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The Feynman-Gell-Mann reduction via the method of adjoint operators
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It is shown that the Feynman-Gell-Mann reduction, which transforms the Dirac equation with an external electromagnetic field into a second-
order equation for a two-component spinor, can be obtained, along with other similar reductions, by means of Wald’s method of adjoint
operators. By means of these reductions some differential operators that map the set of solutions of the Dirac equation into itself are found
when there is no electric field.
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Se muestra que la reduccién de Feynman-Gell-Mann, la cual transforma la ecuacién de Dirac con un campo electromagnético externo en
una ecuacion de segundo orden para un espinor de dos componentes, puede obtenerse, junto con otras reducciones similares, por medio del
método de operadores adjuntos de Wald. Por medio de estas reducciones se hallan algunos operadores diferenciales que mapean el conjunto

de soluciones de la ecuacién de Dirac en si mismo cuando no hay campo eléctrico.

Descriptores: Ecuacién de Dirac; reduccion de Feynman-Gell-Mann; operadores de simetria

PACS: 03.65.Pm

1. Introduction

The Dirac equation with an external electromagnetic field is
one of the systems of linear partial differential equations en-
countered in mathematical physics whose solution may be
difficult because of the coupling of the unknowns. Feynman
and Gell-Mann [1] found that, by assuming that the solution
of the Dirac equation with an external electromagnetic field
can be expressed in terms of a two-component spinor, the
latter obeys a second-order differential equation that can be
solved in a straightforward manner for some simple electro-
magnetic fields (see, e.g., Ref. 2).

On the other hand, there exists a method of wide appli-
cability (the method of adjoint operators [3,4]) that allows
one to express the solution of a system of linear partial differ-
ential equations in terms of one or several potentials which
obey.differential equations that are simpler than the original
system. The essential step in the application of this method
consists in obtaining from the original system another with a
lesser number of equations and unknowns by means of linear
operations.

In this paper we show that the method of adjoint operators
applied to the Dirac equation with an external electromag-
netic field leads to the Feynman-Gell-Mann reduction and to
other similar reductions. We also show that these reductions

allow us to find first-order operators that map a solution of

the Dirac equation into another solution. The case consid-
ered here illustrates the application of the method of adjoint

operators to obtain symmetry operators of systems of partial
differential equations.

In Sect. 2 the basic ideas concerning the Feynman-Gell-
Mann reduction and the method of adjoint operators are sum-
marized. In Sect. 3, making use of the method of adjoint oper-
ators, we find expressions for the solution of the Dirac equa-
tion in terms of two-component spinors that obey second-
order equations; one of these expressions coincides with the
one considered by Feynman and Gell-Mann. In Sect. 4 we
show that these expressions for the solution of the Dirac equa-
tion can be combined to find operators that map a solution of
the Dirac equation with a magnetic field into another solution
of the same equation.

2. The Feynman-Gell-Mann reduction and the
method of adjoint operators

The Dirac equation with an external electromagnetic field can
be written in the covariant form

[’Y“ (z'h,c'),, - '%Aﬂ) ~ mc] U =0, (n

where ¢ and mn are the charge and rest-mass of the parti-
cle, A, is the four-potential of the electromagnetic field, the
" are constant 4 x 4 matrices such that y#4"+ ¥y# =
20", with (p#¥) = diag(1,-1,-1,-1), and 8, = 9/dz*
(e, v =0,1,2,3) (see, e.g., Ref. 5). In what follows we shall
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employ the standard representation

o_(I O | s 0 g
o _(0 _I)a i 4 '_(_o_i 0)) (2)

where the o' are the Pauli matrices and [ is the 2 x 2 unit
matrix.

Assuming that the solution of Eq. (1) can be expressed as
i f 4
¥ = I:-}J (1}‘:,8# o '(.-‘Aﬂ) + mc] (fW) ) 3)
where  is a two-component spinor and using the fact that
;L.--_Ef_'_,]v--_i ]
[’y (m.a,, cA“) me [7 (zhd,, CA,,) + mc
= (ihd, - 4,) (in9, - La,)
c c

—m?c® + @ ( —H E)
) c-B/’

c
4

o-B
—io - E

where E and B are the electric and magnetic fields corre-
sponding to the four-potential A, it follows that i obeys the
second-order equation (1, 2]

[?IW (ifla;. — %4“) (iﬁ.&, — %Au) —m?e

g

+?a-(B+iE) = 0. (5)

Thus, any solution of Eg. (5) acts as a potential for the solu-
tion of the Dirac equation given by Eq. (3) and, in this man-
ner, the problem of solving Eq. (1) is transformed into the
problem of solving Eq. (5) for a two-component spinor.

Equation (3) is similar to the expressions obtained by
means of the method of adjoint operators, which yields the
solution of a system of partial differential equations in terms
of potentials [3,4]. If

E(f)=0 (6)

is a system of linear partial differential equations, where & is
a linear partial differential operator that maps tensor or spinor
fields into fields of the same type, and by combining linearly
Egs. (6) and their derivatives one obtains a new system with

a lesser number of equations and unknowns,
O(x) =0, (7

then there exist linear operators 7 and & such that x = T (f)
and the identity

= O (8)

holds.
Assuming that the adjoint, A", of any linear operator A
is defined in such a way that A" is also a linear operator and

(AB)" = B At, whenever the composition A3 makes sense,
then from Eq. (8) it follows that

Erst = ot ©)]
Therefore, if ¢ is a solution of

oty) =0, (10)

Eq. (9) implies that £1(St(¢)) = 0, so that if £ is self-
adjoint, £ = £, orif £ is proportional to £, one concludes
that ST(3)) is a solution of the original system (6).

In the next section we shall derive operator identities of
the form (8), starting from the Dirac equation and it will be
shown that Eq. (5) is a special case of Eq. (10).

3. Potentials for the solutions of the Dirac equa-
tion

As pointed out in Ref. 4, the operator ihy#d,, — mec is self-
adjoint provided that the adjoint of a linear partial differen-
tial operator, /A, mapping four-component spinors into four-
component spinors, is the linear partial differential operator,
At such that

3* vy AT = (A1 @]ty + I, 5", (11)

for any pair of four-component spinors ¢ and ¥, where *
denotes complex conjugation, the superscript ¢ denotes trans-
position and s* is some four-vector. It may be noticed that if
one defines & = $*'+, as in Ref. 5, then Eq. (11) amounts

to
DAY = (AT @)W + 35" (12)

Alternatively, if one writes the Dirac equation with an exter-
nal electromagnetic field in the form

E(P) =0, 13
where
&= 28, ~2p4 (mv - gA) - — fPme, (14)
¢ c c
and the Dirac matrices are taken in the usual way
- I 0 0 o
H= (0 1) | &= (cr 0) {13}

(consistently with Eq. (2)) then & is self-adjoint according to
the usual definitions employed in quantum mechanics (which
make, e.g., —1hV, a, /3, o, self-adjoint). In other words, if,
instead of Eq. (11), one defines Al by

Pt AV = [A' D] + 9, 5", (16)

then £ = £. The definition (16) is more convenient than the
one given by Eqs. (11) and (12) because it allows us to make
use of several well-known results. In what follows it will be
assumed that the adjoints of the linear operators are given by
the standard rules.
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The operator £ [Eq. (14)] can also be written as
3 q
E = Yo [‘)“ ('},ha-“ = EAJ_,) — mc] s

Two systems of equations of the form (7) can be obtained by
means of the operator

(7

= ha),~ 1 18
R = [’y" (zh@,‘ CA'H) + mc] Yo. (18)
Indeed,
A iB
RE = (iB A) (19)
[see Eq. (4)], where A and B are the linear operators
p— L & q . s g
A=n (zh(?,, — EA”) (zhf),, CA”)
—#ie + @a’ - B,
C
hq
B=-—0E, (20)

which map two-component spinors into two-component
spinors and are self-adjoint

Al = A, Bt = B. 21)

By expressing the solution of the Dirac equation £(¥) =

(), in the form
W= (u) .
v

where u and v are two-component spinors, the equation
RE(¥) = 0 amounts to

(22)

Au+iBv =0, iBu+ Av = 0. (23)
Adding Eqgs. (23) one finds that
O1(x) =0, (24)
where
O, =A+1iB (25)
and :
1 010

Y=u+t+u= (0 10 1)‘1‘57}(‘1’) (26)

Thus, we have the operator identity TTRE = (2, 7;, which
can be written as §; & = (1 Ty [cf. Eq. (8)] with

5 =R = Tivew [7“ (ihﬁﬂ - %A#) + mc] Yo- (27)

Since yo, A, B and yo[v*(ihd, — (g/c)A,) + mc] are self-
adjoint [see Eq. (17)] and T = T, the adjoints of O, and
&) are given by

@] = =4B,

sl = [y (ind, - g.qﬂ) +mc] Wl (28

hence, if 1) is a two-component spinor such that

0l(w) =0, 29)
then ¥ = 8! (1) is a solution of the Dirac equation £ (¥) =
0. In a more explicit form, since 7,7 = :’b o)

) q Y
= -= 0
¥ = [’Y” (maﬂ cA“) + mc} (—'U’)) (30)

is a solution of the Dirac equation (1) provided that i obeys
Eq. (29), i.e., (A — iB)(¢) = 0 or, equivalently,

[ (in0, - gA“) (ind, - gA,,)
—-m?c® + h?qa (B + z'E)] ¥v=0. (31)

Equations (30) and (31) coincide with Egs. (3) and (5), re-

spectively.
Subtraction of Egs. (23) gives
O1(€) =0, (32)
where
Oy =A-1iB (33)
and
e=u-v=(p 0 3 %)e=m® 00
Hence, we obtain the identity S3& = (573, where
S =R (35)
and, therefore,
O} = A +iB,
Sg = [’)“ (ih@“ - %A“) B mc] Y073 (36)
Thus, if 9/ is a two-component spinor such that
Ol(¥) =0, (37)

Le.,

[ (im0, - 14,) (o, - 24,)

—m2c? .+ %qo' (3= ZE)] ¥=0, (39)

the four-component spinor

W= S;(;b) = [7“ (ihaﬂ = %Au) + mc] (z) (39)
is a solution of the Dirac equation (1) [cf Egs. (31) and (30)].

It should be clear that Egs. (24) and (32) are not the only
systems of two equations that can be derived from Eq. (1) and
that with any equation of this type one obtains an expression
for the solutions of the Dirac equation (see also Sect. 4). As
we show in the next section, the expressions for the solutions
of a system of partial differential equations in terms of po-
tentials is not only a convenient way of solving the system of
equations, but also may be useful to find internal symmetries
of the system (see also Refs. 3, 6 and 7).
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4. Symmetry operators

When the electric field is absent, the operator 5 is equal to
zero [see Eq. (20)] and O = O [see Egs. (25) and (28)];
hence, it ¥ is a solution of the Dirac equation, according to
Eq. (24), v = T,() satisfies O, (x) = 0 and, at the same
time, UI(\} = 0, which means that we can take ¢¥» = y as the
solution of Eq. (29) and therefore, ¥ = Sf(x) = SI’H(\I’)
is also a solution of the Dirac equation. It can be seen that
T!Ti = 1 + 55, where 75 = 1777?43, thus we conclude
that the first-order differential operator

Sih = [7“ (mau . %AH) i mc] vl +7s)  (40)

maps solutions of the Dirac equation with a given magnetic
field into solutions of the same equation.

In an entirely similar manner, if E = 0, then O; =0,
and it follows that the operator

$i75 = [y (ind, - 24 —

8i7, = [v* (ind, - 24,) +me| w1 -%) @D
also maps solutions of the Dirac equation with a given mag-
netic field into solutions of the same equation. It may be
noticed that for any electromagnetic field, OI = (O, and
therefore S/ 75 and S!7, map solutions of the Dirac equa-
tion (1) into solutions of the same equation; however, since
70T T = TiTs = 1=y and %7371 = TfTi = 1+,
taking into account the fact that s anticommutes with y#,
one finds that the effect of S}Tz and S;Tl on a solution of
Eq. (1) is equivalent to a multiplication by 2mc.

In the case where E = 0, one can easily derive an infinity
of equations of the form (7). Since B = 0 [see Eq. (20)], from
Egs. (23) we find that, for any pair of complex constants, PR

AQu + ) = 0, (42)

which is of the form (7) with @ = A and x = Au + pv =

T (W), with
—_ (A 0 0
¥ = ((} A0 ,u)

l¢f. Egs. (26) and (34)] and therefore TRE = OT. Thus,
it follows that if ¢» is a two-component spinor such that
Ot(y) = 0, ie., A() = 0, which is just Eq. (31) or (38)
with E = 0, then RT71(¢) is a solution of the Dirac equa-
tion. Furthermore, if ¥ is a solution of the Dirac equation

(43)

with an arbitrary (static) magnetic field, RT 717 (¥) is also a
solution of the same equation. Thus

s 8 NPT Aul
['y (m@“ (_A,l)+mc] Yo (,u*)\[ 2T (44)

maps solutions of the Dirac equation with a given magnetic
field into solutions of the same equation. [Note that Egs. (40)
and (41) are special cases of Eq. (44).] Moreover, the same
conclusion holds if in the composition R 71T, the two oper-
ators T are of the form (43), with different pairs of constants.
In this manner, one concludes that

o, 24,) e (2 )

also maps solutions of the Dirac equation with a given mag-
netic field into solutions ot the same equation, for any set of
complex constants a, b, ¢, d.

For any system of linear partial differential equations
such that O = (, the composition ST7 maps the set of
solutions of the system of equations into itself. An additional
example is provided by the source-free Maxwell equations
for which two decoupled equations can be obtained with
O =V =0" [

(45)

5. Concluding remarks

As we have shown, the method of adjoint operators allows
us to find systematically expressions for the solutions of the
Dirac equation in terms of spinor potentials. This method
can be also applied with other fields or when the background
spacetime is not flat. Among the by-products of this approach
is the finding of operators that map the set of solutions of the
original problem into itself.

The symmetry operators found in Sect. 4 do not depend
on the symmetries of the magnetic field; apart from the con-
dition that the electric field be equal to zero in some inertial
frame, there are no further restrictions on the magnetic field.
IfE B = 0and B> — E? > 0, then there exists an inertial
frame where the electric field vanishes and the results of the
preceding section apply.

The examples mentioned here show that the method of
adjoint operators is not only useful to simplify the solution
of systems of linear partial differential equations, but in some
cases it can also be used to find internal symmetries.
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