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Aharonov-Bohm effect on the bound states of an electron inside an annular
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We solve the Schriedinger equation for an electron inside an annular cylindrical box in two situations: /) in the absence of any fields, and
ii) in the presence of a uniform, axial magnetic induction field confined and centered in the perforation. The Aharonov-Bohm effect on the
hound states of the electron is exhibited through the analysis of the dependence of the energy eigenvalues and eigenfunctions on the enclosed
magnetic flux. The results of this study serve to illustrate the roles of the magnetic vector potential and the gauge transformations in quantum

mechanics.

Kevwords: Magnetic vector potential in quantum mechanics

Se resuelve la ecuacion de Schroedinger para un electrén en el interior de una caja anular cilindrica en dos situaciones; i) en ausencia de
cualquier campo, y #i) en presencia de un campo de induccién magnética axial y uniforme confinado y centrado en la perforacion. Se exhibe
el efecto Aharonov-Bohm sobre los estados ligados del electron a través del analisis de la dependencia de los eigenvalores de la energia y
las eigenfunciones con respecto al flujo magnético encerrado. Los resultados de este estudio sirven para ilustrar los papeles del potencial

vectorial magnético y las transformaciones de norma en mecdnica cudntica.

Descriptores: Potencial vectorial magnético en mecinica cudntica

PACS: 03.65

1. Introduction

It is almost forty years since Aharonov and Bohm analy-
zed the significance of the electromagnetic vector potential in
quantum theory, and suggested an experiment to test for the
effect of the potential in regions where there are no magnetic
fields [1]. They predicted that the fringe pattern in an elec-
tron interference experiment should be shifted by altering the
amount of magnetic flux passing between two beams, even
though the beams themselves pass only through field-free re-
eions. Specifically, a shift of » fringes is associated with an
enclosed flux of vhe/e, where the natural unit of flux or flu-
xon, he/e = 4.135 x 1077 gauss - cm?, is determined by the
Planck constant /i, the velocity of light ¢, and the electron’s
electric charge e. Within a year, Chambers performed such an
experiment reporting the expected shifts of an electron inter-
ference pattern by the corresponding magnetic fluxes, inclu-
ding situations in which the pattern appears unchanged due to

their association with magnetic fluxes of an integer number of

fluxons [2].

[t is also twenty years since two didactic articles on rela-
ted topics were published [3, 4]. In the first one, Konopinski
discussed the explicit physical meaning and direct measura-
hility of the electromagnetic vector potential in the classical
context. And in the second one, Kobe deduced Maxwell’s
equations from the gauge invariance of quantum mechanics.

Konopinski’s book on electromagnetism [5] and Sakurai’s
books on quantum mechanics [6, 7] contain more detailed tre-
atments of these topics.

Bound state versions of the Aharonov-Bohm effect have
also been discussed in the literature [8, 9]. In the specialized
book of Peshkin and Tonomura [8], the first author illustra-
ted the effect for the charged rotator in a plane, and pointed
out that there are no important changes if the motion is allo-
wed to be three-dimensional inside a torus. In Ballentine’s
book [9] the charged particle confined to the interior of a to-
rus of rectangular cross-section is also used to recognize that
the energy of the stationary states must depend on the mag-
netic flux in the perforation. In both references the respective
authors considered that the detailed quantitative analysis of
the problem was not necessary for their purposes.

This paper presents a bound state version of the
Aharonov-Bohm effect through the study of the energy spec-
tra and eigenfunctions of an electron inside an annular cylin-
drical box in two comparative situations: {) in the absence of
any fields, and i) in the presence of a uniform, axial mag-
netic induction field confined and centered in the perforation
with its associated magnetic vector potential in the interior of
the box. In Sect. 2, the reference problem of situation i) is
formulated and solved for the electron inside a box defined
in cylindrical coordinates (a < p < b, ¢, 0 < z < L). Sec-
tion 3 contains the formulation and solution of the Aharonov-
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Bohm problem involving a magnetic induction field B = kB
confined in (0 < p < py < a, , z) and the magnetic vector
potential A= @ Bpi/2p inside the box. Section 4 presents
illustrative numerical and graphical results of the solutions
for the energy eigenvalues and eigenfunctions as the magne-
tic flux enclosed inside the perforation, v = (Bwpj)/(hc/e),
is changed. Section 5 contains a discussion of the Aharonov-
Bohm effect on the bound states with emphasis on the sym-
metry and periodicity of the energy spectra as functions of v,
including the degeneraces for integer and half-integer values.

2. The electron inside an annular cylindrical
box

The Schriedinger equation for the electron inside an annular
cylindrical box in cylindrical coordinates,
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must be solved subject to the boundary condition that the wa-
vefunction vanishes at the positions of the walls of the box:
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Equation (1) is known to admit the separable solution
P(p, ey 2) = R(p)B(p)Z(2), (3)

in which the respective factors satisfy the ordinary differen-
tial equations
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and the energy eigenvalue is the sum of the transverse and
longitudinal contributions,
noo,
E = —(kK2 + k2). (5)
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The solutions of Eq. (4a) subject to the boundary conditions
of Eq. (2¢) are
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The solutions of Eq. (4b) are the eigenfuctions of the :z-
component of the orbital angular momentum,
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FIGURE [. Annular eylindrical box with inner radius a, outer ra-
dius 6 and height L. A uniform axial magnetic induction field is
applied and centered in the perforation.

Equation (4¢) is recognized as the Bessel equation and its ge-
neral solution is the linear combination of the ordinary Bessel
function and the Neumann function [10],

B(p) = Amdulks 8) +BmXem (k. 0 (8)

since m is an integer, Eq. (7). The boundary conditions of
Egs. (2a) on this solution are expressed by
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This is a set of two algebraic homogeneous linear equations
for the unknown coefficients A,,, and B,,,, which admits non-
trivial zero solutions only if its determinant vanishes, t.e.,

T (k@) Yo (k) = Jou(hrb)Yim(kra) = 0. (10)

This transcendental equation has to be solved numerically to
obtain the transverse wave number &, The task is accomplis-
hed by using numerical recipes in C' [11]. Let k.a = x,,s be
the successive solutions s = 1,2, 3, .. ., for given values of a
and b. The energy eigenvalues of Eq. (5) with the explicit va-
lues of the wavenumbers from Eqgs. (5) and (10) are given by
5 B W fat nipl .
in terms of the azimuthal 1, radial s and axial n quantum
numbers.
The ratio ol the coefficients A,,, and B,, follows from

Eq. (Ya) or Eq. (9b), and it allows to write the normalized
radial eigenfuction, Eq. (8), as
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where the normalization constant is
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The problem of this seetion has also been studied in the spe-
cialized research literature | 12].
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3. Aharonov-Bohm effect on the bound states of
the electron

In this section we formulate and solve the problem with the
magnetic induction field confined in the perforation of the
annular box and its associated magnetic vector potential in-
side the box. The Hamiltonian for the system is given by the
minimal coupling prescription
= e A2
T M1 (14)

21

in which ﬁ = —ihV is the “conjugate” momentum and the
second term is the negative of the “potential momentum™ ol
the electron in the magnetic vector potential [3, 5]. Then the
Schodinger equation can be written as
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Comparison of Egs. (1) and (15) shows that they share the sa-
me radial and longitudinal contributions to the kinetic energy,
and their difference resides in the extra term arising {rom the
magnetic vector potential and added to the z-component of
the angular momentum
eBnpd
——— = hw, (16)
2me
where v is the magnitude of the magnetic flux in the perfora-
tion in the units iic/e. Equation (15) also admits a separable
solution of the same form as Eq. (3). Equations (4a) and (6)
for the longitudinal eigenfunctions continue to be valid. The
cigenlunctions of the z-component of the angular momentum
of Eq. (7) are also eigenfunctions of the angular operator of
Eq. (15):

(- + h)® (@) = h(m + v)®,, (). (17)
Then the radial part of Eq. (15) becomes
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Comparison of the radial Eqs. (4¢) and (18) shows that they
are of the same type with the difference in their parameters,

m— M =m+ v. (19)

While the values of 1 are restricted to be integers, Eq. (7),
the values of M can vary continuously following the corres-
ponding variations of the magnetic flux . The solution of the
radial Eq. (18) follows the same steps of Eqgs. (8)—(13) with
the substitution of m by M of Eq. (19).

It is also important to recognize that while the eigensta-
tes of Eq. (4¢) given by Eq. (12) are doubly degenerate for

m = 1, 4+2,..., such a degeneracy is removed when there
is magnetic flux in the perforation, since the corresponding
parameters from Eq. (19), M = |m|+vand M = —|m|+ v
are different. On the other hand, starting from given values
of m and v there are an infinite number of combinations of
successive values of such parameters,

M=m+v=(m-N)+(v+ N),
N =0,41,42,43,... (20)

consistent with the same value of M. The different states for
the different magnetic fluxes have the same energies, which
translates into a periodic repetition of the energy spectrum
as the magnetic flux increases by one unit. In particular, the
energy spectra for v = 1,2, 3. ... are the same as for v = 0
including ground states with m = —1, —2, —3,. .. and exci-
ted doubly degenerate states with m = 0 and —2, 1 and —3,
2and —4,...;—1land —3,0and —4, 1 and —5,...; —2 and
—4, —1 and =53, 0 and —6, .. .; ...; respectively. By consi-
dering the interval 0 < 1 < 1, and the states with m = ||
and —|m| — 1, we identify the common value of
M=|m|+v and —M=—(m|+1)+(1-v), D)
leading to the same values of the transverse energies. Noti-
ce that the states involved are neighbour states in the angular
momentum quantum number and have the same energy for
complementary values of the magnetic flux, » and 1 — v. The
net result is that the energy of the |m/|-state increases mono-
tonically as » changes between 0 and 1, while the energy of
the (—|m| — 1)-state also increases monotonically in the sa-
me way as 1 — v changes between 0 and 1. In other words,
the latter decreases monotonically as v changes between 0
and I. For v = 0.5 both states have the same energy for the
common value of the magnetic flux, producing another situa-
tion of double degeneracy. The respective energy curves are
symmetric relative to the line v = 0.5.

4. Tllustrative numerical and graphical results

In this section we present some quantitative results illustra-
ting the solutions of the eigenvalue problems formulated in
Sects. 2 and 3. The emphasis is on the transverse contribu-
tion to the energy eigenvalues and the associated radial eigen-
functions. The numerical results are contained in tables and
figures for both cases v = 0 and v # 0 together.

Figure 2 is a graph of the determinant appearing in
Eq. (10)

. ba - bx
D_,\.‘r (l) = .]M (;l'))’,u (%) - ¥ M (.T.‘).]M (—T), (22)

a
as a function of & = k.« lor different values of the parame-
ter M, Eq. (19), and for the specific case of b = 2a. Its zeros

a4, determined through the corresponding program of [11],
are contained in Table 1.
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FIGURE 2. Graph of the determinant Dy, (z) of Eg. (22) for M = 0
(thin line), 1.9 (dashed line) and 3.14 (solid line), and b = 2a. Its
zeros determine the transverse wave number and the energy eigen-
values according to Eqgs. (10) and (11).

TABLE 1. Zeros of Eq. (22) xa, for different values of M and
s, and b = 2a. Their squares correspond to the transverse energy
eigenvalues, Eq. (11).

M \ " 1 2 3 4

0.0 312303 627344 941821 1256142
02 312601 627500  9.41926  12.56221
04 313492 627968 942241  12.56459
0.6 314972 628747  9.42767  12.56855
08 317031 629837 943502  12.57408
10 319658 631235 9.44447  12.58120
1.2 322836 632940 945600  12.58990
14 326550 634950  9.46961  12.60017
1.6 330778 637261 948530  12.61201
18 335500 639871 950305 12.62541
2.0 340692 642777 952285  12.64038
22 346332 645974 954470  12.65691
2.4 352396 649458  9.56857  12.67499
2.6 358859 653226  9.59447  12.69461
28 365697 657272 9.62236 1271578
3.0 372887 661592 9.65225 1273848
32 380406 6.66181  9.68410 1276271
3.4 3188231 671033 971791 1278846
3.6 396342 676144  9.75365 1281572
38 404716 681507 979131  12.84449
40 413337 687116  9.83086  12.87474
42 422183 692967  9.87230  12.90649
44 431239 699054 991559  12.93971
46 440488  7.05369  9.96072  12.97440
48 449914 7.11908  10.00766  13.01055
5.0 459502 7.18665 10.05639  13.04814

Figure 3 shows the energy levels of the states with lowest an-
eular excitations m = 0, +1, £2, ... and no radial excitation
s = 1, as functions of the magnetic flux v in the perforation.
According to Eq. (11) and its extension for the case v # 0,
the energy levels correspond to the squares of the zeros of
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FIGURE 3. Transverse energy eigenvalues E., in units % /2m.a’
as functions of the magnetic flux » in units ch/e, for states with
the lowest angular excitations mn = 0, %1, +2,... and no radial
excitation s = 1, and b = 2a.

TABLA II. Transverse wavenumbers kAt = zyms/a and coeffi-
cients of normalized radial eigenfunction Aars and Bass, Egs. (8)
and (12), for different values of M and s, and b = 2a.

M 5 Tk Anr B
0 | 3.123039 1.18538 1.37124
2 6.273439 1.73003 1.89366
! 9418211 2.14125 2.29878
4 12.561424 2.48549 2.64229
5 15.704000 2.78759 2.94595
6 18.846249 3.06003 3.22109
1.9 1 3.380384 —1.80494 0.17472
2 6.412872 —2.48722 —0.60375
3 9.512094 —2.93332 —1.11832
4 12.632701 —3.29758 —1.50910
5 15761176 —3.61801 —1.83150
6 18.893965 —3.90917 —2.11052
3.14 | 3781170 —1.42795 —1.10560
2 6.647763 —0.21997 —2.55717
3 9.674336 0.79896 —3.03178
4 12.755284 1.54066 —3.28064
5 15.859745 2.11991 —3.45593
6 18.976334 2.59959 —3.60214

Table I, #3,,, in units of i /(2m,a”). The reader may appre-
ciate the periodicity of the energy spectra as v changes by one
unil, the double degeneracy of the states for integer and half-
integer values of v, and the symmetry of the energy curves
within each unit interval of v under reflection with respect to
the line with the corrcspundin‘g half-integer value of v.

Table II presents a sample of the coefficients Apy and By
of the radial function of Eq. (8) and its extensions for v # 0,
normalized according to Eqgs. (12) and (13).
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5. Discussion

The comparative analysis of the formulations and results of
the problems of Sects. 2 and 3 serves to exhibit the effects of
the magnetic vector potential on the energy eigenvalues and
eigenstates of the electron inside the annular box, in whi-
ch there is no magnetic force field. From the analysis at the
end of Sect. 3 and the results of Sect. 4 some general sta-
tements about the Aharonov-Bohm effect on the electron’s
energy eigenvalues, as functions of the magnitude of the mag-
netic flux in the perforation, can be made. These statements
are valid for any chosen values of the radial and longitudinal
quantum numbers s and n.

I) The energy eigenvalues of the states with m =

0,1,2,... increase monotonically with v, in such a
way that
Em(’/ ot 1) = Eﬂl+l(”)) (23a)
and the corresponding iterative extension
E,”(I/ & \) = Em+N(V)
forr M =1,2,3,. (23h)
2) The energy eigenvalues withm = —1, -2, ... decrea-

se monotonically at first, in such a way that they follow
Eqs. (23a) and (23b) with the negative values of m, un-
til the magnetic flux takes the values v = —m. From
this value on, each one increases following the same
Egs. (23a) and (23b).

3) Equations (23a) and (23b) describe the periodic nature
of the energy spectra as functions of the magnetic flux
v with period one.

A. For v = (), the ground state m = 0 is nondegenerate
and the excited states m = +1,+2, ... are doubly degenera-

te. For v = N, the ground state is the m = — N state and the
doubly degenerate excited states correspond tom = —N — IV

and - N+ K, with  =1,2,3,...

B. For v = (0.5 the ground and excited states are all dou-
bly degenerate corresponding to m = 0 and —1, and K and
—K—1,with K =1,2,3,... respectively. For v = N +0.5,
the corresponding states have m = —N and —N — 1, and
-N+ Kand -N —-1- K.

C. The symmetry of the energy curves in the interval
0 < v < 1 with respect to reflection in the line v = 0.5,
is repeated in each interval N < v < N + 1 with respect to
reflection in the line v = N + 0.5.

It is also instructive to evaluate the energy of the radiative
transitions between two transverse states, which follows from
the counterpart of Eq. (11) with the substitution m — M and
for the same longitudinal quantum number n' = n with the
result

2
h” 2

AE(Msn — M's'n) = (¥3s — Thers')

21n,.0%

for m =m=<1. (24)
The selection rule for the angular momentum quantum num-
ber 1 is the usual standard one for electric dipole transi-
tions [6, 7]. The size of the annular box determines the re-
gion of the spectrum for the corresponding radiations. In
practice, they could be detected in microscopic conducting
rings [13], mesoscopic semiconducting devices [14] and na-
nometric quantum dots [15], corresponding to microwave,
far infrared and near infrared radiations, respectively. Whi-
le the enclosed magnetic flux is not always quantized, the
Aharonov-Bohm effect should open new possibilities in the
construction of ultra-sensitive detectors.

As a conclusion of this discussion it is also enlightening
to compare the Aharonov-Bohm effect in the standard ver-
sion of the interference pattern of the electrons and of the
electron bound-states version of this paper. The common fea-
ture of both versions is their periodicity with period v = 1, of
the interference pattern and of the energy spectrum, respec-
tively. Both versions are solutions of the same physical pro-
blem described by the common Schréedinger equation, and
their difference consists in their correspondence with scatte-
ring states and bound states, respectively.
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