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The need to relate the probability distribution of a complex random variable to its a priori given random elements occurs very frequently in
applied physics. However, the theory of probability is usually not emphasized in the education of physicists, even when the calculation of the
probability distribution only involves the use of transformation of random variables. In this paper a survey is given of the facts concerning
to nonlinear complex random transformations. We illustrate both the essential properties which characterize the method and its utility as
a problem-solving procedure with an application from undergraduate physics: disordered electric circuits. The calculation of constrained
probability distributions is also revisited. The results are then used as a basis for a discussion of the concept of constrained complex random
variables in the context of electric circuits.
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La necesidad de relacionar la distribucién de probabilidades de una variable aleatoria compleja, con los valores de sus elementos aleatorios
dados a priori, ocurre muy frecuentemente en fisica aplicada. Sin embargo, con frecuencia la teorfa de probabilidad no estd debidamente
enfatizada en la formacién de grado de los fisicos, a pesar que el cdlculo de la distribucion de probabilidades sélo involucra el uso de transfor-
maciones de variables aleatorias. En este articulo presentamos las caracteristicas fundamentales de las transformaciones aleatorias complejas
no-lineales. Ilustramos tanto las propiedades esenciales que caracterizan al método como su utilidad para la resolucion de problemas, con una
aplicacion de fisica bdsica: circuitos eléctricos desordenados. El cdlculo de distribuciones de probabilidad constrefiidas es también abordado
y sus resultados son analizados en el contexto de circuitos eléctricos.

Descriptores: Variables aleatorias complejas; circuitos eléctricos desordenados; distribuciones con vinculos

PACS: 01.40.Jp; 02.50.Cw; 84.20.4+m

1. Introduction

Random variables are essential in physics, chemistry, engi-
neering, etc. They are fundamental objects in the theory of
statistical mechanics [1, 2], transport in disordered media [3],
kinetic theory [4], and they also play an important role in the
analysis of uncertainties in experimental data [5]. Neverthe-
less, the theory of probability is usually not emphasized in
the education of physicists, at least not in the same degree as
with other fundamental subjects of mathematics. As a matter
of fact, complex random variables are less studied and they
are almost forgotten in most books for physicists, even when
the probability distribution of these complex variables only
involves the use of the theorem of transformation of random
variables.

The occurrence of complex random variables is very
common in the context of electric circuits. A parallel RCL
circuit appears as a representation of a real resistor. This is
so because an electric current through a wire will produce
a magnetic field, so any real resistor will have some induc-

tance L. On the other hand, when a resistor has a potential
difference across it, the density of electrons will change, thus
the resistor will show also some capacitance C' [6]. Thus at
low frequencies a real resistor may be thought as a simple el-
ement R (frequently the parasitic elements L and C are taken
as negligible parameters). As the frequency is increased, the
reactive impedance w L and capacitive impedance 1 /wC start
to be comparable to R, thus it begins to look like a reso-
nant circuit [6], where the parameters L and C' have some
uncertainties. It is thus suitable to model those parameters as
random variables, in this case the total impedance Z = Z(w)
will be a complex random variable. Hence the probability dis-
tribution for a complex random variable must be worked out
in order to solve the RCL system.

The study of ionic conductors has received increased at-
tention in recent years due to the unusual physical properties
observed in these systems |7, 8]. Interestingly, the analysis of
the complex impedance in this materials, can be done in term
of effective electric circuits, among them the simplest one is
the parallel RC circuit [9], so it is necessary to characterize
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the mean value and the dispersion of the different elements
that take place in the effective electric circuits. To understand
these facts, it is essential to introduce a formal theory of com-
plex random variables.

2. A simple model for a complex random vari-
able

In order to simplify the calculation we will model the cir-
cuit with the RC parallel one (i.e., we take L = 0). Then,
let us consider C' as a random variable characterized by some
probability distribution P (c), therefore we get the following
equation for the total impedance:

% = % + iwC, (n
here R is taken as a deterministic quantity, thus the real and
imaginary part of Z will acquire a random character due
to the occurrence of the random variable C' in its definition
Eq. (1).

The complex random variable Z = Z; 4 1Z5 will be
characterized by a joint probability distribution for the two
random variables (Z;, Z»), which in terms of the theorem of
transformation of random variables is given by [2]

Pz(z1,22) = (8 [z1 — Z1(c)] 8 [22 — Z2()) proey s (@)
where the functions Z; (¢}, (j = 1, 2) are given by

R Rwe
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Note that it is not possible to write a cumulative distribution
Sunction for a complex number z; +iz5 [10]. In what follows
we will simplify the notation dropping out all superfluous no-
tations, i.e., P(c) = Pc(c), P(z1, 22) = Pz(z1,22), etc.

2.1. Transforming the complex random variable

Taking into account Eq. (2) and the usual definition of the
mean value over a distribution function we can write

- . _— : S Wy eam R
P (~1w2) = ‘/D‘: 0} (~1 1+ (RWC)Z)
‘ Rwe
- (2’2 + m) P(() o (4)

In order to make an explicit calculation, we have to
choose the distribution P (c). If we take P (c) as a uniform
distribution over D, = [0, 1] we arrive, after a little algebra,
to the expression

) (,:11/2\/13 -z + 32)
Qu:f/Q\/R -z ’

.P(:'.I,EQ): (5)

which is the desired joint probability distribution. Note that
the marginal distributions [11] P(z1) and P(23),

B (zi)= (szsz R~ zl)_1 ,
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allow us to find moments like (") and (z3*), which in fact
could also be obtained from Eq. (3) as (21") = (Z1"(¢)) p(c).
etc. For example, let us here calculate the first moments (z;)
and (z3). From (6) and (7) we get respectively:

{z1) = / oy Pz1) dz = l.'a.ru:ta,n (Rw) (8)
J Dy w

tzs) = /Dz 2 P (z) dz ;—:m [1 +(Rw)2] ©)

as we expected from (3) and the use of P(¢) = 1 with
P=:[0,1]

If we are interested in the average of a function like
g(z) = g{z1, z2) we should use the joint probability distribu-
tion given in (5). As a matter of fact this probability distribu-
tion indicates that 7, and Z, are strongly correlated random
variables, showing (for example) that (z2/21) ~ (22)(1/2)
is a naive approximation which only works at very low fre-
quency. In order to quantify this comment let us calculate the
variance of the random function ¢(z1, z2) = 29/ 2z, from the
distribution (5) we get

b =((2))-(2)) =T
a = -— — —_ =
exact % Zl 12 ?
but from the previous naive approximation we easily would
obtain
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Note that this approximation is exact only in the particular
case when Z; and 75 are independent random variables. But
this is not the case characterized by the random transforma-
tions (3).
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In Fig. I we have shown, for a fixed value of R, the com-
parison between both variances: o2, and o2, as a func-
tion of the frequency w. Note that in the w — 0 limit, 2

: app.
can be approximated by:
17 (Rw)*

i 2 (Ru})z v
i-liﬂ] Tapp. = 12 - 180 i O(“‘J(’) (12)

in agreement up to (?(w?) with the exact result (10), i.e., only
at very low frequencies Z; and Z» can be thought as indepen-
dent random variables.

3. A circuit with constraints

It may occur that the circuit has some constraints, for exam-
ple the rms-current could externally be fixed to some value.
Therefore it may be necessary to know the joint probabil-
ity distribution, but constrained to such fixed conditions. Let
7. 7+ be random variables characterized by the joint prob-
ability distribution P(z;, z2). If these random variables are
subjected to ¢ constraints hj(z1,22) = 0, (j = 1,2,...9),
we may want to know the joint probability distribution of the
constrained random variables P (zy, z2).

The concept of constrained random variables is very com-
mon in physics. This constrained probability can easily be
understood in terms of marginal distributions [11] and con-
ditional distributions [12]. We will show here how to calcu-
late that constrained probability distribution for the case of a
complex random variable Z.

First, we define ¢ + 2 random variables as
Y, = 2, if Lgl=s2

}:l E]?-[(Zl,z;g), if

321€2+¢ (13)

then joint probability distribution for the ¢ + 2 random vari-
ables is [2]

P(y1,y2, . Ygs2) = <5(y1 —z1) 0 (y2 — 22)
q
x [T 6ot — h’t(zluz'z)]> y (14

Plzy,=e
o (z1,22)

the average is easily done due to the occurrence of the first
two deltas, then we get

Py, 420 Ygt2)

LS
= P(y1.y2) [[6 ot — la(yr,32)). (15

=1

Second, the joint probability distribution of Yy, ¥5 given
that Y3 = 3, - - Y42 = ygr2, is wrilten in terms of the
conditional probability

Pz]q+-z (yluy-ﬂ?}a,'--,yq+2)

_ Py1, Y2, - Yq+2) (16)
[[ ds1 dsa P(s1,52,Y3, -, Yg+2)
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FIGURE 1. Variance of z2/z1. The comparison between the exact
result Eq. (10) and the naive approximation Eq. (11) is plotted, for
a fixed value of R = 1, as a function of the trequency w.

Then the constrained probability distribution P(z1, z2) is
simply Pyjq42 (21,220, ....0), which in terms of Egs. (15)
and (16) can be written as

q
Plai,z2) = N1 Pla,22) [[6(lz1,22)), (A7)

I=1
where the normalization constant is

" q
N = // dzy dza P(z1, 22) H 3 (hi(z1,22)) (18)

H==],
Equation (17) is the desired result.

3.1. The rms-current as a constraint in the probability
distribution

Let the voltage, in a linear alternating-current circuit, be char-
acterized by V(t) = V; cos(wt). Therefore, the root-mean-
square current /., will be given in terms of the time-average
over one cycle:

%) 1
Irms = Tﬁ'ﬁa

where =7 + 3 measures the length of the total random com-
plex impedance Z on the circuit. If we are interested in elec-
tronic devices which may work with a fixed amount of rms-
current, we shall be in presence of the physical constraint
I.ms = cte. This means that we should know the probabil-
ity distribution P(z;,z2) under the constraint |z[* = cte.
Hence let us use the constrained probability distribution given
in (17). First, we have to calculate the normalization (18)
where h(z1,22) = |z|* — B. Here the constant B is given
in terms of the parameters that appear in (19). From (5) and
(18) we get

' 5(:11/3VH_3| + 2
N = // dzy dza

3/2
Sie H-—Zl

2wz
- (2w33/3m)~1 : (20)

(19)

)
S—
S
—
]
=y
+
L1
83
o)
~—

Rev. Mex. Fis. 45 (6) (1999) 608-612



A DISORDERED RESONANT CIRCUIT IN THE CONTEXT OF THE THEORY OF COMPLEX RANDOM VARIABLES 611

then the constrained probability distribution will look like

P(z1,22) = B**\/1- B/R?
) 31/2\/1?,—2 + 29 . )
X (J : )6(:f+:§—B)._

.:?/2\/]? -1

which is the desired result.

4. Summary and Discussions
4.1. Characterizing a sample

The analysis of the steady state AC-response of solid and
liquid electrolytes can be made by using impedance spec-
troscopy techniques. Since a detailed microscopic model of
the response is usually lacking, the total impedance 7 =
Zy + 125 is frequently fit to an equivalent electrical circuit,
Therefore it is possible to obtain the parameters of the cir-
cuit using a complex nonlinear least square data fitting [8].
Besides that method we propose that the fit can be improved
by introducing a dispersion in the mean values of those pa-
rameters. Thus the theory of complex random variables is the
correct framework to tackle that problem.

In the previous section we have given a survey of that the-
ory, in particular we have worked out the parallel RC circuit
to show the importance of the knowledge of the joint proba-
bility distribution of Z; and Z, (when (' is the only random
variable in the circuit). Of course in an electrolytes sample
there are other elements which also need to be characterized
(for example L and R), in that case the theory of complex
random variable is the appropriated framework to study dis-
ordered electric circuits.

I P (¢) were an exponential distribution of the form
Fe () =(1/co) exp |—c/co], similar calculations, as we did
in Sect. 2, could be done in terms of Laplace transform
techniques. More complicated distributions like the Gamma
probability distribution Pe: () = [a”/I'(v)]c¥~! exp (—ac)
should be worked out with some numerical help.

Note that, in our RC circuit, by measuring the probability
distribution of the phase & = tan~1(Z,/Z7;), it could exper-
imentally be possible to infer the probability distribution of
the random variable C'. The connection between Py () and
P (c) is just given by

w(p) = / Sl — ()] Pe(e)de

14 t;mz(p)P [teux(ftﬁ)J
=T = A g[SRI

2
RLL" R.&." (2_)

Thus let us say, for a moment, that the mean value of the
capacity is < €' >= ¢, therefore by making a histogram of
the probability distribution of the phase ¢ it is possible to in-
fer the dispersion of the mean value ¢,. This fact shows that
a possible characterization of the RC circuit can be done in

term of (22) if the phase @ is the suitable variable to be mea-
sured. Other random functions of 75, Z; can also be worked
outin a similar way by using the joint probability distribution
P (21, 22), as we have shown in the previous chapter.

In particular our approach could be adapted to the com-
plex least square fitting algorithm in order to characterize the
spectroscopy of solid and liquid electrolytes [8].

4.2. Summary

We have presented, from a pedagogical point of view, the
general approach that must be used when the probability dis-
tribution of complex random variables is required. Emphasis
has been made on alternating electric circuits with random
components.

In the study of ionic materials it is necessary to charac-
terize the mean value and the dispersion of the constituent
elements that take place in the effective electric circuits. To
study these quantities, it is essential to introduce the joint
probability distribution of a complex random variable. We
have shown that a possible characterization of C' can be done
in term of the random phase ®. Other random functions of
Zz, Zy can also be worked out in a similar way by using
the joint probability distribution P (2, 23). Of course, in a
sample there could be other elements which also needed to
be characterized, in any case the theory of complex random
variable is the suitable framework to study disordered electric
circuits.

In particular, we have worked out the RC parallel cir-
cuit, and found the joint probability distribution of the real
and imaginary part of total impedance Z when C was a ran-
dom variable with uniform distribution. In general we have
shown that Z; and Z, are strongly correlated random vari-
ables. Hence the mean value of any function like g(z;, z5)
must be calculated in terms of the Joint probability distri-
bution P(zy, z,). In particular, when P(c) = 1,c € [0,1]
we have done the calculation for the dispersion of z,/z, [in
many electronic devices we usually are interested in the phase
¢ = tan~!(zy/2;)]. We have compared the exact variance
against a naive approximation, showing the usefulness of the
Joint probability distribution. Thus, for the parallel RC cir-
cuit, we have shown that only in the w — 0 limit the random
variables 7, and Z, look statistically independent. We have
also presented the concept of constrained probability distri-
butions in the context of a complex random variable, To ex-
emplity some real situation, we have fixed the value for the
rms-current in the RC circuit. The extension to the RCL cir-
cuit (when L is a deterministic parameter) is easily done by
introducing a redefinition in the resistive element and a shift
in the capacity on Eq. (1). The case when £, and ¢ are both
random variables is just a mere generalization of the work
presented in this article.

We have remarked that the present approach is the correct
one to obtain the required statistical averaged of a function of
the complex random impedance Z(w).

Rev: Mex. Fis. 45 (6) (1999) 608-612



612

M.O. CACERES, D.E. STRIER, AND E.R. REYES

Acknowledgments

One of the authors (M.O.C.) acknowledges support by CON-
ICET (grant PIP N: 4948). D.E.S. thanks the undergraduate

(]

fellowship from CNEA and Instituto Balseiro. E.R.R. thanks
to CAB, Instituto Balseiro during his stay in Bariloche and
wishes to acknowledge support of Secretaria de Investigacién
de la Universidad Nacional del Comahue (Argentina).

Senior Independent Research Associated at CONICET.

. L.E. Reichl, in A modern course in statistical physics, (Edward

Arnold, New York, 1987).

N.G. van Kampen, Stochastic Processes in Physics and Chem-
istry. 2nd edition, (North-Holland, Amsterdam, (1992).

M.O. Ciceres et al., Phys. Rev. B 56 (1997) 5897.

G. Nicolis and 1. Prigogine, Self-Organization in Nonequilib-
riwm Systems, (John Willey & Sons, New York, 1977).

P.V.E. McClintock and F. Moss, in “Noise in nonlinear dy-
namical systems”, Experiments and Simulations, edited by F,
Moss and PV.E. McClintock, (Cambridge University Press,
New York, 1989) Vol. 3, p. 243.

R.P. Feynman, R.B. Leighton, and M. Sands, Lectures on
Physics, (Fondo Educativo Interamericano, Addison-Weslcy
Publishing Company, Bilingua, 1972) Vol. 11, Chap. 23.

Ch. Deportes et al., Electrochimie des Solides, (Collection
Grenoble Sciences, Press Universitaire de Grenoble, France,
1994).

J. Ross MacDonald, J. Electroanal. Chem. 223 (1987) 25.

10.

1T

12;

M.O. Ciéceres and E.R. Reyes, Physica A 227 (1996) 277.

The cumulative distribution function (the total probability that
the random variab!e X has any value < z) is defined as:
Pej= [ F=z) dz’. Mathematicians prefer P(z) to the
probability density P(x) because it does not involve Dirac-
delta functions. From this definition it is simple to see that for
a complex number z = z; + iz the cumulative distribution
function cannot be defined because a complex number cannot
be ordered.

Let X be a random variable having r components X, - - -, X,
The probability that the set of random variables Xy, - -, X
(s < r) have certain values (z1,- - -, xs) regardless of the
values of the remaining X1, - -, X, variables, is given

by the marginal probability distribution: P(z1,- - “ i) =
[ [ P(z1,- - sy Tod1s 7 Tr) ATs1 - ATy .
The conditional probability distribution Py, o ( 1, - Y T

Xsy1, - - xr) Le: the probability distribution that the ran-
dom variables X1, - -, X, has the values (z1,- - -, zs) hav-
ing the prescribed values (w41, - -, ), is given in term of
the marginal probability by Bayes’ rule as: P, (€1, 2]
By, wonyiip ) = P ey Bad 1,5, %: )/ P(Tat1, " Tr)
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