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The dynamical equations for an autonomous system are expressed in terms of constants of motion of the system. The general change of
variable transformation of the dynamical system is studied including action-angle like transformations. Examples of this non-Hamiltonian
approach are given, and the approach is applied to the study of radiation damping suffered by a charged particle inside the beam circulating

around an accelerator ring.
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Las ecuaciones dindmicas para un sistema auténomo son expresadas en términos de las constantes de movimiento del sistema. Se estudia la
transformacién general de un cambio de variable del sistema, incluyendo las llamadas transformaciones de accién-dngulo. Se dan ejemplos
de este procedimiento no hamiltoniano y se aplica al estudio del amortiguamiento por radiacién de las oscilaciones que experimenta una
particula cargada cuando ésta circula dentro de un haz alrededor del anillo de un acelerador.

Descriptores: Sistemas no hamiltonianos; disipacién; constantes de movimiento
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1. Introduction

The motion of a single particle in a n-dimensional space is
described by Newton’s equations

d?x;
dt?

where the mass of the particle has been included in the defi-
nition of the external force, F = (Fy,. .., F},). The variables
a1 = 1,...,n present the coordinates of the particle, and
the variable t represents the time. One says that the system (1)
is autonomous if the force F does not depend explicitly on
time. Then, the system (1) can be written as the following
autonomous dynamical system

=F i=1,...n, (1)

day 3

r—d}:”u 8= Ly o i (2a)
and

dv; ;

s :Fi(x,v), 1:1«---)’”; (zb)

dt

where v; is the «th-component of the velocity of the particle,
v = (vy,...,v,). For one dimensional autonomous systems,
the first integral of motion represents the constant of motion
which is associated with the energy of the particle. This con-
stant of motion is closely related with the Hamiltonian and
the Lagrangian of the system [1]. In particular, many dissipa-
tive systems are written in the form (2) and represent a chal-
lange for a consistent Hamiltonian and Lagrangian formula-
tion. These systems have a great deal of interest in classi-
cal mechanics, electrical network theory, statistical mechan-
ics and quantum mechanics. In order to understand the the-
oretical problems presented by these type of system, a new

approach will be formulated on this paper based on the con-
stants of motion of the system (2). In Ref. 1, the constant
of motion was used mainly to stablish its relationship with
the Lagrangian and Hamiltonian. In this paper, one wants
to study the whole dynamics (without using Lagrangian or
Hamiltonians) of the system using the constants o { motion of
the system. Firstly, the Egs. (2) are given in terms of the con-
stants of motion of the system. Secondly, the transformations
associated with the system are studied, including the action-
angle transformations. Finally, several examples are shown,
in particular, the study of one-dimensional classical radiation
damping (suffered by a charge particle which is circulating
within a beam in a synchrotron accelerator).

2. Constant of motion
A constant of motion f{ is a position and velocity dependent
function, ' = I{'(x, v), which satisfies the equation

dK
— = 0. 3
dt 3)

According to Eq. (2), this means that the following partial
differential equation is satisfied:

L O 2%
Z |:Ui5‘;: -+ F,‘(xjv) B

v
1=1 2

= 0. (4)

This equation can be solve by the characteristics method [2],
where the equations for the characteristic surfaces are given

by

dr dy dv, dv,  dK

vy T, Fi(x,v) N

 F(x,v) 0 (3)
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The last term in (5) means that the function ' will be given
by an arbitrary function of the 2n — 1 independent charac-
teristic surfaces obtained from the other terms of (3). These
characteristic surfaces, &,¢ = 1,...,2n—1, are also constant
of motion. Therefore, they satisfy Eq. (4) too, and by select-
ing 1 of these 2n — 1 characteristics, the following system is
formed

n

04, (I3
y — + F,— | =0, T8 m;
; (t 9z, + B, 1 LM (6)
which can be written in the form
Av' + BFt =0, (7)

where v and F* are the velocity and force vectors

U1
wre= | (8a)
Un
and
Fy
Be= | 5 ], (8b)
Fy
A is the m x n matrix defined as
%6 oa
dry Oz,
a=|: .. 1| ©
Im Om
[z O,
The m x 1 matrix B is defined as
o6 06
vy T Bu,
B=| : : (10)
Im Om
vy v

3. Dynamical equations using n-constants of
motion

Choosing m = n in (9) and (10) and using the fact that these
constants of motion are functionally independent, the Jaco-
bian d(&,,...,9&,)/0(vy, ..., v,) = det(B), is different
from zero, it follows from (7)
n
Fi(x,v)=-)Y (B 'A)a v,

=1

(1

where (B! A) is an x n matrix. The dynamical system (2)
can be written in terms of theses n-constants of motion as
dr;

124
dt (12a)
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and

S [ (12b)

d'Uf 2 .
b S B,
=1

In addition, if p is any arbitrary function of x and v, its time
evolution,

dp i dp ap
(H o ; ( l?!' ()z) ) (]3)
can be written as
dp = ap o op
- = G — B l 1 S~
dt ; [U 8.1'5 ( ’ ) (')’n‘.’i
-3 Y (B Aavig % (14
i=1 £
4. Transformations
Having m constants of motion &,k =1,...,m (1 <m <

2n — 1), consider a vector function 7 = (71,...,M2n—m)
which depends on x and v, and it is independent of !;7 =
(&1,...,&n). In addition, it is assumed that the Jacobian
d(€,77)/d(x,v) is different from zero. In this case, the set
{E.-rf} represents new set of variables, and the following
transformation is possible:

(15a)

and

(e [P ;] (15b)

wi =€, 1);
Using these variables, the dynamical system (2) is written as

= k=1,...,m 16)
dt (
and
d%':(?,(ﬁ) I=1,...,2n—m, a7
(

where the function G (17) is given by

k1 i (.) ;
Gi(m)=3 {‘t‘s(«f-ﬁ) G HEXE ), v(E T

3=}

am} (18)
v

1

There are, of course, a non-numerable ways of choosing these
functions#,, 1 = 1,...,2n — m since the only conditions
they have to satisty is

A(E, i)

d(x,v) (iea)

£ 0,
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which can be written explicity as

Z € (0)1.0(1)52,008) = Ermmim)Mialmd1) » < Wn-m.otin) # 0,

g€S(2n)
where S(2n) is the group of permutations of 2n elements,
o is a permutation, (o) is the sign associated to this per-
mutation, &, ;) and 7, (m=) represent the partial differen-
tiation with respect to the variables [if 1 < o(i) < n or
1 < a(m + i) < n the variables are x's wise the differentia-
tion is with respect to v's].

In particular, for an action-angle like transformation of
the system (2), it is understood the transformation (15) such
that m = n, and the Eqgs. (16) and (17) are of the following
form

e _ o k=1,...,n (20a)
dt

and
/[ l=1,....,n, (20b)
dt

where \; for [ = 1,... n are constants. The expres-
sion (20b) can be written as

Z [vi{)n, +Fi(x,V)Q1 =\, I =100 s 1213

= Oz; dv;
Since the constants of motion &, k = 1,... ,n are charac-
teristics of Eq. (21), they can be used to have

(19b)
which help to solve the equations
dxy das, dv, dv,  dn,
—=...= =—=...= — =1L, 23
U1 Un B Fu Al D

Then, in principle, it is possible to substitute (22) in (23) to
obtain the solution

h = g_._(l)(f.v) or = gfg)(f: x), f=1,...,n @24
So, using (20b), it follows

)‘li:Aff+C)1 .'!=1,....Tl; (25)
where ¢, 1 = 1,... ,n are constants. Substituting this in (24)
and doing the inverse transformation (this is possible because
o(i7)/0(v) #00r d(:7)/d(x) # 0), one gets

Y = 1/’(&:: t)a

=1, .00 i1 (26)

and

a=¢(), I=1..,n @7
To get the action-like variable for the ith-component of
position and velocity, (x;, v;), of the particle, one may select

2n — 2 characteristics

ri=ai(v) or vi=u(€x), i=1,...,n, (22) (€D, e,... &) )=¢O (28a)
| oftheset {&,...,&,_1} such that
Mo s )
0.
OUEL; o « y Ty BERLy o - 18 Vlys oo 3 Vi1, Vig1y o+ 5 Us) # (28R
This allows to have I

e =2,(ED), k=1,...,n and k#i; (29a) e L

» o= § vidai = [ HEO.E0 a0
™

v =u(EW), k=1,...,n and k 4, (29b)  where the points x; and z; are determined from (31) with

One can substitute (29) in the remainning characteristic sur-
face

E;(l) 265‘)(1:1,... s T, U1,y ... ,‘Un), (30)
where ES” - 5}”, J = 1,...,2n — 2, to obtain a relation
among the variables x;, v; and the constants (28a) only,

&" = i€, zi,v). 3D
From this relation, one may have the expression
vy = fi(g(i)afsi)sxiJa (32)

and can define the action-like variable as

the implicit function

€0 = g€V, a¥,0). (34)
since £ and £") are constant of motion, the action-like vari-
ables I;,7 = 1,...  n are also constant of motion. Once the
integration is done, there is only dependency on the charac-
teristics,

Ii =It’(£]1--' af?.n—l)s ?::1.,..-. y 1. (35)
In addition, because of the independency of {&6} sy . o it
follows
a,... . 1) MNdises 5 )
) 0 . ) 1yin
oo,z T L T B PO GO
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and they can be used as new variables such that in (20a), one
may have instead

11, _
“i-0, i=1,...,n

dt G7)

5. One-dimensional case

Let £ be the constant of motion associated to (2) forn = 1,
O a¢

Uv—
dr v

In this case, A = d¢&/0x, B = 0¢/dv, and the force is writ-
ten in terms of the constant of motion as

+ F(x,v)=— = 0. (38)

(39)

So, the dynamical system is written in terms of this constant
of motion as

2 = (40a)
and o

dv U

i af,. (40h)

Thus, one needs just one function 5 = 1)(x, v) such that

d(&n)

0 41
élz, l)% (40

t0 have € and # as the new variables with the dynamical sys-
tem given by

de
e T 424
dt v )
and n’ 5
i ) [sM(@m (42b)
et da

The condition (41) allows to find the function 7 in a simple
way. Let A be a nonzero number, then, choosing

a(&,n)

d(x,v) =4

(43)

where € is the known of motion, the following partial differ-
ential equation arises for 7.

an aoan
e —Hae = & 44)
SMow Yoz (
The same constant of motion & brings about the expression
v = v, %), (45)

which can be used in (44) to get the solution

(e, v) = g€ (46)

/&m%]

where ¢(£) is an arbitrary function.

Rev. Mex.

Note, from (40a) and (40b), that the

v

— =1 47
3 wn
brings about the Hamilton-like systems
da € (48a)
- — &n a
and i
= 48b
i e (48b)

The condition (47) implies that the constant of motion must
be of the form

2

£ = '7 +V(z), (49)

where the function V() is arbitrary. Note from (42b) also
that one may sclect an action-angle like transformation by
making this expression equal to a constant and solving it.

6. Examples
6.1. Example A

The dynamical system for the harmonic oscillator is given by

dx dv 3

—= ) = —w:z

dt ¥ dt (30)

It is well known that the constant of motion asociated to this
system is

1 9 1 9 9
£ = Emn' + i‘um".r‘, (1)
where m represents the mass of the particle. From (51) fol-

lows the expression

(52)

Using this expression and the relation (46) , one gets

X o la:
n=g)F — / . S (53a)

Solving this equation, it is obtained

A W
'd]{‘ﬂ-lll ——_,_) (53b)
mw V2 + wiz?

So, Egs. (51) and (53b) form the new variables, and the in-
verse transformation is given by

(e, 0) = g{ o )

= \/ 2{,, sin { 25?”[:; + fl(f}]} (54a)
Hiw-= A
and
0= \/.i:f(‘(:s { 2\{1”, ES y(E_)}} . (54b)
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The dynamical system formed with variables £ and 7 is of the
type action-angle,

dg

—— = 0 (55(1)
and o

ﬂ = ——/\—. (55b)

dt m

The solution of (55b) is

A
n=—-——=t+n,, (56)

m
where 17, is a constant. Substituting this solution in (54), it
brings about the time evolution of the system. The constant
1o and & are determined by initial conditions, and the con-
stant A can be chosen as A = 1. Using (51), (52), (34), and
(33), the action-like variable is given by

s

T oo gL
= — = —(v* L 57
é mw 2w (U Tz ) an

6.2. Example B

Considere the following two-dimensional autonomous sys-
tem:

dx

a (58a)
:%} = (58b)
f% - (TTZW (58¢)
’3; h —(Lz—_,_yuijs_/“ (584)

Writing this system in polar coordinates, * = pcos# and
y = psind, it is given by

dp
o = Ve (59a)
do
T = (59b)
dv, 1 5
= 1= 59¢
dt p? + P A
and
dv 2v,v
b= = (59d)
dt P
The functions &, &, €3, and &; given by
(02 +v3p? 1
£ = f—_’}f_), =l (60a)
2 2
€2 = vyp?, (60b)
&3 = cosb — vyp® cos 0 — vyv,p*sinf (60c¢)
and
& =sind — vipdsind + Vev,p? cos O (60d)

are constant of motion of the system (59). However, they are
not independent since the Jacobian of the transformation is
Zero,

(&1, 62,83,64)
AP, 0, vp v, vg)
Nevertheless, one can take three of them as part of a new set

of variables. The remainning variable, 1, will be found such
that the following relation is satisfied:

=0. 61)

dn
=M (62)

which can be written as

v 8’+1 0” (—i+1:2)@
"op LY P2 6P du,
_ 2upv9 On
P 8
This equation can be solved by the characterxsucs method,
where the equations for the characteristics are given by

=A. (63)

dp  db dv dv dn
== . = 1 e 5= — 21:91: = s (64)
Up Uy -ty - e A

Since &; and & are characteristics of (63), they can be used
to obtain the relations

Vg = = (65a)
and
£

i‘ﬂ: 2£1+*pﬂ—p—

Using these relations in the first two terms of (64), one can
get the relationship between the variables p and 6,

% _ ,gl-* _ @ sin(f + 6,) (66)
2 2

which can be used in (65a) and (64) to obtain

=1+ A / o

B 2 '
— V/26,€% 4+ 1sin®(0 + 90)]
Solving this equation, it follows
cos(f + 8,)

V26 +1sin(d + 90}]

log R(&;, &,

(65b)

(67)

=1+ :
26,63 [1 -

(Pm) s

where 1, and 8, are constant, and R is defined as
tan (&l } 26065 +1— /268
tan (252) 4+ /26,6 41+ /26,8
Since the solution of Lq. (62) is

R(fl b '52‘ H)

. (68b)

1= At + o1, (69)

the time evolution of the system is found. On the other hand,
the functions &y, &, & and 5 are independent since the Jaco-
bian, (&1, &2, &3,1)/0(p, 0, v, vy ), is different from zero.
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6.3. Example C

The equation that describes the evolution of energy particle
(E) with respect the energy of the synchrounous particle (Ey)
in a beam, x = E — E,, of an accelerator ring is given by

d*z dx .

Rﬁ+2aa+ﬂﬁz=0, (70)
where o is the damping coefficient and 2, is is the syn-
chronous frequency. These parameters are determined by the
characteristics of the accelerator ring and the rf-voltage used
to accelerate the particles [3]. The motion of the individual
charge particle is damped relative to that of the synchronous
particle, bringing about a reduction of the beam phase space
|

size (called emittance). This phenomenon is called radiation
damping. Equation (60) can be written as the following dy-
namical system:

dr

T =v (71a)
and

dv 2

= & —(2z + 2av). (71b)

The constant of motion associated to this system is given
by [1]

2

4

= 1 [vz 4 Qg.ﬁ - nr;rv] exp [ - aG (o:, - Er)] , (72a)

where the function G is defined as

r 1 l o+ 5 = A f Q,) 5
og i 2 i,
2VA Plati+va a
v 1 ’ .
G(a, 0o, —) = if 2 =a? (72b)
& a -+ =
1 a2
arctan =3 if 02> a2
.'_A 1: J_A o
with A defined as A = a? — Q2. F or very weak dissipation i
levels, a? /€22 < 1, the constant of motion can be given at
L O ., * . - . . 3
first order of approximation in c as (6z) = —% [ ;}?] _ (15)

&= 1[‘4:3 + Q22%)

)
2 5118
v+ Qiw v
+a |rv — ———=—2— arctan ( )] . (73)
L%

20,

The curve £ = constant has a gap per cycle in the z-v space
for v = 0. This is originated by the non-single value “arctan”
function appearing in this constant of motion. The gap size is
a measure of the energy lost per cycle of ion of the charge.
This size can be calculated taking the limit of (73) for the ve-
Jocity approaching to v = 0 from both sides. Observe that,
since the curve £ = constant must be continuous for v = 0,
there is a change by 7 in the argument of the “arctan” func-
tion. The limits bring about the following expression

6ra/Q,

(6[) =T [ 1-— m"ﬂ_o - 1i| , z >0 (74)

which can be approximated as

To make a numerical acalculation, take the former pp-
SSC accelerator at 20 TeV. For this accelerator one has [5]
a /9, ~ 10~ This means that it would take about 10® cy-
ckes of oscillations for a proton beam to shrink to about 63%
of its initial emittance. this shrinking effect may not con-
tinue any longer beacause of the electrostatic repulssion of
the charges and quantum fluctuations of radiation [3,4]. This
example points out the practical use of motion for a dissipa-
tive system.

7. Conclusion

The constants of motion of an autonomous dynamical system
are used to express the equations of motion of the system. The
transformation of the equations due to change of variables
was studied. Some examples were presented to point out the
use of the constants of motion in the dynamical equations.
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