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Holographic and moiré aspherical compensators
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Computer generated aspherical compensators are superimposed on an interferometer wavefront or fringe pattern to generate a null fringe
pattern. This process has been understood and widely described in the literature. On the other hand, when we superimpose an ideal fringe
pattern on top of the picture of an interferogram to be analyzed, we obtain a moiré pattern between the two images. These two apparently
different procedures have much in common, but also some important differences to be described here.
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Un compensador asférico generado por computadora es superpuesto en el patrén de franjas de un interferémetro, a fin de generar un patrén

de franjas nulo. Este proceso ya ha sido reportado ampliamente en la literatura. Por otro lado, cuando se superpone un patrén de franjas ideal
sobre el negativo de un interferograma, se obtiene un patrén de franjas de moiré de estas dos imdgenes. Aparentemente, estos dos métodos

son muy similares, sin embargo, tienen diferencias que son importantes y que serdn descritas en este articulo.

Descriptores: moiré; hologratia; interferometria

PACS: 42.30.M; 42.40.J; 07.60.L.

1. Introduction

Computer generated aspherical compensators can be super-
imposed on an aspheric wavefront or in the “live” fringe pat-
tern in an interferometer to modify it and thus produce a null
fringe pattern. This process has been widely described in the
literature [1, 2]. On the other hand, when we superimpose an
ideal fringe pattern on top of the picture of an interferogram
to be analyzed, we obtain a moiré pattern between the two
images. These two apparently different procedures have a lot
in common, but also some important properties that we will
describe.

An aspheric wavefront in a Mach-Zehnder, Fizeau or
Twyman-Green interferometer produces non straight fringes
with variable fringe spacings as shown in Fig. la. If the as-
phericity is strong, and the tilt i§ large enough to avoid closed
fringes, the minimum fringe spacing may become of the or-
der or smaller than the pixel period in the detector. Then,
the sampling theorem limit is exceeded and, the need for
an aspheric compensator arises. A computer generated holo-
graphic compensator may be used to eliminate the unde-
sired spherical aberration of an aspheric wavelront to per-
form a null test of an aspherical surface, as proposed by
several authors, like MacGovern and Wyant [3], Pastor [4],
Wyant and Bennett [5] and described in detail by Creath and
Wyant [1, 2].

The hologram is nothing else but an interferogram made
with a large amount of tilt (a linear carrier), with a magnitude
large enough to separate the diffracted compensated wave-
front from the other orders of diffraction, as mentioned by

(a) (b)

FIGURE 1. A Synthetic interferogram of an aspheric wavefront. a)
With an aberrated aspherical wavefront and b) with an ideal aspher-
ical wavefront.

Malacara and Malacara [6]. The wavetront compensation
with a hologram can be made in a convergent or a collimated
light beam. An example of a computer generated hologram
used to eliminate the spherical aberration is shown in Fig. 1b.
The tilt in this hologram is almost the same as that in the
interferogram in Fig. la.

2. Theory

In the holographic compensator the ideal perfect wavefront
under test is represented by

Wiz,y)=A 1’,‘/9"9‘"’(-“‘9‘} 4 (1)

where Ay, can be considered a constant and ¢ is the phase
of the wavefront under test. This ideal wavefront under test
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interferes with a flat reference wavefront R(z,y) given by
R(z,y) = Apet*s, (2)

where again, A is a constant and a = (27/A)sin 6 and
is the wavefront inclination. Thus, the amplitude E(x,y) on
the interference plane is

E(z,y) = W(z,y) + R(z,y), (3)

and the irradiance on the hologram (interferogram) is

I(z,y) = E(z,y)E*(z,y)
= _4'124/ + .4%{
ol AWAR[Ci(rb(:r,y)fﬂw) it e—i(rﬁ(w:y)*ﬂm)]’ (4)

where the symbol * stands for the complex conjugate. If the
reconstructing wavefront is H (z,y) given by

H{t,5) = Ape'®Ev), (5)

Again Ay is a constant and @ is the phase of the reconstruct-
ing wavefront. Assuming a linear recording media, the trans-
mission of the hologram may be considered to be directly
proportional to the irradiance in Eq. (4). Thus, upon recon-
struction we obtain

G('Ha '.U) = H(;l‘.'. y)I(.E, y)
= (A%, + AR)Ayei®®Y)
+ AwARrAy [ei[¢(msy)+¢’(t,y)—az}]
+ AwARAy [e“i[{fb{x,y)—‘i’(m,y)—axl]' )

It must be pointed out that these are the only terms present
if we assume a linear recording of the hologram, thus produc-
ing sinusoidal fringes. However, a computer generated holo-
aram produces higher order terms not considered here. This
is the well known basic hologram theory. Let us now consider
three different possible reconstructing schemes.

a) The first case of interest is when the illuminating (re-
constructing) wavefront H (z, y) is identical to the flat refer-
ence wavefront, given by 4

H(z,y) = R(z,y), (7

thus obtaining

Glz,y) = (Aiv e “i;'ig)AReé"z + AwAiei‘ﬁ(I‘y)
Y AWA?Q&"[—WL&')-%QUI]‘ (8)

The first term represents the flat reference wavetront. The
second term is the ideal reconstructed wavefront, which is to
be compared with the wavefront under test. The third term is

a beam conjugate to the first order wavefront reproduced in
the —1 order of diffraction. This beam has opposite deforma-
tions to those of the first order. Since as pointed out before,
the computer generated hologram is not formed by sinusoidal
fringes, it has high order diffracted beams.

b) The second case to consider is when the illuminat-
ing (reconstructing) wavefront H (z,y) is close in shape to
the perfect wavefront W (z, y), but with a small difference in
phase A¢(x,y) due to imperfections, as follows

H(z,y) = W(z,y)e2e=v)

= Ayellelzv)+ad(zy)] 9)

then, the wavefronts generated by the interferogram are

G(z,y) = (4€V 3 ‘4%}Awei[¢(w‘y)+A¢(I'y)]
245 A‘.‘ZvARei['—’fﬁ(lgy)+5¢(1vy)*ﬁzi

+ AL Agelldsl=v)tas]l,  (10)

The first term is the illuminating wavefront. The second
lerm has an asphericity with twice the original magnitude,
but with the small deformation of the reconstructing wave-
front superimposed. The flat reference wavefront is repro-
duced only if this wavefront under test is perfect. Otherwise,
any deviation from the ideal shape appears on the almost flat
wavefront.

¢) A third case to consider is when the hologram is illu-
minated with a wavefront H (x,y) with an asphericity with
the opposite sign to the wavefront under test and the small
deformation superimposed on it. Thus

H(z,y) = W"(z, y)cj'[A‘f’(I‘y)+2axj

i[—¢(z,y)+A¢(x,y)+2az]

= Awe (1)

where * denotes the complex conjugate, obtaining the follow-
ing diffracted beams

C}'(;z:_,y) = (A%V £ A'I’?}Auzeil—q'l(.r,y]+A¢{z,y)+Ear]
5 A'.EVA“(Ji[A(zJ(I.yHVOx]

4 A‘.‘Z/VAﬂpi!*Qd’(I.y)—{—Aqﬂ-’E,y)+3ﬂz]l (|2)

where the first beam is the illuminating zero order. The sec-
ond term is an almost flat wavefront The third term is a wave-
front not shown in Fig. 4a.

The spectral bandwidths of these beants are directly pro-
portional to the maximum wavefront slope on these wave-
fronts that, is directly proportional to the maximum inter-
ferogram spatial frequency when the tilt is removed. Thus,
the bandwidths would increase with their asphericities. Of
course, these relative irradiances depend on the fringe pro-
files.
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FIGURE 2. (a) Optical configuration with the hologram inside the
interferometer cavity, and (b) spectra of wavefronts.

3. Holographic and Moire compensators

The relation between holographic and Moiré compensators
has been described before [6]. The compensating hologram
can be used in three different manners, according to its lo-
cation in the interferometer. These three manners, which are
not the three configurations described in the preceding sec-
tion, will be described using a Mach-Zehnder interferometer
as an example. However, the same principles apply for Fizeau
and Twyman-Green interferometers.

3.1. Helogram inside the interferometer cavity

The compensating hologram may be placed in the path of the
aberrated wavefront, inside the interferometer cavity, without
disturbing the reference wavefront R, as in Fig. 2a. Then, the
interferogram to be analyzed is formed by the interference
between the wavefront under test, after being compensated
by the hologram W, and the reference wavefront R. A total
of four wavefronts are produced, the two interfering wave-
fronts and two extra ones than can be easily low pass filtered,
since they travel in different directions and hence different
spatial frequencies. This filtering can be performed in the
image space by means of common convolution filters using
masks or in the Fourier space by means of properly located
pinholes.

The spectra of these wavefronts with their relative fre-
quency separations are illustrated in Fig. 2b. The lobe of W,
should not overlap those of Wy, and R. Thus, the minimum
linear carrier should be such that the lobes separation is larger
than half the width of W

g
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(b)

FIGURE 3. (a) Optical configuration with hologram outside the in-
terferometer cavity and (b) spectra of wavefronts.

3.2. Hologram outside the interferometer cavity

Another possibility is to place the hologram outside the inter-
ferometer cavity, in the path of both the wavefront under test
and the reference beam, as illustrated in Fig. 3a. Then, both
beams will pass through the hologram and reconstruct their
own sct of wavefronts. The interference now takes place be-
tween the zero order (undiffracted) of the reference beam Ry
and the wavefront under test, after being compensated by the
hologram W ,. There are six wavefronts, the two interfering
wavelronts and four more that should be filtered out. As in
the preceding case, the low pass filtering can be performed in
the image space as well as in the Fourier space.

The spectra of these wavefronts with their relative fre-
quency separations are illustrated in Fig. 3b. The minimum
linear carrier is the same as in the preceding case.

3.3. Hologram in front of the interferogram picture

Still another possibility is to take a picture of the interfero-
gram with any two wave interferometer, introducing a linear
carrier by tilting one of the two wavefronts,and then illumi-
nating it with a collimated beam of light as shown in Fig. 4a.
Then, the transparency of the interferogram acts as a diffract-
ing hologram, generating three wavefronts. One of the inter-
fering wavefronts is the ideal aspheric wavefront produced by
the non diffracted beam (zero order) in the interferogram, but
diffracted by the compensating hologram. The other interfer-
ing wavefront is the wavefront to be measured, produced by
diffraction on the interferogram (41 order) but undiffracted
by the compensating hologram (zero order). Besides these
two interfering wavefronts, there are seven more, making a
total of nine wavefronts. As before, the seven extra undesired
wavefronts travel in different directions, thus, with different
spatial frequencies. Therefore these wavefronts can also be
eliminated by low pass filtering in the image space or in the
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FIGURE 4. (a) Optical configuration with the hologram in front of
the interferogram picture and (b) spectra of wavefronts,

Fourier space. The Fourier spectrum for this case is in Fig. 4b.
The minimum linear carrier is the same as in the other two
cases.

These method to compensate with a hologram has tradi-
tionally been considered a moiré process between the actual
interferogram and the ideal interferogram. It is however quite
interesting to see that it is really a compensating process with
a hologram.

4. Demodulating an interferogram with a linear
carrier

When analyzing an interferogram to extract the wavefront
shape, a phase shifting method is the ideal if an interpolation
procedure is to be avoided. Otherwise, if the fringe positions
are sampled, the relatively large spacing between the fringes
make absolutely necessary a polynomial interpolation, with
the well known limitations.

Alternatively, a solution proposed by several researchers
to avoid phase shifting, is the introduction of a large lin-
car carrier (a large tilt). Womack [7] proposed a method to
demodulate the interferogram in the image space using a
method similar to the demodulation procedures used in elec-
tronic communications, in order to obtain the phase infor-
mation (wavefront deformations). On the other hand, Takeda
et al. [8] proposed a method of demodulation in the Fourier
space.

Both demodulations schemes are very powerful, with dif-
ferent advantages and disadventages. A basic requirement is
that the linear carrier should be of a magnitude large enough
1o avoid closed fringes. This condition can be expressed by
saying that the minimum linear carrier should be such that

Wo,0
Wo,+1 Wo,-1
Wiy, W.i,0
Wi+ Wi
AV/V ViAW
I | 1 | I T
Woi,+1;
Wii,-1

FIGURE 5. Spectrum when demodulating an interferogram with a
linear spatial carrier using moiré with a linear ruling.

the separation between lobes in the Fourier space is larger
than half the width of the wide lobe.

The main disadvantage of these methods is the large
amount of mathematics and image digitization methods in-
volved. Let us assume that the interferogram linear carrier has
to be removed in order to obtain a qualitative assessment of
the wavefront. If the wavefront has not been frozen, that is the
picture has not been taken, the tilt can very easily be removed
in the interferometer by tilting one of the mirrors. However, if
the picture is already taken, the only alternative to remove the
linear carrier is by moiré with a linear ruling with the same
frequency as the linear carrier. This last procedure is basically
the same already described here. The only difference is that
the compensating hologram is now a lincar ruling. Thus, we
have nine diffracted wavefronts as in Fig. 4a with a spectrum
for these wavefronts as in Fig. 5.

It is interesting to see that the minimum linear carrier to
be able to filter the desired wavefronts is when the side lobes
just touch the central lobes. It is easy to see now that the
minimum linear carrier is that which gives a separation be-
tween the lobes equal to the width of the lobes. Thus, the
minimum linear carrier in order to use moiré visual demod-
ulation is twice the minimum linear carrier using Womack’s
or Takeda’s demodulation methods. This is an unexpected re-
sult.

5. Conclusion

Interferogram analysis with holographic compensators and
with the moiré fringe patterns produced by comparison with
a reference grating are essentially the same methods, with
small but interesting differences as described before.

It has been shown that, there are three possible ways of
measuring an aspheric wavefront using hologram compen-
sators, depending on the position of holographic compen-
sator. These methods are basically the same method, but have
some important practical differences that can decide which
method is best in a given case.
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