (-) and (x) were obtained by
Monte-Carlo method, respectively [6]. Symbol (#) is a proposed structure by Parks and co-workers [22] from experimental work. Structure
quoted by (a) was obtained using molecular dynamics [11]. See specific references for details.

Identified structure (Potential) i Z;) Z d.(A)
* Bicapped octahedral (Finnis and Sinclair) [5] 4(4), 4(5) 45 225
*Capped pentagonal bipyramid (Lennard-Jones) [6] 1(3).3(4),2(5),1(6),1(7) 4.75 2.48
" Deformed central tetrahedron (Morse) [6] 4(4), 4(6) 5.0 2.48
“ Bicapped octahedral (Gupta) [11] 4(4), 4(5) 4.5 2.46
* Saturated tetrahedron (Suggested by the experiment) [22] 4(3), 4(6) 4.5 243
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FIGURE 1. Normalized density of states at the Fermi level as a
function of the cluster size. The sharply and oscillatory behavior
that all the systems show, specially at small size clusters, reflects
the strong dependence of the [D(Ep)/N] with the geometrical
structure in this range. Here, (e) corresponds to structures calcu-
lated with Finnis and Sinclair type potential [5], (*) and (x) are
geometries obtained with Lennard-Jones and Morse pair potentials
respectively, while the () is a structure proposed by Riley ef al. in
Ref. 22, The triangles (a) correspond to structures by Lopez and
Jellinek [11], using a Gupta type potential.

As an example of the discrepancies in the geometrical
shapes of the clusters and others problems mentioned in the
introduction, consider for instance the different clusters pro-
posed for Nig in Fig. |; the different geometrical proper-
ties are summarized in Table 1. All the structures are differ-
ent among themselves, e.g., if two of them (FS and G) have
the same structure, they have different inter-atomic distance
(d,,), orif they have the same coordination number (Z) (FS
and M), they differ by the structure, and so on. Such discrep-
ancies are reflected in the electronic properties of these sys-
tems. This can be observed in the normalized density of states

[Dn(Er)/N] shown in Fig. 1, and in the phase diagram of

nonmetal-metal behavior at Fig. 2 (T vs. N), where we have
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FIGURE 2. Plot of the nonmetal-metal phase diagram calculated for
Ni clusters in this work. The continuous line is a guide to the eye for
the nonmetal-metal transition. The points below this line could be
considered as non-metallic clusters, whereas those above the line
present metallic behavior. The black triangle (v) is derived from
a ionization potential measurement by the experimental results by
Parks er al. [25].

applied the Kubo’s criterion to study the metallic behavior.
In Fig. 1, we observe in general an overall decreasing in the
[Dn(Er)/N] as a function of the cluster size for all the dif-
ferent geometries here considered. The normalized density of
states shows an oscillatory behavior for small NV, that clearly
reflects strong dependence on the geometry and is not easy to
explain in simple terms. It is related to the detailed changes
of the structure and inter-atomic distance with N. In partic-
ular, we notice that the [Dn (Ep)/N] for the clusters based
on the Morse (x) potential is the one that presents the most
complex behavior.

Figure 2 shows the main result of this work: the phase di-
agram for the nonmetal-metal transition. The solid-line is just
an aid to the eye to visualize the boundary of the nonmetal-
metal transition. The region below the boundary describes
non-metallic clusters while the region above corresponds to
the metallic state for atomic clusters. The boundary becomes
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steep and irregular for small size clusters, whereas for larger
cluster sizes the boundary becomes less irregular with a slope
that decreases continuously as the cluster size increases. Us-
ing the solid line as a guide we can conclude that at room
temperature Ni clusters larger than 10 atoms present metallic
behavior, whereas at liquid nitrogen (77 K) temperature there
are required at least 50 atoms to get the metallic behavior in
atomic clusters.

We are not aware of any direct experimental measurement
of the nonmetal-metal transition in Ni clusters, since most of
the experimental results are for Pd, Fe, Hg, Ag, Au, Cu, etc.
clusters [17]. However, based on measurements of the ion-
ization potential (IP) one can estimate the critical cluster size
for the nonmetal-metal transition [16, 23]. It is well known
that the metallic behavior in large clusters implies that the
size variation of the IP satisfies the equation [24]

IP(N) =1P, + ON~/3 (4)

where 1Py is the bulk work function (ionization potential of
the macroscopic metal) and C' is a constant (the asymptotic
slope in a plot for large size clusters). In the case of small ag-
gregates a linear fit in N =!/% also often works, although the
slope and the constant term are different. It can be estimated
the nonmetal-metal transition as a function of the cluster size
where the two linear fits intercept, since this is the size at
which Eq. (4) starts to hold. The result of this estimation us-
ing the ionization potentials measured by Parks [25] is in-
cluded in Fig. 2 as a black triangle (v), with error bars indi-

cating the experimental uncertainty. Considering this experi-
mental result, we obtain a fairly agreement with our work.

4. Conclusions and summary

We have studied the nonmetal-metal transition in Ni clus-
ters for some of the different geometrical shapes proposed in
the literature. A self-consistent tight-binding method for the
s, p, and d valence electrons has been used to calculate the
electronic density of states (DOS). The Kubo's criterion was
applied to identify the nonmetal-metal transition in atomic
clusters. Metallic behavior in atomic clusters is presented
for Ni clusters with 10 atoms at room temperature and with
more than 50 atoms at temperature of 77 K (liquid nitrogen).
We compare our calculations with Park’s experimental results
and we found a good agreement.
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