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By applying a phenomenological treatment of long-wavelength polar optical oscillations in semiconductor nanostructures we derive a general
approximated expression for the energy spectrum of the elementary excitations that depends essentially on the nanostructure geometry.
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Aplicando un modelo fenomenolégico de oscilaciones éptico-polares de onda larga en nanoestructuras semiconductoras, se deriva una
expresion general aproximada para el espectro energético de las excitaciones elementales. Dicho espectro depende de manera esencial de la

geometria de la nanoestructura.
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1. Introduction

Polar optical vibrations in semiconductor nanostructures
(SNS’s) of the type of quantum wells [1-8], quantum
wires [9], quantum dots [10-12], and superlattices [13], have
been intensively investigated in the last years. Several ad-
vanced techniques have permitted the growth of such low-
dimensional systems that possess important physical prop-
erties suggesting a broad spectrum of device applications.
Therefore, the energy spectrum and optical properties in
SNS’s are submitted to extensive studies. Important role
in many physical processes play the polar optical oscilla-
tions, especially in the long-wavelength limit. Several the-
oretical treatments for long-wavelength oscillations based
on phenomenological continuum approach or involving mi-
croscopic numerical calculations may be met in previous
works [14-20].

Recently C. Trallero-Giner er al. [21, 22] have proposed a
phenomenological approach to long-wavelength polar optical
phonons in SNS’s. They postulated, in the spirit of the clas-
sical theory of macroscopic media the following Lagrangian
density:
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which takes into account phonon dispersion up to quadratic
terms in the wave vector, as well as the coupling between
the electrostatic potential ¢ and the mechanical vibration dis-
placement 4.

Considering the Lagrangian density (1), they obtained the
equations of motion and solved it within a given homoge-
neous part of the structure and applying suitable boundary-
matching conditions at the interfaces. In this work, we have
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interested in the study of the energy spectrum of the long-
wavelength polar optical vibrations in SNS’s characterizing
the field represented by (1).

2. Brief review of the model

We assume a material with isotropic dielectric response and
vibrational dispersion relation. The oscillations are described
by the displacement vector field « that represents the relative
displacement of the two ions involved. The electric potential
¢ is related with the electric field by E =-V¢, correspond-
ing to a quasistationary treatment of Maxwell equations in
the unretarded limit (¢ — o). The internal stresses of the
medium are incorporated in the fifth term of (1) through the

strain tensor:
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and the tensor A;;x; closely related to the elastic moduli ten-
sor [23,24]. This term results relevant in SNS’s because it
gives the possibility to introduce boundary-matching con-
ditions for @ at the interfaces. At the same time it leads
to dispersive oscillations. Other physical parameters of the
medium, present in (1), are the same that in Ref. 21.

In order to investigate the influence of the nanostructure
shape on the energy of the system we, firstly, find an expres-
sion for the Hamiltonian density . By definition
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is the momentum density canonically conjugate to .
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From the Lagrangian density (1) we obtain the following
Hamiltonian density:
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We must note that the momentum density canonically conju-
gate to ¢ is identically zero.

3. Hamiltonian operator

Taking into account (5) and working in the Schrodinger
picture, the Hamiltonian operator describing the long-
wavelength polar optical oscillations in the nanostructure is
then given by
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between electric field and mechanical vibrations has been
symmetrized to ensure the Hamiltonian hermiticity.
The operators I1, @, and ¢ may be written [21] in the form
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where 7, (") and ¢,, (") are spatial solutions of the equa-
tions of motion generated by (1), corresponding to the m-th
mode and w,, its eigenfrequency. The operators f)m and fv;*,,
are the annihilation and creation operators respectively for a
phonon in the m-th state, and ¢,,, is the real constant:
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In Egs. (13) and (14) the indexes 4, j indicate the com-
ponent of the vector @, () and m labels the mode. The
summations over (, ) run through the set of combinations
S = {(1,2),(2,3),(3,1)}. Since we consider an isotropic
medium, to obtain (13) and (14) we taken all non-zero com-
ponents of the tensor A; ;5 given by
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For more details see Refs. 21, 22 and 24.
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l In Eq. (11), the operator V' describes the coupling be-
tween different modes. It gives rise to a small broadening
of the energy levels, so it may be treated as a perturbation.
However in this work, as a preliminary study, we neglect the
coupling between different modes, that is, we assume that the
lifetime of the elementary excitations is reasonably long, so
that we dial with a simpler Hamiltonian
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4. Energy spectrum

Once the Hamiltonian (16) is not diagonal in the phonon
numbers, we will find the eigenvalues of (16) by diagonal-
izing the Hamiltonian using a linear transformation of the
Bose-operators. Such a linear transformation is carried out
by changing to new Bose-operators A,,, through the equation
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In terms of the new operators the Hamiltonian (16) results
diagonal in the eigenvalues of the operators N,,, = A} A,
and, it can be written as follows:
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We must note that 7,,,, A, must satisfy the condition
21| < A, for the validity of our transformations, once we
considered a,,, 3, as real quantities. It follows from (12),
(14) that such a condition may be satisfied, if the oscillations
are sufficiently small.

We must observe that, in the limit, when we ignore
both the coupled electric field and the internal stress of the
medium, Eq. (21) becomes &,,, = wy, as could be desired.

It follows from Eq. (20) that the states of the system
described by the Lagrangian density (1) correspond to ele-
mentary excitations with energies hé,,. It results remarkable,
however, that because of the inclusion of the internal stress of
the medium, the electric field and its coupling with the dis-
placement, the energy of the long-wavelength polar optical
phonons in SNS’s depends not only on the frequencies w,y,,
but also in a more complicated way on the nanostructure ge-
ometry.
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5. Conclusions

In summary, we have derived, using a phenomenological
treatment proposed in previous works, an approximated ex-
pression for the energy of elementary excitations in semicon-
ductor nanostructures.

One must stress that the study of energy spectrum of
optical vibrational quantum excitations in quantum wells,
quantum well wires, superlattices and semiconducting het-
erostructures in general, as well as several thermodynamic
properties such as heat capacity, may be readily obtained as
straightforward applications [25] of the above approach on
the physical properties of heterostructures.
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