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An study of the classical problem of the free oscillations in an elliptic membrane is presented. The oscillating modes are characterized by
Mathicu and modified Mathieu functions. We emphasize the differences between the circular and elliptic membranes. A relation to obtain the
number of nodal points of a particular oscillating mode is presented. We have taken advantage of the modern computational tools to illustrate
several vibrations modes patterns which appear in an elliptic membrane.
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Se presenta un estudio del problema cldsico de las oscilaciones libres en una membrana eliptica. Los modos de oscilacion se pueden carac-
terizar por medio de las funciones ordinarias y modificadas de Mathieu. Se enfatiza en las diferencias entre la membrana circular y la eliptica.
Se presenta una relacién para calcular el nimero de puntos nodales de un modo de oscilacién en particular. Hemos tomado ventaja de las
modernas técnicas computacionales para mostrar varios patrones tipicos de los modos de oscilacion que aparecen en la membrana eliptica.

Descriptores: Membrana; Mathieu; coordenadas elipticas
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1. Introduction

The problem of finding the natural vibrational modes of a
membrane is a classical problem in mathematical-physics
when studying the wave equation in two dimensions. The
rectangular and circular geometries are very well studied in
basic texts [1-3). In fact, the fundamental solution of the cir-
cular membrane dates back to 1764 by L. Euler who estab-
lished that the vibration modes can be expressed as a linear
combination of Bessel functions. However, the elliptic mem-
brane has interesting phenomena which deserve further study.
This elliptic geometry was originally studied by E. Mathieu
in 1868 [4], he introduced the special functions, now called
them after him. The vibrational modes of the elliptic mem-
brane can be expressed as a linear combination of Mathieu
functions. A brief description of this problem only appears in
very specialized books [5]. More recently, L. Ruby [6] barely
mentions the problem of the vibrations in an elliptic drum
as an application of Mathieu equation. A very simple experi-
mental setup to study elliptical modes could be for instance,
the water surface of an elliptical tub.

On the other hand, the theory of Mathieu functions has
evolved in its own, so our purpose in this paper is to present
an extensive analysis of the classical problem of free oscil-
lations in an elliptic membrane by using a more elaborated
theory of the Mathieu functions and by taking advantage of
modern computational tools. With these, we present a graph-
ical illustration of several vibrational mode patterns in two

and three dimensions. We analyze the situations of different
ellipticities in the membrane boundary.

The paper is organized as follows. In Sect. 2 we intro-
duce the definition of elliptic coordinates and with them, we
write the 2D wave equation in these coordinates. The solu-
tion of the wave equation is presented in Sect. 3. Different
boundary conditions are stated in Sect. 4, and numerical re-
sults are given in Sect. 5. Finally, in the Conclusions we point
out some interesting differences with respect to the circular
geometry.

1.1. Preliminaries

We understand for an elliptic membrane a thin sheet of elastic
material in a state of uniform and constant tension. To make
our analysis, we will consider the ellipse centered in the zy-
plane with its semi-major axis a and semi-minor axis b, as it
is shown in the Fig. 1. The foci of the ellipse, in this reference
frame, are located at (x = + f,y = 0), where the foci + f are
givenby f? = a® — b%.

Let o be the superficial mass density of the membrane
and F the uniform tension per unit length in each point of the
membrane. Let us consider that the membrane has a small
displacement with respect to the plane z = 0 in such a man-
ner that we can assume that each point moves parallel to the
z-axis with simple harmonic motion.

Let (", {) be the displacement as a function of time of a
point of the membrane located at 7, then the wave equation
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FIGURE 1. Elliptic coordinates.
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A detailed treatment of the physical derivation of the wave
equation in membranes can be found in Simmons [1]. Ob-
serve that to this point there is no difference of the wave
equation with respect to the coordinate system. In the next
section we will define the elliptic coordinates and with them
the Laplacian operator in these coordinates.

2. Wave equation in elliptic coordinates

The elliptic coordinates are defined according to the transfor-
mation @ + iy = fcosh (€ + in). Now, by equating the real
and the imaginary parts of each side we obtain

v = fecosh€cosn; y= fsinh&sing, z=2z (3)

that satisty

2
:r“ y

= Tn e 2 cos® 7+ sin® n=1, (4)
fPeosh™ & f?sinh™ €

" cosh® € —sinh* € =1.  (5)

f2sin®n

f¥eos®n

Equation (4) represents a family of confocal ellipses with
semi-major axis @ = fcosh& and semi-minor axis b =
fsinh & Similarly, Eq. (5) represents a family of confocal
hyperbolas with the same foci as the ellipses (Fig. 1). The
two families of conics intersect orthogonally and each inter-
section corresponds to a point in the zy-plane defined by Eqs.
(3).
The ranges of coordinates are given by

0 <€ < oo, 0. < 9 < 2, =i £ E R 00-

In order to obtain the wave equation in elliptic co-
ordinates, the Laplacian operator expressed in general-
coordinates 1s defined as follows:

3 .

; 10
2 .
V= — (6)

- 5 2
e h? dg;

where 1 = & ¢» = 1, g3 = = and the scale factors are
given by

1
=l = f\/z (cosh2€ — cos 2n), hy=1. D

By combining Eqs. (1), (6) and (7) and the since the displace-
ment [juncii(m @ depends only on the transverse coordinates,
(i.e.9%p/d=* = 0), we obtain the 2D-wave equation

1 §%p
v 92’

2 (cosh 28 — cos2n) \ 9¢2 - on? ) ®)

3. The solution of the wave equation

We apply the separation of variables method to solve the
wave equation (8). Let us suppose that

wl& ) = R(EOMT (1), 9
where we can set

U(&,n) = ROM) (10)

as the spatial solution of the wave equation. In order to sepa-
rate the variables, we substitute Eq. (9) in (8), and we obtain
the three following differential equations:

T"(t) + k*v*T =0, (11)
R"(€) — (v — 2q cosh 2€) R(&) = 0, (12)
O"(n) + (a — 2qcos2ny) O(n) = 0, (13)

where —k? and « are the constants of separation and ¢ is a
parameter given by

szz B wzf‘zg

4 4F (14

q =

As we will see later, the negative sign of k* is chosen
to have oscillatory solutions in time, whereas exponential re-
lated solutions are obtained with the positive sign.

Equations (12) and (13) are known as Modified Mathieu
Eguation (MME) and Ordinary Mathieu Equation (OME),
respectively. Their solutions are known as Modified Mathieu
Functions (MMF) and Ordinary Mathieu Functions (OMF),
respectively.

The spatial solution [/ (£, 1) is the product of solutions of
Eqs. (12) and (13) for the same value of o and q.

If in Eq. (11) we set w = kv we obtain the harmonic
equation T"" + w*T = 0 whose solutions are

T(t) = Acoswt + Bsinwt, (15)
where A and B are constants that are determined by the ini-
tial conditions ol the problem.
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3.1. Solution of the Mathieu Equations

We will require that the OME (13) has periodic solutions
with period 27. The values of a that satisfy this condition
are known as characteristic values and they generate an in-
finite set of real values that have the property oy < a; <
ay < . When the solutions are symmetrical with re-
spect to 17 = 0, we express the characteristic numbers as
a.(q) : (r =0,1,2,---), and for the case of anti-symmeltric
solutions we have 3,.(q) : (r =1,2,3,---).

The periodic solutions for Eq. (13) can be obtained by
using the Fourier series [5, 7).

P
= Z [Ax(q) cos kn + By (q) sin(k + 1)n]. (16)

k=0

O(q.1)
This solution is usually separated into two parts as follows

~lq,m) Z Ay, cos k)

and
o0
serq1(q, 1) g By sin ki,
k=1

where ce,.(q, 1) and se, 4 (q, ) are known as the even Math-

ten function of r-order and the odd Mathieu function of

(r + 1)-order, respectively.

If we substitute Eq. (16) in (13) we can obtain the fol-
lowing recurrence relations for the Fourier coefficients for a
particular characteristic value a, or 3,. We have different re-
lations for r even or odd, then we set 7 equal to 21 or 21 + 1
accordingly, where n > (.

e : (@ =az); (k22)

o p— (17a)
(o —4)Ay = q(240 + Ay), (17b)
[”‘ — (2K)%] Aok = ¢(Ap_s + Azpga).  (17¢)

Ceanyr i (@ = agny); (K >1)
(@ =1)A; = q(A; + A3), (18a)
[ = (2k + 1)%] Asgtr = g(Ags—; + Asrys).  (18b)

Seant2 : (B = Panga); (K>2)
(8~ By oy, (192)
(8 — (2k)%] Bax = ¢(Bak—» + Bagy2).  (19b)

s€xut1 1 (B = Pangr); (B> 1)
(8- 1)B; = ¢(Bs — B)), (20a)
[B = (2k +1)?] Bagys = q(Bax_1 + Bapys).  (20b)

In order to have periodic solutions for the above recur-
rence relations, the characteristic values must satisfy the fol-
lowing continued fractions [7]

2 1 1
VO:VTKV—G_—--- ; (Roots = aay,) (21)
. B 1 1 (R - (22)
Vi—-1= “TV.‘;—K,( 00t5—02n+1)
I 1 i
e R T DT ts = —_ 23
Vs T ; (Roots = Bapy2) (23)
) 1 1 il i o
I/l + 1 e KEK ,(R00t54 ﬁ2n+1)7 (24)
where
s T
V; = e (7 20). (25)

The continued fractions (21)—(24) are equations for a or
/3. The roots are in fact the characteristic values a, and 3, of
the Mathieu functions,

Once the characteristic values are calculated by solving
Egs. (21)-(24), the recurrence relations (17a)—(20b) should
be applied to obtain the Fourier coefficients of the series (16).
The OMF are expressed finally as follows

® o
cean(q,n) = ZA 2 () cos 2k, (26)
k=0

ceanyr(q,n) = Aypy 1 () cos(2k + 1), (27)

"MB

k=0
o0

seania(q,n) = z By 5(q) sin(2k + 2)n, (28)
k=0
o0

seaps1(q,m) = ZB_, 1(q) sin(2k + 1)n. (29)
k=0

As a consequence of the orthogonality property of the
sine and cosine series, the OMF ce, and S¢pyq are orthog-
onal functions:

27 2
/ f'ﬁm(q!:)f'flp(q.:)d::/ sem(q, 2)sep(q, z)dz
J0 0

7 it =
= : (30)
0 itm # p.
By substituting Egs. (26)—(29) in (30) we can obtain the
following normalization relations:

oo oo oo
245+ ) (An)’ = D (Asepr)’ = Z (Baks2)®
k=1 k=0 k=0
e <}
= (Ba1)’ =1 (31)

o
Il
o

The MME (12) is obtained from the OME (13) by set-
ting the change of variable i = i¢. Therefore we can apply
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this change of variable to OMF Egs. (26)—(29) to obtain the
following MMFs.

&

Cean(q,€) = ) _ Asi(g) cosh 2k¢, (32)
k=0

Ceanr(9.6) = ) Anky1 (q) cosh(2k + 1), (33)
k=0

Seansa(q,€) = Y Basa(q)sinh(2k +2)€,  (34)
k=0

Sezns1(¢.€) =Y Bus1(g)sinh(2k + 1)€,  (35)
k=0

where Cle,(q, &) is the even modified Mathieu function of
r-order and Se,.1(q, £) is the odd modified Mathieu function
of (r + 1)-order.

The MMF Egs. (32)—(35) can also be expressed by us-
ing Bessel functions series [5]. In Appendix A we show the
Bessel-series representation for MME.

3.2. General solution of the wave equation

The spatial solution of the wave-equation is given by

ZR@

Ugm) =) Us&m) =
r=0

o0

B er(q,€)cer(q,m)
- 72—: { SB1+l(q £)sers1(q,m).

(36)

Combining the time-solution Eq. (15) with the spatial-
solution Eq. (36) we obtain the general solution of the wave-
equation in elliptic coordinates

£ s e Ce,(q,&)cer(q,n)
wl&m ) = ; {Se,-ﬂ{q,f)se,-u(q,n)}

x (A, coswt + By sinwt), (37)

where ¢ is given by Eq. (14).

Even modes

il
[]8

r‘Q(Eﬂ”:f) = e‘Pr',m ”1 ]

[

=0 m=

Il
=)
i~
Il
ey
o

where ,
Odd modes
oo o0

Z Z oPr, m 7]= :

r=1 m=1

Z Z Sr m9

o' ( 1, f

4. Boundary conditions and notation

Since (&, n,t) should be single valued then the first bound-
ary condition is given by
(38)

(& m,t) = (€, n + 2w, 1),

and the Mathieu functions ce,.(q,n) and se,(q,n) result
appropriate in this case. The elliptic boundary of the mem-
brane is given by £ = £ = constant, and the eccentricity e
of the ellipse is defined as

f 1

€= % " cosh &' (39)

On the elliptic boundary [£ = &] the membrane is fixed,
therefore ¢(&o,n,t) = 0 for any n and ¢. This condition is
satisfied when

_ JCer(q,é0)
R, (&) = {Sﬁ_“(q.&)

MMEF are decreasing-oscillatory non-periodic functions
similar to the Bessel functions. Therefore, if we choose a cer-
tain harmonic r we have an infinite set of possible values of
¢ that satisty (40).

Let ¢,y the m-th zero of MMF of r-order. According to
Eq. (14) for each ¢, ,,, there exist a corresponding frequency
wr,m, and by solving Eq. (14) for w we can obtain

= 0. (40)

g == N (41)
rm fg O'.

For the sake of clarity, we will associate the term har-
monic to r (r > 0) and the term mode to m (m > 1). In
this manner, the function g3 (€, 1), t) corresponds to the third
mode (m = 3) of the first harmonic (r = 0).

We will use the subindex e and o to refer to even and odd
modes respectively. Excepting the first harmonics 7 = 0, all
modes can be even or odd.

By using this notation, the general solution for the mem-
brane, with the previous boundary conditions, can be ex-
pressed in the following form:

o0 o0
=YY CrmCerletrm, E)cer(etrm,n)

A, s eBrom and C,. ., are constants determined by the initial conditions.

X [CAr.rN cos ((.u.‘,.‘,”f) +. By m sin (ewr\mt)] . (42)
u‘fr mnk)"‘{ (n(]f 1y T;l)
X {c 41 ;m COS (HL"}J' m } =+ Br m SN (owr mf)] . (43)
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The complete solution to the problem of the membrane is
the superposition of even and odd modes

Q('su”:f) = e"fg(é”’ht) +0§g(£1”!r) (44)

4.1. Transition to circular membrane

Now, we will see how the circular membrane can be obtained
as a particular case of the elliptical one. If we assume that the
ellipse tends to a circle of radius a, then from Fig. 1 we ap-
preciate that b — a, and from Eq. (39) we notice that f — 0,
¢ — 0and & — oo. Similarly, when f — 0, we obtain from
Eq. (14) that ¢ — 0 as well.

The Mathieu equations Eqs. (12) and (13) are simplified
accordingly. In particular when ¢ = 0 the OME (13) becomes
the harmonic equation ©" (1) + a®(n) = 0, whose periodic
solutions are given by @(n) = Acos./an + Bsin/a,
where A and B are arbitrary constants. To ensure periodic
solutions, with period 27, we need to establish \/5 = =
0,1,2,---. Hence the characteristic values, say «,, are

o =it =10, 1,48, 2 ¢ (45)

In the same manner, when ¢ = 0, the recurrence relations
Eqs. (17a)—(20b) reduce to

((,T—k))Ak =0 k= 0.0.9: s (46)

and by Eq. (45) the only value of k that satisfies Eq. (46) is
l: = r. Hence all Fourier coefficients A; (or B;) in OMF
Eqs. (26)—(29) with k& # + must vanish. Additionally, to be
consistent with the normalization (31) we define

0
A, By =
k k {1

The OMF Egs. (26)—(29) can be simplified by using the
result (47) and the fact thate — 0 (i.e. ¢ — 0)

if k%

47
if k =¢. @7

cer(q,m) = cosrn and  se.(q,1) — sinry.

The implications of setting ¢ — 0 in the MME (12) are
not quite straighforward, this is due to Eq. (39) where £ — ~
and the term

e 472

2gcosh 2 = 2¢q ( 5

) — quﬁ,
By using this results and Eq. (45) the MMEs (12) degenerates
o
RE(E)+ [ge®~+2) HE) = 0. (48)
Now by defining the circular radius p = (f/2)ef and us-
ing the first equality in Eq. (14), then the Eq. (48) can be
transformed into the Bessel equation
2
32

R"(p) + %R'{P) i (kz - E) R(p) =0,

617

whose solutions are the Bessel functions R(p) = J,(kp).
Therefore as e — 0,

Cer(q,6) = P Jr(kp) and Se(q,§) = S Jr(kp),

where P and S are scaling factors to maintain normalization.

The boundary condition is satisfied when J,.(ka) = 0.
Using Eq. (2) and w = vk the characteristic vibration fre-
quencies can be obtained by

trm [F
Wrm = oy
a a

where ¢, ,,, is the m-th zero of the J,. Bessel function and a
is the membrane radius.

Finally, the spatial solution in the elliptic membrane
Eq. (36) degenerates to a well-known expression for the cir-
cular membrane

U =33 Unmion)

r=0m=1

- i i ic"'m‘]f‘(kr,ma p) Ccos 1"?]]

r=0m=1

(49)

& [Sr,m Jr (kr.mu P) sin T”] (50)

where £, ., = ¢ /a and C; ;,, and S, ,,, are constants to be
determined from the initial shape of the membrane.

5. Numerical results

In this section we present tables of characteristic vibrational
frequencies for membranes with different eccentricities in-
cluding the circular membrane. We show plots of the Math-
ieu functions and mode-patterns for the first, second and third
harmonic respectively and we analyze the superposition of
the even and odd modes. In the next calculations, without
loss of generality, we will select the tension and density of
the membrane such that

ViFe=1,

5.1. Tables of characteristic vibration frequencies

(31)

In order to obtain reference values of characteristic fre-
quencies, we first consider a circular membrane with radius
a=5 cm. The general solution is given by Eq. (50) and the
characteristic frequencies are calculated by using Eq. (49)
with (51). In Table I we show the frequencies for the first
two modes of the first three harmonics.

In the following example we consider the elliptic case.
Now, the frequencies are calculated by using Eq. (41). As
above, in Table IT we show the frequencies for the first two
modes of the first three harmonics. The axes still have similar
values, however it is enough to show that each circular mode
splits into an even mode and an odd mode. From Table 11 we
can see that the even modes have lower frequencies than odd

Rev. Mex. Fis. 45 (6) (1999) 613-622
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TABLE L. Characteristic frequencies for the circular membrane:
a=>5cm, e=0.

Order Mode m
r 1 2
0 48.097 110.402
1 76.634 140.312
2 102.712 168.345

TABLE 1l. Characteristic frequencies for the elliptic membrane:
a=5cmb=49cm,e=0.2,E& = 2.298.

Order Even modes Odd modes elkmnifelibem
r 1 2 1 2 1 2
0 48.590 111.603 - - - -
1 77.027 141.065| 77.809 142.49 |1.0102 1.0101
2 103.690 169.802 | 103.764 170.103 | 1.0007 1.0018

TABLE II1. Characteristic frequencies for the elliptic membrane:
a=5cmb=3cm,e = 0.8, & = 0.693

Order Even modes Odd modes el St
T 1 2 1 2 1 2
0 65.865 168.496 - - - -
1 01.546 191.229 | 116.513 220.672 | 1.273 1.154
2 118.880 214.983 | 139.813 243.083 | 1.176 1.131

TABLE I'V. Characteristic frequencies for the elliptic

membrane: @ = 5¢ecm, b = 2 cm, e = 0.92, £o = 0.4236

Order Even modes Odd modes oW fewem
r 1 2 1 2 1 2
0 | 90514 246363 - . N .
1 114.080 267.814 | 168.078 324.782 [1.473 1.213
2 139.416 290.020 | 189.992 346.009 | 1.363 1.193

modes (W, ;m < owrm ). The reason is that to even modes
vibrate along the largest axis of the ellipse. In this case, the
frequencies in even and odd modes are still very similar to
the circular case.

When we increase the eccentricity to 0.8 and 0.92 (Ta-
bles I1I and IV) by maintaining the longitude of major axis
constant, we can see that the frequencies increase notoriously.
We should also notice the increment in ratios oW, m, /eWs m
with respect to the case shown in the Table II.

Finally in Table V we show the case of an membrane with
a very high eccentricity, namely e = 0.99. Here we can ob-
serve a larger difference between the even and odd modes
frequencies. Now the frequency of the lowest mode .o 18
430% greater than the circular membrane.

TABLE V. Characteristic frequencies for the elliptic

membrane: a = 5cm, b= 0.8 cm, e = 0.99, & = 0.16

Order Even mode Odd mode oWhim fetdpim
T 1 1 1
0 206.955 = —
1 228.125 403.009 1.766
2 250.204 423.619 1.693
0.01
EQU'=1.735
0 =
7 - 9,o=11.356
-0.01 -/”
-0.02 ',/‘
/ Ce,(ag,)
-0.03 /
0.04 \'\ //
-0.05 \ / 4
l /
N A
-0.06} '
0 ; ; TlU " 15

q

FIGURE 2. Plot of Mathieu function C'eq(q, £0) as a function of ¢
and & = 0.693.

5.2. Fundamental harmonics

The fundamental harmonics correspond to r = 0 and they
are present only in even modes. By using Eq. (42) we can ob-
tain the equations corresponding to the first two modes. We
should set . By, = FBDQ = ( and cA(]] = .Ap2 = 1, and the
modes are given by

ewor (&1, 1) = eUou (& n)Tou (1)

Ceo(eqo1,€) ceoleqor,n) cos (ewort)  (52)
eUo2(&m)To2(t)

= Cep(eqoz, &) ceo(eqoz, ) cos (ewoz t) . (53)

epo2(€,1,1)

To show a typical case we consider an ellipse with ¢ =
0.8 and the parameters from Table III. The boundary condi-
tion Eq. (40) can be expressed as Ceq(cqo,m, &) = 0. The
plot of C'eg(q, &) as a function of ¢ is shown in Fig. 2. We
are only showing the first two zeros of the function and they
occur at .qg; = 1.735 and g2 = 11.356. By using Eq. (41)
the corresponding frequencies are wg; = 65.866 rad/s and
elge = 168.496 rad/s.

In Fig. 3 we show the plots of Mathieu functions
Cegleqor, £). Cealegor, &), ceoleqor,n) and ceg(eqoz, 1)
We can see that cep(eqo1,1) and ceo(.qoz, 1) have period
and are never negative. This property is a general characteris-
tic of the zero-order Mathieu functions ceq(q, 1)). In the same
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FIGURE 3. Plots of even Mathieu functions corresponding to first
two modes of the first harmonic: a) Ceo(eqo1,£); b) ceo(eqor, n);
¢) Ceo(eqoz, €) and d) ceg(egoz,7)- In this case there exists only
even modes and OMF are always positive.

-5 0 3 -3 -5 d)

FIGURE 4. Contour and 3-D plots of a,b) the lowest spatial mode
«Uo1(&,7); and ¢.d) the second mode Upz2 (€, n). The lowest mode
is the only mode that never have nodal lines. On the contrary, the
second mode presents a elliptic nodal line. Evidently, the number
of elliptic nodal lines increases as modes increase.

manner, we can appreciate that Ceq(eqo1,£) is positive for
£ < &o. Therefore, by using Eq. (52), the spatial mode , Uy, is
always positive and we can conclude that it does not present
nodal-lines. In Fig. 3¢ we can notice that Ceeg(.qog, €) has
azero at § = 0.251, hence the second spatial mode .Uy,
presents an elliptic nodal-line. Contour and 3-D plots of the
spatial modes .Uy (€, ) and .Upz(€, ) are shown in Fig. 4.

5.3. Second harmonics

The second harmonics correspond to = 1 and now they are
present in even and odd modes.

0s 1

= /'\
oH W osp/
03 [ n
N 0
02 Y \
N -0.5
0.1 X
5 *
% 02 04 0693 0 pi2 pi 3pi2  2pi
a) b)

0.02

) 0257 0693 ) pir2 pi 3pi2  2pi
c) d)
FIGURE 5. Plots of even Mathieu functions corresponding to sec-
ond harmonic: a) Cei(eqi1,£) 1 b) cer(equ1,n); ¢) Cer(eqiz, £);
d) ce1(eqi2, ). In this case the OMFs have period 27 and present
nodal lines at y = 7 /2 and n = 37/2.

5.3.1. Even modes

The equations for the first two even spatial modes of the sec-
ond harmonic are given by

Un1(§.m) = Ceyy(eqar, E)cera(eqii ),
U12(6,m) = Cera(equz, E)cera(eqiz, m),

where .gq;; = 3.352 and .qy» = 14.627.

In Fig. 5 we show the plots of ene-order-even Math-
ieu functions Cey(eq11,£), Ceyl(eqiz,€), cer(eqi1,n) and
ce1(eqi2,7m). We can appreciate that the main differences
with respect to the zero-order plots (Fig. 3) are that ordinary
functions ce(cqi1,7) and ce; (¢q12,7) have period 27 and
that they present two zeros at 77 = 7 /2 and ) = 37 /2. Hence
the even modes of the second harmonics present a straight
nodal-line at y-axis, as it is shown in Fig. 7. In addition to
this, we can notice in Fig. 7b that ,U;5(&, 1) presents an el-
liptic nodal-line at £ = 0.257 corresponding to the first zero
of Cel (te?.a E) in Fig. Se;

5.3.2. Odd Modes

The equations for the first two odd spatial modes of the sec-
ond harmonic are given by

oUn1(€,n) = Sei1(oq11,£)s€12(0q11, 1),
oU12(€, 1) = Se12(oq12, €)se12(oq12,7),

where ,q1; = 5.430 and ,q,5 = 19.478.

We can observe in Fig. 6 that Se;(,q1,,€) and
Sei(oq12,€) presenta zero at § = 0 and that se; (511, 17) and
se1(0g12,7) present two zeros at 7 = 0 and n = 7. There-
fore the odd modes present a straight nodal-line at z-axis.
This nodal-line is shown in Figs. 7¢ and 7d. As in the even
case, for the second mode we can also appreciate an elliptic
nodal-line corresponding to £ = (0.369.
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FIGURE 6. Plots of odd Mathieu functions: a)Sei(oq11,§): b)
se1(oqin, 1) ¢ Sei(oqiz, &); d) se1(oqiz, n). As similar at even
modes, in this case the OMFs presents two nodal lines as well, but
now,atp = 0 and = 7.

FIGURE 7. Contour plots of second harmonics a)e U1 (€,7); b)
LU (€,m): ©) oUni (&,m): d) oUir2(€,m). The even modes present
a vertical straight nodal line corresponding at n = m/2andn =
37 /2, whereas the odd modes present a horizontal straight nodal
line.

5.4. Third harmonics

We show the mode-patterns of . ,Us1 and e.oU22 in Fig. 8
(o illustrate an example of modes which present two angu-
lar nodal-lines: /) the even modes .Uz and (Usz have two
hyperbolic nodal-lines at = 1.207 and 17 = 1.319, re-
spectively and 2) the odd modes U1 and ,Usa present two
straight nodal-lines at z-axis and y-axis, respectively. Addi-
tionally the second modes e.oU22(&,m,t) have two elliptic
nodal-lines at £ = 0.257 and £ = 0.374, respectively.

5.5. Superposition of modes

As we mentioned in Sect. 4, the complete solution implies the
superposition of even and odd modes. Let us consider this su-

3 - 3

3

FIGURE 8. Contour plots of third harmonics a) U21(£,7): b)
Una(€,m); ©) oUz1(€,1); d) oUa2(€&, n). We can appreciate that
now the third harmonics present hyperbolic nodal lines as well.

-3
Is

FIGURE 9. Contour plot of Uz = Uiz + oUi2 for an ellipse
with e = 0.8. The dashed and continuous inner ellipses correspond
to original nodal lines from Uz and oUsz .

perposition for the second mode of the second harmonic
(Fig. 9)

Uya(€,1) =e Ur2(§,1) 40 Ur2(€,m).

From Table IIT we can observe that ,wia/ewiz = 1.154,
therefore ,Us» oscillates 15.4% faster than .Uy, . Due to this
difference in frequency, the shape of U;2(§, 7) is variable in
time. On the contrary, let us suppose that we split the shape
of the circular mode Uy (p, 7)) into an even and an odd mode
(symmetric and anti-symmetric with respectto 7 = 0, respec-
tively). Due to the radial symmetry, both modes vibrate at
the same frequency and the shape of the superposition-mode
maintains constant in time, hence the separation is irrelevant.
This is a very important difference between the circular mem-
brane and elliptical membrane.

The dashed ellipse and dashed y-axis in Fig. 9 correspond
to the original nodal-lines of .Uy (Fig. 7b). In the same man-
ner, the continuous ellipse and continuous z-axis correspond
to the original nodal-lines of , U2 (Fig. 7d). The cross-points
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FIGURE 10. Superposition of nodal lines for several modes
a) Upz(€,n) = 5 nodal-points; b) Uis(€,n) = 9 nodal-points; c)
U (€, 1) = 10 nodal-points; d) Uza(€, 1) = 18 nodal-points. The
cross-points between the dashed and continuous lines correspond
to nodal-points.

between the dashed lines and continuous lines correspond to
nodal-points of the mode U2 (€, ), in particular for this ex-
ample we count 5 nodal-points.

In general, when we consider the superposition, the orig-
inal nodal-lines of .U/, , and ,U, ,, become nodal-points of
i

By observation of the mode-patterns in Figs. 4, 7 and 8
we can conclude that the mode . U, ;,, has

I. r angular nodal-lines corresponding to 77 = constant
lines (i.e. straight or hyperbolic lines) and

2. m radial nodal-lines corresponding to £ = constant
lines (i.e. elliptic lines) including the boundary nodal-
line.

In this manner, we can observe in Fig. 10a that by in-
creasing m to 3, then appear two new elliptic nodal-lines cor-
responding to the even and odd mode respectively (Fig. 10b.
These new nodal-lines generate four new nodal-points. On
the other hand, if in Fig. 10a we increase r to 2, then ap-
pear two new hyperbolic nodal-lines (Fig. 10c) which gener-
ate five new nodal-points. Finally in Fig: 10d we show that
mode U3 presents 18 nodal-points.

In order to generalize the before result, the number N PP
of nodal-points for a particular mode U, ,,, can be calculated
with the following relation

NP=r+4r(m-1) r2l (54)

If r = 0 we have the fundamental harmonics which

presents only even modes, therefore they have never nodal-

points. Additionally, only the odd r-order modes present a
nodal-point at origin.

4.9¢

o

44.95"—g

FIGURE 11. Contour plot of U1y = U2 4 Uiz for an ellipse
with e = 0.2. Observe the differences between this almost circular
ellipse with respect to the ellipse with e = 0.8 in Fig. 9.

Finally, we have chosen data from Table IT to show in
Fig. 11 the same mode U;(&,n) but now the eccentricity of
the ellipse is given by e = (0.2. We can observe its notorious
differences with respect to Fig. 9. On the other hand we can
appreciate the similitudes between the pattern in Fig. 11 and
the well-known circular mode-pattern [1, 3].

6. Conclusions

We have analyzed the solution of the wave equation in ellip-
tic coordinates obtaining the characteristic frequencies and
mode-equations in an elliptic membrane. The most important
results for the elliptic membrane are summarized as follows.

e Except for the fundamental harmonics (r = 0), each
mode U ,,, in the elliptic membrane can be separated
into an even mode .U ,,, and an odd mode ,U; ,,,. The
even mode is associated to major axis whereas the odd
mode is associated to minor axis. This separation is ir-
relevant in a circular membrane.

e The even and odd modes of a particular mode U, ,,
vibrate with different frequencies, consequently, the
shape of U, ,,, is not steady in time. In a circular mem-
brane, this pattern is constant in time.

¢ The odd modes oscillate faster than even modes. The
difference in frequency increases with eccentricity of
ellipse. In this manner, if ¢ — 0, both frequencies get
closer and tend to the frequency of the circular mem-
brane.

¢ The nodal-lines in the circular membrane are straight
diameters and concentric circles, while on the contrary,
in the elliptical membrane the nodal-lines of .U, ,,, and
ol m are straight axes and confocal hyperbolas and el-
lipses.
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¢ The nodal-lines of .U, ,, are different to nodal-lines
of yU,. 1. Therefore, U, presents nodal-points corre-

sponding to the cross-points between the nodal-lines of

eUs,m and , U, ,,,. The number of nodal-points in given

by Eq. (54). The origin is a nodal-point of U, ,,, only if

r 18 an odd number.

The oscillating modes can be expressed as a linear com-
bination of Mathieu functions. We have shown graphically
typical mode-patterns for different eccentricities of the ellip-
tic boundary. The effect of ellipticity on the modal character-
istic frequencies has been found to be of great importance
on the mode structure. We have also presented interesting
differences between the circular and elliptical membranes.
We have introduced a formula to obtain the number of nodal
points, in a particular the mode U, ,,,. We expect that our re-
sults can be of great help in the studies of physical systems
with elliptical geometry.

7. Appendix A. Computational considerations

In this Appendix we comment several remarks about the pro-
gramming of Mathieu functions. We have used MATLAB
software [8] to develop the routines.

In order to evaluate the Mathieu functions we apply the
following procedure. First we calculate the characteristic val-
ues by solving the continued fractions (21)—(24). Several
methods of evaluation of continued fractions exist [9, 9]. We
follow the suggestion of Toyama and Shogen [11]. We trun-
cate the continued fractions up to twelve elements and we
develop algebraically the resulting expressions to obtain four
polynomials of [2-degree. The roots of this polynomials are
the characteristic values. Twelve elements of continued frac-
tions were enough to assure the accuracy of more than 10~

The Fourier coefficients for ce, (or se,.) can be computed
by using the particular characteristic value a,. (or b,) and the
recurrence relations (17a)—(20b). First we compute the coef-
ficients Ay, (or Bi) for k = Emax, kmax — 2, -+~ ,7 by using
backward recurrence. k,.x 1$ calculated for a tolerance tol
by applying
q

Asjga
(2}"-|nax + 2)2

2k

|Gg]\-+2| = = tol ~

The coefficients Ay (or By) for & = 0,2,--" ,r (or
k=1,3,---,r)are determined by forward recurrence. The
coefficient A, calculated by using backward and forward re-
currence must be equal, consequently we scale the coeffi-
cients computed by using backward recurrence to satisty this
condition. We rescale all coefficients to satisfy the normaliza-
tion (31). Finally we compute the OMF by using Eqgs. (26)-
(29).

The MMF were calculated by applying Egs. (55)—(58).
The Bessel series for MMF are preferable for calculating the

modified functions because they converge faster than hyper-
bolic series Eqs. (32)—(35).

cean(q, ) —
Cern(a.€) = 2280 3™ 4oy (), (55)
k=0
cehs1(a,3)
Ce?.n. q, = il e
41 (€ ik
o0
x Y (1D Aopyr Joea (w),  (56)
5(32?1+2(Qu ’5) = M tanh §

(Bg

X Z A+1 ).11 +2)B);L+) ])A+2(’LU), (57)
k=0

9€)71+1 q, U
B/’L-i—l ])k+](l£) (58}
Y

Seant1(q,§) =

where

u=2gsinhé and w =2,/gcoshé.

To obtain the characteristic parameters ¢ og, ., for the
membrane, we plot the MMF as function of ¢ to estimate a
coarse value (i.e. Fig. 2) . Later we use a MATLAB-algorithm
to obtain the zeros. This algorithm uses a combination of bi-
section, secant, and inverse quadratic interpolation methods.
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