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Curvilinear coordinates for the evaluation of the optical transfer function
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In the present work a new coordinate system of curvilinear coordinates is proposed, in order to evaluate the optical transfer function, OTF,
by the autocorrelation method. By using these curvilinear coordinates the elements of the exit pupil grid are defined by curves instead of
straight lines as is the case when using rectangular coordinates. So that, these curvilinear coordinates divide the domain of integration in
segments that follow the shape of the exit pupil. The curvilinear coordinates allow a better approximation in the calculation of the OTF with
less elements in the grid and, therefore, a saving in computational time.
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En el presente trabajo se propone un nuevo sistema de coordenadas, llamadas coordenadas curvilineas, para evaluar la funcién de transferencia
6ptica, OTF, por el método de la autocorrelacién. Usando estas coordenadas curvilineas los elementos de la grilla en la pupila de salida estan
definidos por lineas curvas y no por lineas rectas como se obtiene al usar coordenadas rectangulares. De tal manera que dichas coordenadas
curvilineas dividen el dominio de integracién en segmentos que siguen la forma de la pupila de salida. Las coordenadas curvilineas permiten

una mejor aproximacion en el cdlculo del OTF usando menos elementos de la grilla y, por lo tanto, se disminuye el tiempo de computo.

Descriptores: Funcién de transferencia dptica; autocorrelacion; coordenadas curvilineas

PACS: 42.15.Dp: 42.15.Eq

1. Introduction

In optical design the optical transfer function, OTF, is used
as a means of assessing and predicting the image quality of
optical systems but it can also be used as a merit function dur-
ing the optimization process. There are two basic methods for
evaluating the OTF: (1) evaluating the autocorrelation of the
exit pupil function, or (2) taking the inverse Fourier trans-
form of the intensity point-spread function. When evaluating
the OTF by the autocorrelation method the domain of inte-
gration is bounded by two arcs of circles of unit radius, that
is, two symmetrical circular segments joined at their straight
sides. In order to perform the numerical integration, the do-
main may be divided by a rectangular mesh into elements of
equal area. This, however, gives an error in the evaluation of
OTF due to the zig-zag boundaries in the domain. This prob-
lem has been discussed by J. MacDonald [1] who proposed
a modified polar mesh. We introduce an alternative solution,
curvilinear coordinates, for dividing the domain of integra-
tion into a number of elementary areas.

2. The OTF autocorrelation formulae

It is well known that the “normalized image contrast”, T'(s),
is defined as the rat io of the OTF under the presence of aber-

ration, ¢(s), to the OTF for an aberration-free system to(s),
that is,

L t(s)
T(.&) = !‘-D(S}-

(D

H.M Hopkins [2] has shown that for the reduced spatial fre-
quency s, the normalized image contrast, T'(s), is given by

Tlg)= %/] exp {iksW (z,y;s)} dady, (2)
s

where k = 27/, A is the area of the pupil, W (x, y; s) is the
aberration function which is a polynomial in z and y, and 5
is the area common to two pupil areas centred on the points
(£s5/2,0).

3. Curvilinear coordinates

In reference to Fig. 1, the domain of integration, S, denoted
by the dash lines, is defined by shearing the pupil an amount
proportional to the spatial frecuency. 7o is the radius of the
exit pupil which is equal to one, that is, rop = 1. © is the an-
gle that subtends the line that joins the centre of curvature of
the exit pupil, C, to the point where the two shearing pupils
intersect, P. Finally, H is the distance between points C and O.
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FIGURE 1. The domain of integration, .S, which is denoted by the
dash area, is defined by shearing the pupil an amount proportional
to the spatial frecuency

X %

FIGURE 2. The normalized area within the arc u = const. is the
value of the u-coordinate.

In order to solve the problem in a completely general way
we establish a system of curvilinear coordinates u, v on the
plane of the sheared pupil such that each elementary area is
bounded by two pairs of lines

iy =, uy = (L + 1)Au, (3)

U =MAY; U1 = (m + 1)Av, 4)
where [, m are non-negative integers and Au Av are the sides
of the elementary areas. Inside the domain of integration such
pairs of lines will divide the region into elements of equal
area and will conform exactly to the shape of the boundaries.
These coordinates will be normalized to extreme values of
one:
0<u<l, 0<u <. (5)
Consider now the region OPR (Fig. 2) the upper half of a
segment of radius rg = 1. The chord is in coincidence with
the y-axis and the centre of the circle is point C on the z-axis
at a distance H from the origin of coordinates O. The area of
the half-segment, that is, the area of the region OPR, is

1
A= E(Q—Hsin@), (6)
where

O=cos ' H. (7)
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FIGURE 3. The normalized area within the arc v = const. is the
value of the v-coordinate.

On the z-y plane the coordinate u = cte defines the arc
of circle P'R’ of radius r (see Fig. 2) with centre at point C’
on the z-axis at a distance h from the origin O such that

h=rcos®=rH. (8)

The value of the coordinate, u, is the ratio

area(OP'R'P)  7%(© — cos@sin®) ©)
it = = =T
A 3(© — cos O sin O)
hence,
dr 1
r= \/’E, E’[—; = 5 T. (10)

The equation of the arc u = cte is

(e +h)® +4* =12,
or

(z+ Hr)  +3* -r? =0,
or

2 + 2Hrz 4+ (H? — 1)r? + % = 0. (I

Also, on the z-y plane the coordinate v = cte (see Fig. 3) de-
fines the line OQ through the origin of coordinates forming
an angle w with the z-axis.

The value of the coordinate v is the ratio

v = %area(OQR)

- %[ﬂrea(CQR) — area(CQO)]

1 .
:ﬂ(Q—Hsmﬂ). (12)
For a given value of v, a first approximation to 6 is

) = 40, (13)

successive better approximations are obtained with the
Newton-Raphson method

vP) = 24 [9(”) — Hsing™| | (14)
1)('.n.)

H(u-l 1) - B(”) o
dv/d8’

(15)
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dv 1

a6~ 24

The equation of the line v = cte is

(1 — H cos#]. (16)

y = xtanw, (17
hence
dy :
3z = tanw, (18)
and #
: sin (19)
anw = ———.
cosl — H

Eliminating y from Egs. (11) and (18) we obtain an equa-
tion of second degree in x:

F=(1+tan?w)a® + 2Hrx + (H* = 1)r* =0. (20)

Given the pair of curvilinear coordinates (u, v) of a point,
the corresponding pair of Cartesian coordinates (z,y) is
found as follows:

(1) With the value of v and the Newton-Raphson method
Eqs. (14) and (15), obtain 6 and then tanw with
Eq. (19).

(2) With the value of w compute r with Eq. (10).
(3) Solve for x the equation of second degree (20).
(4) Compute y with Eq. (17).

The partial derivatives of = and y with respect to the co-
ordinate u can be obtained directly from Egs. (20), (10) and
(18) [3]:

dr _ Quvdr _ OF/Ordr
du~ Irdu  OF [0z du
) Hz+ (H?* - 1)r a1
T 2r (1 +tan®w)x + Hr
% - @gl _ tanw Hz+ (H?> - 1)r (22)
du  Ordu 2r (1 +tan’w)x + Hr'

We shall now derive expressions for the partial derivatives
of = and y with respect to the coordinate v. First, we write

dx  dxds dd (_lg
A ds dfdw dv’
Oy dyds df dw

Ul ayms Ben 24
Se - dedbdu g )

(23)

where ds is the element of arc along a line u = cte. From the
gcometry of Fig. 4,

lx 1
== —sind, Y =
ds ds

cosf, (

(2]
N

and
ds

= 2
7 P (26)

cC c O__‘ R’ R
‘dx
FIGURE 4. Geometry for the derivation of dz/ds, dy/ds and
ds/df.
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FIGURE 5. Geometry for the derivation of df /dw.

In triangle COQ of Fig. 5 by the law of sine’s

h I @
sin(w —#)  sinw
hence, we may write
F=vrsin(w—46)—hsinw=20 (28)
then
df _ OF[0w _ v cos(w — @) — hecosw
dw ~ OF[06 7 cos(w — 6)
- g
~ reos(w — 6) (29)
where
g=0Q" (30)
Consider the infinitesimal triangle OQQ of Fig. 6,
o = f(gﬂ 31

where Q is a point on arc u = 1, infinitely close to Q. It is
casy to show that

dv = ﬁ,-—idn‘ (32)

where G = 0Q, then
dw 2A -
dv G2 =g
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FIGURE 6. Geometry for the derivation of dw/dv.
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TABLE I. Values of the MTF for an aberration-free system in focus.
Note that the normalized frequency values for the case 6 x 6 ele-
ments of rectangular coordinates is different due to the limitation
of the smallest step-size in the normalized frequency being equal to
the smallest element size in the sample grid (for 6 x 6 squares, the
smallest normalized frequency step is 1/6).

FIGURE 7. Domain of integration divided into 3 rings and 12 sec-
tors (upper row) and 5 rings and 20 sectors (lower row) for nor-
malized frequencies of 0%, 20%, 40%, 60% and 80% from left to

right.

We now substitute Egs. (25), (26), (28) and (33) into Egs. (23)

and (24) to obtain the following expressions:

oz 2Agsiné
— = 34
dv G? cos(w — 6) 4
Ay 2Agcosf
—_— = ——_— 3
v G2 cos(w —8)’ B
By noting that,
hcosf + gcos(w — 8) =1 [T (36)
L COS COS|Ww — =y : = -
L COS gcos(u S | cos(w-—ﬁ)
1— H cos#
Hcos +Geos(w—-60)=1 - G= bl (37)
cos(w — A)
so that,
g (r — hcos@)
G?cos(w —8) (1 — Hcos#)? (38)
Finally, substituting in Egs. (34) an (35)
dx (r — hcosf)
_— = —ZA—-—*— B.
dv (1 - Hcosh)? e o
Ay (r — hcos#)
— =2A— 9
v = 21— Hoost? ™™ e

Figure 7 shows the domain of integration.

Normalized Ideal Curvilinear Rectangular
frecuency MTF coordinates coordinates
v/ Eq. A.l 3 %12 20 x 20
0. 1.0 1.0 1.0
0.1 0.87291 0.87289 0.87342
0.2 0.74708 0.74706 0.74684
0.3 0.62386 0.62384 0.62025
0.4 0.50465 0.50463 0.50633
0.5 0.39101 0.391 0.39241
0.6 0.28477 0.28476 0.29114
0.7 0.18813 0.18812 0.18987
0.8 0.10409 0.10409 0.10127
0.9 0.03739 0.03739 0.03797
1.0 0. 0. 0.
Normalized Rectangular
frecuency coordinates

v/vo 6 x6

0. 1.0

0.16667 0.8125

0.33333 0.6250

0.5 0.4375

0.66667 0.2500

0.83333 0.1250

1.0 0.0

4. Results

In order to show the approximation of using the canonical co-
ordinates for the evaluation of the MTF for systems with cir-
cular apertures as proposed in this paper, we have evaluated
the modulation transfer function for an aberration-free sys-
tem in focus, in three different ways: the first one is to evalu-
ate the area common to two pupils according to Eq. (A.1) in
appendix A, the second one is by using rectangular coordi-
nates and the third one is by using the canonical coordinates.

The results are presented in Table I, In reference to Ta-
ble I, the first column shows the normalized frequency, v /.
The second column shows the MTF values as a function of
the normalized frequency when Eq. (A.1) is used. It is im-
portant to note that the values of the MTF given by Eq. (A.1)
are exact, in the sense that it gives the value of the area com-
mon to the aperture and the aperture displaced, for this rea-
son the data in this column is named “ideal” MTF. The third
column shows the data for the evaluation of the MTF when
using curvilinear coordinates. The domain of integration was
divided into 3 rings and 12 sectors as shown in the upper row
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--8--3 X 12 Curvilinear coordinates
-~ 8 X 6 Rectangular coordinates
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X 20 X 20 Rectangular coordinates
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FIGURE 8. Modulation transfer function versus normalized fre-

cuency. v/vq, for an aberration-free system in focus.

of Fig. 7. The equations presented in Sect. 3 where used to
perform the evaluation of the integral given by,

1 -
MTF(v) = — // hyhy du dv @1)
dr [,
r:}lrviiineur
element
where
H, = 8—T ’ D g)—’
= du du
and

hi

ax\? Ay :
(a) o+ (a) (42)

In Fig. 8 the data are plotted in order to show that these curvi-
linear coordinates allow the “ideal” MTE. The fourth column
shows the data of the MTF when the pupil is divided into 20
by 20 rectangular elements. The fifth column shows the nor-
malized frequency values, v/vg, for the case when the grid
is divided into 6 by 6 rectangular elements. Note that the dif-
ference between the in the first column and the fifth column
is due to the limitation of the smallest step-size in the nor-
malized frequency being equal to the smallest element size
in the sample grid. The sixth column shows the MTF values
as a function of the normalized frequency when the pupil is
divided in 6 by 6 rectangular elements of equal area. If the
center of a rectangular element is inside the common area of
the two pupils then this element contributes to the MTF. In
Fig. 8, we can appreciate the error in the evaluation of the
MTF when the rectangular grid is used. To improve the ap-
proximation, it would be necessary to divide the region in 20

by 20 rectangular elements, that is, it would be necessary to
perform four hundred raytraces to reach the “ideal”value of
the MTF as shown in Fig. 8, instead of 36 as is the case when
using curvilinear coordinates.

S. Summary and conclusions

When the optical transfer function is evaluated by the au-
tocorrelation method, the domain of integration is defined
by the shearing pupil, that is, the domain of integration is
bounded by two arcs of circles of unit radius. In the present
work, we have proposed a system of curvilinear coordinates
such that the domain of integration is divided into elements
of equal area and conform exactly the shape of the bound-
aries of the domain. These curvilinear coordinates u, v have
been written in terms of the Cartesian coordinates x, y as well
as their partial derivatives, so that the evaluation of the opti-
cal transfer function can be carried out. In the results, we
show that when using curvilinear coordinates the values of
the MTF are exact for an aberration-free system of circu-
lar apertures. Currently, we are working on the algorithm to
implement these functions on aberrated systems of circular
aperturcs.

Appendix A
When no aberrations are present, the MTF as a function
of frequency, v, is given by the common area between two

shearing pupils as [4],

D)
MTF(v) = =(¢ — cos ¢sin ¢)
™

L {2
¢ = cos —
t'p

v is the cutoff frequency in cycles per millimeter and vy is the
cutolf frecuency given by

(A.1)

where

(A.2)

2NA
A

My = (A.3)
where NV 4 is the numerical aperture and A is the wavelength
in millimeters. Note that Eq. (41) applies to circular aper-
tures.
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