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The process of measurement and decoherence is studied with a model consisting of a measuring apparatus in interaction with both an
oscillator and the environment. In the present approach, the Weisskopf-Wigner approximation is used in order to calculate the evolution
operator of the complete system, and to construct directly the density operator. The quantum fluctuations of the zero-point field make an
important contribution of the decoherence; this process is described in an explicit form.
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Se estudia el proceso de medicién y decoherencia con un modelo que consiste de un aparato de medicién en interaccion con un oscilador

y el entorno. Se utiliza la aproximacién de Weisskopf-Wigner para calcular el operador de evolucidn del sistema completo y construir
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1. Introduction

Several aspects of the quantum theory of measurement have
been studied in recent years [1-6]. An essential feature of
quantum measurement is that the interaction with a measur-
ing apparatus reduces the initially pure state of a measured
system to a mixture of states. Additionally, the apparatus is
also in interaction with its environment, and the overall effect
of a measurement is the loss of quantum coherence. Decoher-
ence is an important effect which may occur in a time of the
order of the atomic time scale; it has been observed experi-
mentally [7], and must be taken into account in high precision
measurements of quantum states [8].

The process of a quantum measurement can be conve-
niently described with the formalism of the density opera-
tor developed by von Neumann [9]. In the approach taken
by many authors, the density operator of a quantum system,
in interaction with both a measuring apparatus and a ther-
mal bath, is obtained from a master equation based on the
Markoft approximation. In the present paper, we follow an
approach used previously by Glauber [10], and Glauber and
Man’ko [11], which is based on the Weisskopf-Wigner ap-
proximation. In this way, we obtain a Langevin type equa-
tion for the motion of the measuring ‘pointer’, together with
the unitary operator describing the evolution of the complete
system. The results are similar to those obtained with the
Markoff approximation, but the present analysis is more gen-
eral in certain aspects since the evolution of the states can
be described directly, and the density operator is obtained di-
rectly from the analytic expressions of the states. In partic-
ular, we give an explicit description of the decoherence pro-
duced by the vacuum fluctuations of the zero-point field.

The model to be used in the present paper is essentially
the one proposed by Walls, Collet and Milburn [4], with a
slightly more general form of the interaction between the
measuring apparatus and the measured system. Our aim is
to describe explicitly the evolution of the states of a quan-
tum system and a meter interacting with a thermal bath. All
these systems are modeled by harmonic oscillators. In order
to analyze each part of the measuring process, the interaction
between the measured system and the apparatus is considered
first in Sect. 2. The full quantum measurement process is ana-
lyzed in Sect. 3, using the Weisskopf-Wigner approximation;
it is shown that the motion of the pointer is described by a
Langevin equation, and explicit expressions are obtained for
the density operator of the full system and its reduced forms.
A basic result is that decoherence is produced both by the
thermal bath and the zero-point field. The limit of zero tem-
perature is considered in Sect. 4, where the complete evolu-
tion of the states is described analytically.

2. System and measuring apparatus

In order to gain some insight into the physical processes in-
volved, let us consider first the case of a quantum system in
interaction with a measuring apparatus, without, for the mo-
ment, taking into account the effects of the environment. The
system and apparatus will be modeled by a pair of harmonic
oscillators. The apparatus consists of a pointer in direct in-
teraction with the system, and the pointer is in a coherent
state. The quantum system is taken to be an oscillator in a
certain energy state, and the particles number of this state is
the quantity to be measured.
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The Hamiltonian to be used is
Haspnm =hwsN+hw0a4‘a+hN(f'a+faf), (1)

where N is the particles number operator of the system, a
and a' are the annihilation and creation operators of the mea-
suring apparatus, wy and wy are the frequencies of the system
and apparatus respectively, and f is a certain function of time
which controls the interaction. The number operator com-
mutes with the boson operators of the pointer. This Hamilto-
nian describes a typical non demolition measurement, since
the interaction term commutes with the Hamiltonian of the
measured system. As a consequence, the energy of the sys-
tem is conserved and the number operator is a constant of
motion: dN/dt = 0.

The Heisenberg equation of motion for the meter takes
the form

dj:—iwga—ifN, (2)
dt

and its solution is

t
alf) = ¢ ot [a(O)—iNf gfwot f(f’)dt’]. (3)
0
The classical version of this equation describes a harmonic
oscillator with an external force proportional to f(t)N.
A particularly important case is that of a periodic external
force, such that

flityp= fa ot 4)

where the case ¢ = ( corresponds to a resonance between
the external force and the characteristic frequency of the
pointer. This is the most important case, since it corresponds
to an ideal measurement producing maximum motion of the
pointer; in fact, if ¢ = 0, the pointer will move with con-
stant velocity. It is also worth noting that the case studied
previously by Mancini and Tombesi [12], and Bose, Jacobs,
and Knight [13] corresponds to a constant value of the func-
tion f(#); in other words, it is a special case of Eq. (4) with
Wo = €.

We now look for the unitary operator Ugps associated to
the Hamiltonian (1). The equation

i OUsn
- Ot

admits a solution of the form

= HsuUswm (5)

. s AN NZ_LIPT* N2 _T*NaltelNa i gat
[.H‘M — e iwst N+ivN I TN e I'*Na'e e iwplta ﬂ’ (6)

where, in general,

ol
I(t) = -i/ Fr(hete =) gy (7
0

and

1

t
= — { [FFE)+ e e ]dt. (8)
-2 J0O

v(t)

In the particular case of an external force described by
Eq. (4), it follows that

T = fTOeuun!(c—ict o 1) (9)

and

p = ol® [r - lsin(et}]. (10)

€ €

Given the unitary operator in its general form (6), it is
straightforward to find the evolution of any state of the system
and the measuring apparatus. Suppose, then, that the system
is initially in the state | V') g with well defined energy, and that
the pointer is in the coherent state |} 57 . If the interaction be-
tween the system and the pointer acts during a time interval,
t, starting at t = 0, then the initial state [1(0)) = |N)s|a)ar
evolves into the state

(L)) = e NN Ny glae~™ot _T*N)y,  (11)

where

$ =w,t+ %(Fcre—i“")' - o ™%} (12)
is a phase, and v and I are given in general by Eqs. (7) and
(8), or in the particular case of a resonant external force, by
Egs. (9) and (10). To obtain equation (11), we have used the
definition of a coherent state a|a) = a|a), together with the
formula

ﬁa'et’qﬁa'a'a) — c%(!f"”n+ﬁl2—lcxlz)|ei¢a + ), (13)
valid for any coherent state. We see from Eq. (11) that, after
the measurement, the pointer has moved to a new coherent
state which depends on the quantum observable /V, and that
the motion also depends implicitly, through the function T,
on the form of the interaction between observed system and
apparatus. Clearly, the ideal measurement corresponds to the
resonant case € = 0, since this produces the maximum mo-
tion of the pointer.

Suppose now that the system is not initially in a state with
well defined energy, but rather in a superposition of energy
eigenstates; that is

¢

o0
[w(0)) = > CnIN)sla)m- (14)
N=0
After a time ¢, the new state is given by a superposition of
states which can be determined using the unitary operator ob-
tained above. Then, the full density operator [12(t)) (1(¢)| can
be directly traced over the meter states using the relation
Tr|B){a] = (a|f) = e~#Uel AR+’ (15)

and it follows that the reduced density operator of the mea-
sured system evolves according to

ps =Y _ CnCi

NM

x et tl=an)+in(vns®) = (v 30 N ). (16)
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Notice the important fact that the exponential in the above
equation contains negative definite terms for the non diago-
nal elements. For instance, near a resonance, ¢ < wp, the
function |I| increases linearly with time. This implies that
one can improve the precision of the measurement taking the
characteristic frequency of the interaction term to be in res-
onance with the pointer, but the precision is obtained at the
expense of suppressing all non diagonal terms of the density
operator.

3. Decoherence

After the preliminary analysis of the previous section, we are
in a position to study a complete system consisting of a har-
monic oscillator (describing the quantum system to be mea-
sured), a measuring apparatus (also described by a harmonic
oscillator) and a thermal bath in interaction with the appara-
tus. The Hamiltonian of the model is [4]

H=Hsy+ Y wablbn + 1Y (knalby +kpbha), (U7

n n

where b,, and b], are the boson operators of the thermal bath
corresponding to modes of frequency wy,, and k,, are cou-
pling constants between the pointer and the reservoir. As a
first step, we note that the Heisenberg equations of motion
take the form

da )

¢ —i(woa + Eﬂ Knbny + fN) (18)
and

dbn = —i(kha + wnbp), (19)

dt

and, of course, dN/dt = 0. Eq. (19) admits the formal solu-
tion

t
by (1) =e*“~’n‘bn(0)—m;/ a(t)e= =8 gi'.  (20)

0

and therefore, defining ag(t) = a(t)e™"t, Eq. (18) takes the
form

dag(t)
dt

ot
=—Zm|2/aa(t')e*wﬂ—wow’-“dz'+c;(t), 21)
0
n

where

G(t) = —v’e""*"-'t[Zﬁ.ne“i“’""b,l(ﬂ)+Nf(t} . AE

n

As shown by Glauber [10] (see also Ref. 11), Eq. (21) can
be solved using standard techniques of Laplace transforms.
Defining

@pla) = [ e *tag(t) dt, (23)
0

it follows from Eq. (21) that:

a(0) + G(s)

ag(s) = i (24)

where G(s) is the Laplace transform of G(t).

To proceed further, we use the Weisskopf-Wigner approx-
imation. This approximation consists in taking the pole near
s = 0 in Eq. (24) as the leading contribution to the inverse
Laplace transform, and then looking for first order correc-
tions in |k|? to this pole. This amounts to the replacement
(see, e.g. Ref. 14, Chap. 7)

2
i Knl|™
Lyl
Wy — wp — 18
- / g(wn”"ﬁ(wn”gdwﬂ

Wy — Wy — 18

> % +iAw, (25)

where g(w,,) is the density of modes,

v = 27 g(wo)|k(wo) |, (26)
and
]
Ay = — [M(_ﬂ dwy,. (27)
. Wp — Wo

As it will become clear below, the term -y is the damping co-
efficient, and Aw is the energy shift of the meter due to its
interaction with all the modes of the background radiation
field.

The outcome of this approximation is exactly the same as
if one had changed Eq. (21) to the equation

d‘;(:) + g +i(wo + Aw)} a(t) =

— i) knbn(0)e™™nt —iNf(t). (28)

This is a Langevin equation and its solution can be written in
the form

a(t) = (a(t)) =i ) Qn(t)ba(0), (29)

where the average (a) of the operator a is

(a(t)) = a(0)e~l/2HilwotAw)lt
-t
_iN / D+ B =0 ¢ (1) ', (30)
0
and the fluctuating part is given in terms of the functions
e iwnt _ 6—[(‘7/2}+i(w0+Aw)]L

Qn(t) = En (7/2) sl j{wﬂ + Aw — UJn)

(€29
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3.1. Thermal average

To proceed further, we recall that the average of any operator
() over a thermal bath at temperature 7" is defined as

Tr(Qe Ha/kaT)

Tr(e—Hu/kaT) ’ (32)

{0) =
where, in accordance with the Hamiltonian appearing in
Eq. (17),

B=Y wablbn (33)
n

in the Schridinger representation. It follows, in particular,
that

(bL(0)) = (bn(0)) = 0 (34)
and
(03,(0)bm (0)) = SN (wn), (35)
where
N(w) : (36)

It further follows that

(at(t)a(t)) — (al (t)){(a(t)) Z/\r wn)|@n(t) H1*, 37
and since Y |Qn(t)[* is strongly peaked around w, =
wo + Aw = wy, we have approximately (see Appendix A)

at(t)a(t)) — (at ()M a(t)) = (1 — e "IN (wy);  (38)

This last formula shows that the average energy of the pointer
tends to a thermal equilibrium according to its characteristic
{requency of oscillation.

Notice also that, in general, the averaged operators satisfy
the commutation relation

[(a(®)- (et @] = e, (39)

but the complete operators do not violate the Heisenberg un-
certainty relations. Indeed, the condition [a,a'] = 1 implies

that
> lQn )7

this relation can be proved independently, as shown in Ap-
pendix A.

=1-¢ (40)

3.2. System operator

Let us now consider an operator S which depends only on
the variables of the system to be measured. If the Hamil-
tonian (17) describes the complete system, the Heisenberg
cquation of motion reduces to

dsS

— = —i(ws + f*a+ fa")[S, N) (1)

Clearly, the natural basis for the operator 5 is the number ba-
sis; accordingly, we set Sy y = (M|S|N), and the solution
of Eq. (60) takes the form

Sun(t) = M-NMW g, v (0), (42)

where the function W is
o
W =w,t+ / (f*a + fah)at'. (43)
0

It is convenient to write this function in a form exhibiting
explicitly the averaged and the fluctuating parts:

W (t)= (W (t) ;zZI\nf}bk +EZK (t)bt (0);  (44)

here, the functions i\',, are defined through dK, /dt = f*Q,,.

The thermal average of the evolution operator appearing
in Eq. (42) can be calculated using Eq. (B.6). The result is

(M M=NIWy _ Gi(M=N)(wat+(W))

Xexp{ (M = N3 |[Ka(t)] [%+N(%)]}, (45)

frem where the thermal average of any operator which de-
pends on the system variables can be calculated.

Consider the particular case of a periodic external force
described by the function f given in Eq. (4). It follows that

f[) Kn
(7/2 + i(wo + Aw — why)
6—[{7/2 J+ile+Aw)]t

1
(v/2) + i(e + Aw) ]’ (46)

Ky(t) =

{ez(uu—w,‘—f)t 0
X
i(wo — wn —€)

and the expression appearing in Eq. (45) is given by

Zlﬁ”l [ +Af(u,l)] ~

wt
(7/2)2 + (Aw +c)[

. 1
fol* + N(wo)|. @47)
for large values of ¢ (see Appendix C).

In particular, if the system is initially in the state

= CnIN) (48)
N

(in the Schrodinger representation), then the elements of the
density operator p of the system are C'yC5;, in the number
representation, and furthermore, according to Egs. (42)—(45),
the evolution of this operator is given by
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)= 3 =W ot WO gy 0 YN exp { — (M = NP1 fol?

MN

We see that the non diagonal terms of this operator decay
exponentially. The decay coefficient depends on the interac-
tion time ¢ between the meter and the system, the strength
of the measuring interaction, | f|, and also the temperature of
the environment. It is a noteworthy feature of the above result
that the decoherence is not suppressed at zero temperature,
since there is always a contribution of the zero point field,
given by the term 1/2 which adds to the Planck distribution;
this term is due to the quantum fluctuatiens in vacuum.

4. Zero temperature limit

Since decoherence is not suppressed at zero temperature, it is
worth analyzing the evolution of a complete system including
a background field without thermal radiation but only vac-
uum fluctuations. Starting again with the complete Hamilto-
nian (17), we calculate the unitary operator U which is as-
sociated to it. Since we have already solved the problem for
the system coupled with the measuring apparatus, it is con-
venient to define an operator V' such that U = UgaV; then,
this new operator satisfies the equation

zﬁ%—[— =H'V,

(50)
where H' = U_STAI,,(H — Hgpn)Usgpy is an effective Hamilto-
nian.

J

ot B

Setting now the ansatz

G =Aata + Z BnB0, 80 + Z Cpa*Bn + Z Daf;, + N[Aa + pa* + Z Vnfn + anﬁ

mnn

where A, B,,, Cr, D, A, i, v, and p, are all functions of
time ¢ (vanishing at ¢t = 0), and substituting it in Eq. (54), a
closed set of differential equations for all these functions can
be obtained.

For our present purpose, we only need the functions p
and p,,, so that we restrict our calculations to these functions.
Consider then the equations

EE = —ie"ot Z Knfn

=7 (56)

n
and
dpn
dt

= —iwnpn — ikh (€70 — T), (57)

iBG =Z[wn5;(ﬁn 86:)+nn iwot x(ﬂ +g§:

439

vt [% +N(w0)} } (49)

(7/2)% + (Aw + ¢)

Now, for the operator Ugps given by Eq (6), we notice
that any function F'(a,a!) of the operators a and a' satisfies
the relation

U_STAI,J,F(a,af)USM =

F(aefz'wgt _ NF*, afeiwot—NF)’

(51)

from where a straightforward algebra leads to the result:

H' = ﬁz wnblbn B ﬁZ(nnei“’O*aTbn - n;e_"“’“tblla)
n

n

— AN Y “(kaTbn + £3T*BL). (52)

In order to solve Eq. (50) with the above Hamiltonian, the
method of normal ordered operators will be used (Ref. 14,
Chap. 3). Define

= V(a, Bn, ™, BL) = {, BnlV™|a, Bn)  (53)
where V(") is the operator V in normal ordered form, and
|ev, B} is the coherent state of the meter and the background.
Then, Eq. (50) together with the Hamiltonian (52) is equiva-

lent to

)

+ KheTiwotgx (a +

oG
dar*

oG
a8y

) NTk,, (d ) NT*x *6*] (54)

(35)

[
that follow from Eqs. (54) and (55). At this stage, it is conve-
nient to define

(= p—e"ir, (58)

from where it follows that

ot
Pn = »in;e_i“’“‘/ eilen—wolt' (¢ dy', (59)
0

Using now the Weisskopf-Wigner approximation just as in
Sect. 3, we find that the solution of the above equations is

Rev, Mex. Fis. 45 (5) (1999) 435-442



440 SHAHEN HACYAN

given by

.
C(t) = —i / ()[('y/'.’.)+iAw](t'~t)eiwot'f(if) dt’. (60)
J0

Furthermore, in the particular case of a periodic external
force f, given by Eq. (4), we find
elet _ r,,—[('y/?)-}—iAw}[
-1 61
fo T + 1B+ 0 ®h
and the functions p,, follow directly from Eq. (59).

We are now in a position to study the time evolution of the
complete state |N)g|0)7|0) . For simplicity, it is assumed
that the meter is initially in the ground state. The complete
evolution operator is a product of the operator Ugps given
by Eg. (6) and the operator V' given by Eqgs. (53) and (54);
therefore

UIN)s|0)a|0) g =
——m‘alf\"‘l'f‘l’*'v."’lN) Ne—iwat, )’\’.’[A’ Pn)f?’ (62)

€ 8

D= Z CnChy exp { iwst(N — M) +i®(N

NM

- MY -

where the phase ® is given by

d=v-— %(grﬂw' - ce). (63)
It clearly follows that, due to the measurement, the back-
ground field is excited to an infinite-mode coherent state;
similarly, the pointer state moves to a coherent state with an
amplitude proportional both to the strength of the interaction
and to the energy of the state to be measured.

In general, the state of the system is a superposition of
energy states, and the complete initial state is given by

)= (2 CnINYS ) 10)m[0) v (64)
N

Therefore, according to Eq. (62), the full density operator
psan(t) = UMITONTOIU(H) (65)

reduces, after tracing over the background states, to the den-
sity operator for the system and apparatus

SOV =32 S Il

n

X |N)g|Ne™ ™0 ) par (Me™ ™| (M],  (66)

where we have traced over the reservoir states using the fact, just as in Sect. 2, that we are dealing with coherent states.
We can further trace the operator pgps over the meter states. Then the final result turns out to be

Py = Z v.\:]){ —

NM

The term 3~ |p,|* +|¢|? appearing in the above formula
is evaluated in Appendix B. It is sufficient to notice that for
the oscillating force given by Eq. (4), and for v¢ > 1, this
term is approximately

| fol*~t

(7/2)? + (Aw + €)' (68)

in“ulu + !Cll =

which is completely consistent with Eq. (49). Once more we
find that the non diagonal terms of the density operator van-
ish exponentially. As for the phase given by Eq. (63), it is
simply

P = —lfn]g

€

£, (69)

in this particular case.

Al this point, it is interesting to compare the density ma-
trix given by Eq. (67), together with Eq. (D.4), with the one
obtained using the Markoff approximation. The result ob-
tained by Walls, Collet,and Milburne [4] coincides exactly
with our result in the limiting case where both the energy
shift Aw and the resonance displacement ¢ vanish. Thus, we
may conclude that the Markoff approximation is valid as long

5 el o
iwet(N = M) +i®(N? - M?) = Z(N = M)? Zh)” B4 [gf? }(‘\V(MI.-N)ss(ﬁ-fl. (67)

as the external force is close to resonance with the meter, and
the frequency displacement of the meter due the background
radiation field is negligible.

5. Conclusions

To sum up, we have developed an approach to the problem
of quantum decoherence based on the Weisskopf-Wigner ap-
proximation. An advantage of these formulation is that the
evolution operator can be obtained in a closed form. This,
in turns, permits to calculate the evolution of the states as-
sociated with a quantum system, a measuring apparatus and
the environment. From our results, it is explicitly seen how
the pointer, modeled as a coherent state, moves when an in-
teraction with the measured system is switched on, and it is
also clear what the effects of this measurement are on the
background field. The emphasis of this work has been on the
interaction between a quantum system and the environment
mediated by a measuring apparatus. A direct interaction be-
tween system and environment can also be studied with the
present formalism; this will be the subject of future work.
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Itis well known that the zero-point field is at the origin of
many quantum phenomena, such as the Casimir effect [15],
and it also plays a basic role in the process of decoherence
leading from quantum to classical world (see, e.g., Ref. 16).
This is shown explicitly in our formule (68).

A possible realization of the present model could be
achieved with a photoelectron counter. The thermal bath and
the detector represent the usual interaction producing a lin-
car loss mechanism, and the meter measures the number of
quanta per unit time. This particular realization is discussed
in Ref. 4.
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Appendix A

Consider a sum of the form Y |Q,|?, where (),, is given by
Eq. (31). This sum can be approximated by an integral of the
form

= 1 (wn)|g(wn)
e / (v/2)? + 22

—wp—Aw

X [P_”" +1- 2(_’—(7/2”(?05('1?”] dz, (A.1)

J

(F(b,b)) = (1 — e~ ) Tx (F(b,bf)e"‘b'b) =cs (0,0lF(\/l FNb+ VN, VIF Nt + \/ﬁc) 10,0).c,

where

(B.2)

and ¢, ¢! are dummy boson operators which commute with b
and b', and have an associated vacuum state |0),.. From

Y (VIFN b+\/.vr")lo.0>h‘C = (’%lyizN|O)be\/jv>c, (B.3)
it follows that
I - 2 2 J n
((,rb'eyb> s (,(-,'z” [*+|ul )M(I le\/ﬁ)ﬁ (B.4)

where | ... ), are the coherent states associated to the dummy
operators. The expectation values in Eq. (B.4) can be easily
calculated using the formula for the scalar products of coher-
ent states, and it finally follows that
(%% ¥y = ¥V | (B.5)
From this last expression, a general formula valid for an
infinite number of modes can be obtained:

where © = w, — wo — Aw. Since the integrand is strongly
peaked around z = 0 (that is, around w,, = wy + Aw =~ wy)
the slowly varying term |x(w,,)|?g(w,) can be taken outside
the integration as |#(wo)|>g(wo), and, furthermore, the lower
range of the integral can be extended to —oc. Then, using

/°° dzx 2 (A2)
Pl (V2P +22 7 7 '
and
> cos(xt)dx 2r /2
e o et ’ A3
[.opra=3 ey
together with the definition (26) of v, it follows that
[=1=g"" (A4)

in full agreement with Eq. (40).

Appendix B

The thermal average of any operator can be conveniently cal-
culated using the following theorem (Ref. 14, p. 161): For
any function F'(b, b') of the boson operators b and b!, its ther-
mal average is given by

(B.1)

(eXp{ Z(-FnbL it ynbn)}) =

X exp {% Z:r;,ﬂ s } exp { Z ;rnynN(wn)}, (B.6)

where now the thermal average is as defined in Eq. (32),
and use has been made of the Baker-Campbell-Hausdorff for-
mula:

t t 1
e=d Hub — bl yb gy

(B.7)

Appendix C

If the external force f is given by Eq. (4), the functions K,
defined by Eq. (44), take the explicit form given in Eq.(46).
It then follows that

D & | fol*I6(wo) Pa(wo)Z(8),  (C.1)
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where we have defined the integral
: e dx gt q
1) = el
Jss (7/2)2 +5 r+u

with i = wy; —wp — Aw, v = Aw + ¢,

%, (C2)

—iX

e—(1/2)—iut _ q

(v/2) +iu
and the following approximations have been made: it is as-
sumed that |x|?g is a slowly varying function and that the
integrand is strongly peaked around x = 0 (which also im-
plies that the lower limit of integration can be taken as —o0).
The integral 7 can be given in exact form using successive in-
tegration with respect of # of the integral given by Eq. (A.2).
Instead of going into a textbook exercise in integration, we
simply note that the integral 7 contains several oscillating
terms and one dominant term of order +¢, from where it fol-
lows that lor large time ¢,

X = (C3)

27t
(v/2)% + u?’
We finally obtain Eq. (47) as a good approximation valid for
~41 > 1. with the additional assumption that the Planck factor
in the integrand can also be taken outside the integration us-
ing again the fact that the whole integrand is strongly peaked
around w,, = wo + Aw.

I (C4)

Appendix D

Since, from the definition (58),

d¢ i
—E:——w“"(g Knpn + f) (D.1)
and also from Eq. (59),
d twot s % 1(wn —wo)t
E(P Pn) = —iknetem &, (D.2)

it follows by direct substitution that
d 2 2 s Htwpl * - —iwptl g* ~
=D lpal? +1C[*) = —ie™ 0 fC° +ieT 0l f7C. (D.3)

This is a general formula valid for any function f. In the par-
ticular case that the external force f is given by Eq. (4), it
follows by direct integration that

2 3 _ g2 7t

e—(V/D)t+ile+Aw)t _
[(7/2) — 1(( 5 Aw)Z]E +c.c. ] (D4)

+ |f0|2[
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