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The solution of the equation for elastic waves in an isotropic medium is expressed in terms of three potentials that satisfy the scalar wave
equation. Two such expressions are obtained, adapted to the cylindrical and the spherical coordinates, by explicitly integrating the wave

equation in circular cylindrical coordinates and in spherical coordinates.
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La solucién de la ecuacién para ondas eldsticas en un medio isétropo se expresa en términos de tres potenciales que obedecen la ecuacion
escalar de onda. Se obtienen dos de tales expresiones, adaptadas a las coordenadas cilindricas y esféricas, integrando explicitamente la
ecuacion de ondas en coordenadas cilindricas circulares y en coordenadas esféricas.
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1. Introduction

Most partial differential equations encountered in mathemat-
ical physics involve a single unknown function (e.g., the
Schridinger equation, the Hamilton-Jacobi equation and the
Laplace equation) and the procedure usually employed to
solve them is the method of separation of variables. However,
in the case of systems of partial differential equations, such
as those governing vector or spinor fields, the usual method
of separation of variables cannot be applied in a straightfor-
ward manner (see below). Nevertheless, various nonscalar
linear equations in spherical or cylindrical coordinates can be
solved by separation of variables if these equations are writ-
ten in terms of spin-weighted components. Some examples
are the Maxwell equations [1, 2], the Dirac equation [3-7],
the spin-1 and spin-2 Helmholtz equation [2, 4, 5, 8], the curl
eigenvalue equation [5, 9] and the equations of equilibrium
for an isotropic elastic medium [10]. Among other things,
this procedure leads to expressions for the solutions of these
equations in terms of scalar potentials. For example, in the
case of the equations of equilibrium for an isotropic elas-
tic medium, one obtains an expression for the solution in
terms of three scalar potentials that have to obey the Laplace
equation; the expression so obtained is analogous to the
Papkovich-Neuber solution [11-13] which involves four har-
monic potentials (see also Ref. 14, Chap. I).

The equations for the elastic waves in an isotropic
medium (see, e.g., Ref. 14, Chap. III),

_2(1+4+0)(1 - 20’)[9@

(1-20)V?u +V(V-u) z 52

=0, (1)

where u is the displacement vector, o is the Poisson ratio,
E is the Young modulus and p is the mass density, consti-
tute a system of three partial differential equations which,
even in cartesian coordinates, couples the three components
of the vector field u. In this paper we solve Egs. (1) in cir-
cular cylindrical and spherical coordinates, making use of
spin-weighted functions. It is shown that there is an expres-
sion adapted to each of these coordinate systems for the elas-
tic waves in terms of three scalar Debye potentials that obey
scalar wave equations. As in the examples mentioned above,
Eqs. (1) are solved by decomposing the vector field u and
Eqgs. (1) into spin-weighted components and then solving the
resulting equations by means of separation of variables, mak-
ing use of the corresponding spin-weighted harmonics.

In Sects. 2 and 3, Eqgs. (1) are solved in circular cylin-
drical and spherical coordinates, respectively, and the basic
notions about spin weight and the spin-weighted harmonics
are also given there.

2. Solution by separation of variables in circu-
lar cylindrical coordinates

Let {é,, ¢4, €.} be the orthonormal basis induced by the cir-
cular cylindrical coordinates p, ¢, z. A quantity 7 has spin
weight s if under the rotation about €, given by

&, + iy = eB(e, +iéy) (2)

transforms according to

n' = E’iSBT]. 3)
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Any vector field F can be written as

F=3F_ | (é,+iéy) + LF (6, —i6g) + Foé., (4)

where F'yy = F - (é, £ iég) and Fy = F - é.. Then Egs. (2)
and (3) imply that ., and Fy have spin weight £1 and 0,
respectively.

The operators 3 and @ acting on a quantity 1 with spin
weight s are defined by [4]

awlz—(i+iij~&s)a— ”(8 )(“8)
="\ o p) """ 5 pch

- g ¢80 A d 4.4
np=—(—-1 e B T
1) (ap Pr T )n 0 (ap acﬁ)(p 1) (5)

The quantities 97 and 07 have spin weight s + 1 and s — 1,
respectively, therefore

aon = ddy

_(0_3+1£+103+2138 s g
dp?  pdp  prae?  p? Ao ;)?) n. (6)

—iéy4) + g:{é; (7

and the divergence and curl of a vector field F can be written
as

1 I dFy
V F=—-0F - -0F
2 1™ = w az’
I i OF_ dF
VxF= %(51:0 == )(e,, +iéy) — w(aﬂ, o )(@,, el ((51«11 _8R)e,. (8)
Then, from Egs. (7) and (8) one finds that
O)f
Vif= 9)
and
' a° F_ R . Ltz FFy, . PFyy .
V2F (EiBF_l + ot (8 + 84) + 5 (081 + S50 ) (8 — ide) + (B8R + 557 ) . (10)
The cylindrical (or plane) harmonics [4] with spin weight
Sy s Fam, are defined by currence relations for the Bessel functions one finds that
aé(sFﬂ"l) — ——02 San” a(h’z(lni) =« s+! Zﬂ:‘ula
71:%(351“”1) :T”sFams (1) é(sznm) = —G 1 sy (14)
) . . where ¢ Zqp denotes ¢ Jom or s Nam.
where « is a (real or complex) constant and m is an integer e ‘ .
: ; . . ; When o = 0, the cylindrical harmonics are given by
or half-integer according to whether s is an integer or a half-
integer. Then, Egs. (6) and (11) imply that, if « is different Fom = Ap™teeimé 4 g jmm—egimé
from zero,
(form+ s #0), (15)
sFam = AsJam + B s Nom, (12)
and
where 4 and B are arbitrary constants, Fy_,=Ae 4 B(Inp)e—** orra = =4). (18)

tme
)

e-'—’nnlz(f’w C)) = J-m+s((lﬂ)f.’

s fw'(rm(ﬂs @) = jV:m+S (O:p)f’in“f) ( 1 3)

and .J,,, N, arc Bessel functions. From Egs. (5) and the re-

where A, B are constants. For a fixed value of s, the functions
s Fm form a complete set, in the sense that any function with
spin weight s can be expanded in terms of the F,., .

Making use of Eqs. (7), (8) and (10) one finds that the
spin-weighted components of Eq. (1) are

a2 1 L o2 %
o )(aaui £ 0”‘) +a(§au_l + 5Bu1 - %) - h‘_d% =
Pu_q sl Ly 1= duyg _(')'"'u,] -
(1 = 20)(6(31!,[ 45 ()_, ) + a(é‘a“_l + 56“.1 = F) = 7;'_;'—' = 0, (17}
) =3 Dy as1 1l dug _(‘)ju.u B
(1- 20)(53:1.-, + -{}T) = 5:(561{_1 + 56111 - —;f) —Ray = 0,
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where we have introduced the abbreviation
2(1+0)(1 —20)p

z .
This system of equations admits solutions of the form

g = yk(:)kJmn(p, é)t’_iwt +Gk(3)kfvam{p\ ¢)C_th1 “9)
|

(18)

R=

with & = 1,—T1,0, and where the g and G are functions
to be determined, « is a constant different from zero, m is
an integer and w is also a constant. Substituting Eq. (19) into
Eqs. (17), making use of Egs. (11) and (14) and the linear in-
dependence of ¢Jnr, and N, one finds that the functions
g must obey the system of ordinary differential equations

% . 1 . ;g l .
flo— 20)(};21 - 0291) + 5025171 —m @ = n% + rw?gy =0,
2g_ , 1 e I o dy 4
(1 — 2(‘;)((1,;‘21 — azg_l) - gﬂ‘)g_l + g + n—(;j—o + kwrg—; =0, (20)
z 2 2 z
d*g0 1 dg_y 1 dgy g0 | 5
(1-20)(7 - ') — qo=gzt + 305 + r +rwlm =0

and the functions (7, obey a system of the same form, with
7). in place of gy..
Equations (20) can be rewritten as

1-20) @ —a’n) + rn =0, (21)
dz?
. (FH 2 dgg 2
(1-20)— —20°(1—-0)H —a— + ww"H =0, (22)
dz? dz
% 5 dH
2(1 — (;)(diﬂ —a“(1—-20)go + QE + kw?go = 0, (23)
with
n= (g +9-1),
H = 3(g1—go1). 24

b

The solution of Eq. (21) is given by

n(z) = a; exp (h/kf - uzz)
+(L-2€’XI)(* iv/ k} 7023), (25)

where ay, a, are arbitrary constants and

Kw? B 2(1+ o)w?p

ki = — 2
# 1-20 E (26)
provided that k7 # o?, while if k} = a2,

n(z) = a1z + as. 27

By combining Eqs. (22) and (23) one can obtain a decoupled
fourth-order equation (with constant coefficients) for H that
can be easily solved and then, using Eqs. (22) and (23) again,
one finds go. However, it is convenient to follow a different
procedure, introducing the two auxiliary one-variable func-
(ons

dH
v =gy + —,
' dz
1
w=aH + 2 (28)
dz

These combinations arise by considering the scalar functions
é.-VxVxuand V-u, respectively: for instance, making use
of Egs. (8) and (14) one finds that for a vector field with com-
ponents (19), V-u = (1a(g1 —g-1) +dgo/dz)oJame™" +
(fa(Gy —G_)) + dGo/dz)oName™**, and from Eq. (1) it
follows that é, - ¥V x V x u, V -u and é, - V x u obey the
scalar wave equation [the function n(z), defined by Eq. (24),
is related to é. - V x u|. From Eqgs. (22), (23) and (28) it
follows that

v ’ .
P + (Is'f —a®)u =0,
d*w g 3
o) (ki —a®)w =0, (29)
dz2
with
5 Kw? (1+c)(1 —20)w?p )
E:= = 0
L= 890 — o) (1-0)E &

The solutions of Egs. (29) are of the same form as those of
Eq. (21). (Actually, Egs. (21) and (29) follow directly from
the factthaté. - V x u, é¢. -V x V x uand V - u obey scalar
wave equations.)

On the other hand, from Egs. (28) and (29) we obtain

( d? .,) dw
— —a’)ggo= — —av
dz? ! dz

hence,

I dw ) )
Jo = f—]l = —.,1 + Ae®* + Be %, (31)
k7 ki dz

where A and B are some constants. Then, from Egs. (28) and
(29) onc has

—— — Ae~%% 4 Be~"E, (32)
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Substituting Eqs. (31) and (32) into Egs. (22) and (23) one
finds that if w # 0, then A = B = 0. Thus,

a 1 dw
go =5l — ——,
Lo k? k% dz
o 1 dv
H=—=w-—=—, 3
ki = ki dz’ (3)

with similar expressions for GGy and é(Gl — G_y). Then,
from Eqgs. (19). (24), (33) and (14) we find that the spin-
weighted components of the displacement vector u can be
expressed as

uy = 0Py — 10y + ‘(%a’lﬁa,

w_y = Oy + 10y + (%8"11)31 (34)
i =
Uy = —'B—H'Wl + 55153,
with
1 —iw
Y = F[T“(:)OJam + W(Z)Ochm]e tu
i
Y = i—[”(z) 0dam + N(Z) ONcm]e_iwt’ (335)

1

- 5 [T-‘(Z)[)Jam + V(Z}{].Nam]e_th,
ak;

-~

where the functions W (z), N(z) and V(z) obey the same
equations as w(z), n(z) and v(z), respectively [Egs. (21) and
(29)]. With the aid of Egs. (9), (11), (21) and (29) one finds
that the three scalar potentials (35) satisfy the wave equations

- 1 621!)1
Vi — o o =0,
2 1 9%ty 3
Va3 — EW =0, (36)
where
W (1-0)E
i (1+0)(1-20)p’
w E
= —i= e 37
. ki 2(1+0)p e

and from Eqgs. (7) it follows that Egs. (34) amount to

u=-Viy +é, x Vipo + V x (&, x Vii3), (38)
or, equivalently,
u= Vi -V x ($2é,) - V x V x ($aé.).  (39)

In a similar manner, one can show that Egs. (17) admit
separable solutions analogous to Eq. (19) in terms of the spin-
weighted cylindrical harmonics with @ = 0 [Eqgs. (15) and

(16)], which can also be written in the form (38) with the po-
tentials v; satisfying Egs. (36) (c¢f. Ref. 10). By virtue of the
completeness of the spin-weighted cylindrical harmonics and
the linearity of Egs. (38) and (36), it follows that the general
solution of Eq. (1) is given by Eq. (38) or (39), where the
scalar potentials ¢; are solutions of the wave equations (36).

Equation (39) shows that the displacement vector field,
in effect, can be written as the sum of a vector field (— V)
with vanishing curl and a vector field (—V x (126.) -V x V x
(#r3¢)) with vanishing divergence (as assumed in Ref. 14).
It is casy to verify directly that Eq. (39) satisfies Eq. (1)
provided that the scalar potentials 1; obey the correspond-
ing wave equations [Eqgs. (36)]. If the potentials 1; are real,
then the displacement vector field is also real. It should be
remarked that the expressions (38) and (39) are not linked to
a particular coordinate system, despite the fact that the cir-
cular cylindrical coordinates were employed to obtain these
formulas; however, owing to the presence of the (constant)
vector field €., Eqs. (38) and (39) are adapted to the cartesian
or the cylindrical coordinates (circular, parabolic or elliptic).

The solutions of Eq. (1) generated by the potential
propagate with the velocity v;, while those generated by »
or 13 propagate with the velocity v;. If the potentials v; are
plane waves, then the elastic waves generated by ¢; are lon-
gitudinal waves, whereas those generated by 12 or vz are
transverse. (This is the reason why the subscripts [ and ¢ have
been employed in the definitions (26), (30) and (37).) In fact,
substituting vy = Acos(k - r — wt), with |k| = k;, into
Eq. (38) one obtains u = Asin(k - r — wt) k, which repre-
sents a longitudinal elastic wave (with u parallel to k); on the
other hand, 1> = A cos(k-r—wt), with |k| = ki, yieldsu =
—Asin(k-r—wt) é. x k, which satisfies u-k = 0 and, hence,
is a transverse wave. Similarly, if 3 = A cos(k-r—wt), with
|k| = k¢, thenu = Acos(k - r — wt) (é; x k) x k, which
also satisfies u - k = (.

It may be noticed that, according to Eq. (13), a separable
solution of the form wy = g (2) xJam(p, ®)e~** [Eq. (16)]
corresponds to

Uy = —(uy +u_q)

2

1l
= 5[91(z) Jms1(ap)

+ g-1(2)Jm—1(ap)]e™Pe™ ™t (40)

which is not separable since g;(z) and g_,(z) are not inde-
pendent. On the other hand, the presence of Bessel functions
of order m + 1 and m — 1 accompanying the factor '™
in Eq. (40) arises in a natural way by expressing each spin-
weighted component of u in terms of the spin-weighted har-
monics of the corresponding weight [Eq. (19)].

We close this section pointing out that if one assumes that
the potentials ; do not depend on the time, Eq. (38) does not
reduce to the expression found in Ref. 10 for the solution of
the equations of equilibrium for an isotropic elastic medium.
On the other hand, starting from Eq. (38) one can obtain the
Green’s function corresponding to Eq. (1) (¢f. Ref. 15).
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3. Solution by separation of variables in spher-
ical coordinates

Let {é¢,,€q,é,} be the orthonormal basis induced by the
spherical coordinates 7, #, . A quantity 1 has spin weight
s if under the rotation about é,. given by

o' +1ié,' = e (g +ié,) 41)
transforms according to
7' = ey, (42)
Any vector field F can be written as
F=1F_, (& +1ié,) + $F1 (ég — ié,) + Foé,, (43)

where Fiy; = F - (ég £ ié,) and Fy = F - é,.. Then, from
Egs. (41) and (42) it follows that Fly; and Fy have spin
weight +1 and 0, respectively.

|

The operators & and 3 acting on a quantity 77 with spin

561

weight s are defined in this case by [16]

57}5—(—?—+—L——-—

t 6
98 sinf dyp =58 )T)

i

0 )(nsm 8),

d
= 9( sinf Ay

36

_ d 1
e 2 A 8)n
On = (aa QInga(p-'_SCOt)
5 i
50

4 )(n sin®§).  (44)

i 9( sinf dp
The quantities 37 and 7 have spin weight s + 1 and s — 1,
respectively.

The gradient of a function f with spin weight 0 is given
by

o = 1 - o d A
Vf = —E("jf {éa o 7'6(40) - 'E_Taf (63 - ?'e\") + a_ie‘r (45)

and the divergence and curl of a vector field F can be written
as

1 1
V * F = ——aFﬁl — —BFl + —2( 2F0),
2r 2 Or
Vka—l— 2(rF )+ 0F| (é +'“)—L 2(F)+6F (e ié,) 1(8F OF,)é 46
= 25 | 5 (rF1 0| (e +iép) — o | = (rFy 0| (fp —i€y) + 5 (BF_; — 1)ér (46)
Then, from Egs. (45) and (46) one finds that
2y 19 7.00), 1o
Vif= 5o er] + = 08f (47)
and
- 1 8% 1 & 1 A 1 82 L e 1 U
VF =[5 5 (rFoy) + 55 80F_ - T—ZBFD](69+16W)+ 55 2(:1-1) 5300F — —0F| (¢ — ié..)
d 1@, 4
+ [Eﬁa_( F)+ = 2 50F, o SOF. + aﬂ]er (48)
The spin-weighted spherical harmonics with spin weight
5, Y}, are defined by |
_ a sY'm = = 1 +s+1 Y'ms
53(5}6‘”;) _ (s(s+1) = 305 1))Sl,jm‘ —( J ) \/(J s)(J+s ) a1 J
) a a( _,'m) = _\/(J’ +s)(j =81 1) s—lYZ;-'my (50)
778_99 s}:pm =m s}/jnh (49)

where s, j and m are all integers or half-integers. The func-
tions 4 Y}, can be normalized in such a way that
|

The (spherical) spin-weighted components of Eq. (1) are
11 &° 2

and the Y}, are the usual spherical harmonics Y;m. The set
of functions ;Yj,,, with s fixed, is complete in the sense that

any quantity with spin weight s can be expanded in a series
of the Y, [16].

- 19 1 | g, 8u
(1 - 20’) O e ('f U]) + aﬁul 26'&0] — —8—1 Zauo + 21—_288Uﬁ1 . -2?3661;1 - K atel =1,
[l] 5% 2 L d .z I - e E
(]. — 20’ _;(—j—-(! u_ 1) + —Hc’m 1 — —-61{.0] =~ -ga— ZBUD + -27.—236'11-_1 + z—z-aaul — haat:z—l i 5D
[0 1 8 Log 1 | I a1, . 101 1@ 1 8*
1-2 ———(r? — —— — ——=—(r? - = — s
( a) e a1r_(r up) + = 00ug T26u_1 + 1_2‘5u1] + g 61_(1" 1g) 281-r6u_1 T —du; - K proa 0
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[¢f: Egs. (17)]. This system of equations admits separable so-
lutions of the form

g = gr(r) £ Yjm (6, p) e, (k=1,-1,0), (52)

where j is a non-negative integer and m is an integer such

I
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that [m| < j. The vector field (52) is an eigenfunction of
the square of the total angular momentum with eigenvalue
(7 +1) [2]. By substituting Eq. (52) into Egs. (51), by virtue
of Egs. (50), one finds that, if j # 0, the radial functions g
are determined by

2 2
Iz 2p pod oy f
(3~ 20)[ (et — PR ;.;90] = ,—35‘(7‘)90) - 9—2(91 — g1} +mwgy =0,
1 d? u? 2 .
(=202 o)~ s+ Bgg] + AL gy + Ko gy e mtga =0, (53)
d 1 d d 1l d, . pnodl
{1 = 26)[0! ’gd—(r 9o) — —290 —2(91 “9—1)] + Eﬁg(?"zg )+ Ea—A(Jl ~g-1) + kw’go = 0,
where
= ! In order to solve Eqs. (57) and (58), we introduce the aux-
pw=j+1). (54)  iliary functions
Making use of the definitions 1d
& UE%QD"‘T—E(TH)
M= %(91 +g—1)s u 1 d
=—-H+ — 61
H = 3{g1 —9-1); (55) vE T EE z 7 90): oL
the set of equations (53) can be rewritten as (Note that, according to Egs. (46), (52) and (55), V - u =
w(r) Yim(6,¢) e~™*; similarly, v and M are related to the
d*M  2dM B2 Ei) M =0 (56) radial parts of -V x V xu and r-V x u, respectively.) Then,
dr? + r dr + ( L g2 T by means of a straightforward computation, from Egs. (57)

with k; defined by Eq. (26), and

1 d? e 2
] SEFY i gy e
W r dr? ted 72 r2 gn]
—ﬁi('r2 }—£H+wzw2H:0 (57)
3 dr i r? i
| d1d ,  (1=20)
Z(I—U)JI 3 g (r (]D)‘l'hiw do — ?,2 Yo
_ 21— 20)p d (H
- — ) =0. 58
72 Bt d’.' (T ) Sl

Since yi2 = j(j + 1) [see Eq. (54)], the solution of Eq. (56)
can be written as

M(r) = ay j;(ker) + az nj(ker) (59)
or
M () = (D (2 (g 60
M(r) = Ay h; (ker) + Az By (ker), (60)
where a,, as, A, and A, are constants and j;, 1, hg-” and
h(iz) are spherical Bessel functions.
' ]
prd?v 2dv P ) 114d 2(0‘210 2dw
&2 (d:—3 trar 2 Erdr \dr? r dr

and (58) one finds that

d*v  2dv 5 M
Tr iy (g-L)v=0,
d*w 2d’w

bl 1

i
— ki — = Jw =0, 62
dr2 o dr + ( r? )w (62)
with k; defined by Eq. (30). (Equations (56) and (62) also
follow directly from the fact thatr - V x u,r-V x V xu
and V - u obey wave equations as a consequence of Eq. (1).)
Hence,

v(r) = by g (ker) + banj(ker),
w(r) = ¢y ji{kir) + cang(kar), (63)

where by, bs, ¢; and ¢» are constants.
On the other hand, eliminating H from Egs. (61), one
finds that

(64)

& 2d p 1d, s

e = g0 ) ==+ == W),
((17'3 T rdr 7 )( 9o) ¢ r dr( )
Making use of Egs. (62), the right-hand side of Eq. (64) can

be expressed as

,uz ) ( d? g 2 d ,uz) ( I 1 .
—w ] = — Y — —Tr—
Tt dr2  rdr 2 NEF k?
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thus,
# 2d 4 m 1 dw
il — = {
(dr? rdr 12 )(go k2v+k2 dr )
therefore,
90 = ;:‘2 ; klz fiw + D77 4+ Dyr ™I (65)

where )y and D, are constants. Substituting Eq. (65) into
the second equation in (61), using Eq. (62), one finds that

pw 11d
T kE Ok rde (rv)

P2 -2

D
- Gt 4 (66)
# 1

Substituting Egs. (65) and (66) into Eqs. (57) and (58) one
finds that if w # 0, then D, and D must vanish, hence

B 1 dw
S0 = Er k} dr’
pw 11d
— et 7
= kz kf rdr(rv) (67)

and, from Egs. (52), (55), (67) and (50) one finds that

1 . 14
Uy = ;31,’)1 — 10y, + ;51"3%,

1. " 18 -
u-1 = Oy +i0y2 + 270y, (68)
r rdr
N
o = — ok + ~B8Ys,
ar r
where
P = Eu,{,) o e—iut,
.L/;:a = _A,[( )} e—iwt’ (69)
L
Y3 = _mt,(r) Y:in: e—iwt_

According to Egs. (45) and (46), Eqs. (68) amount to the sim-
ple expression

u=-Viy +rx Vi +V x (r x Vip3) (70)

[¢f Eq. (38)] and, by virtue of Eqgs. (56) and (62), the scalar
potentials (69) obey the wave equations (36).

In the case of the separable solutions (52) with j = 0 (i.e.,
g = 0), the only nonvanishing component is ug, which is a
function of r and t only, and from Eqgs. (51) one obtains

d14d

a:ra(r“°)+k”°_0 (71)

therefore, using the recurrence relations for the spherical
Bessel functions, we have

up = (ajy(kir) + bng(kir)) e ™!

= 2 L(ajo(kur) + bno(kr) =, (72)
01' kg
which is of the form (68) with vy = (ajo(kir) +
bng(kir))e™"! /k; and 1, = 13 = 0, and these potentials
also satisfy the wave equations (36). Thus, owing to the com-
pleteness of the spin-weighted spherical harmonics and the
linearity of Eqs. (36) and (70), it follows that the most gen-
eral solution of Eq. (1) can be expressed in the form (70),
where the scalar potentials v; are solutions of the wave equa-
tions (36).
Equation (70) can be also written as
u=-Vi; =V x (or) = V x V x (Y1) (73)
[¢f: Eq. (39)], which again shows that the displacement vec-
tor u is the sum of an elastic wave with vanishing curl prop-
agafing with velocity v; [Eq. (37)] and an elastic wave with
vanishing divergence propagating with velocity ;. If the po-
tentials ¢; are real, u is also real. Expression (70) is known
in the literature; a recent application of it can be found in
Ref. 17.

4. Concluding remarks

Apart from the simplifications coming from the use of spin-
weighted functions, in the example considered here, the ex-
istence of certain differential expressions (such as V - u) that
obey decoupled equations helps to solve the systems of ordi-
nary differential equations (20) and (53) by relating them to
simpler decoupled equations of second order.
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