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We use the concept of “sign spin” in order to perform calculations of the relativistic spectra of hydrogen-like atoms in
basis. With one single variational parameter, we obtain very good results for the energy eigenvalues of the bound states, accounting correctly
for the fine structure. We show explicit results for the hydrogen atom and the single-electron uranium ion to illustrate the power of our
variational method, and discuss also a subtlety associated with the angular momentum quantum Jabels.
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Usando el concepto de “espin de signo™, calculamos el espectro relativista de dtomos hidrogenoides en la base de Sturm-Coulomb. Con un
s6lo pardmetro variacional obtenemos muy buenos resultados para las energias de los estados ligados, incluyendo la estructura fina. Para
tlustrar el poder de nuestro método variacional relativista, mostramos resultados explicitos para el dtomo de hidrégeno y para el ion de uranio

monoelectrénico. También discutimos una sutileza relacionada con los nimeros cudnticos del impulso angular.
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1. Introduction

The variational method has been used extensively in order
to approximate eigenvalues in quantum mechanics. Since
Dirac’s famous paper in 1928 [1], where he established rela-
tivistic quantum mechanics, many approximate methods have
been developed in atomic and molecular physics to deal with
relativistic Hamiltonians. In this work, we illustrate how to
solve variationally the relativistic Coulomb problem in a non-
orthogonal basis, using the Sturm-Coulomb non-relativistic
wave functions. We discuss the Hamiltonian for the Dirac
equation with a Coulomb interaction in the language of sign
spin [2] that allows us to write the Dirac matrices as the di-
rect product of two 2 x 2 matrices, one associated with the
ordinary spin, and the other with the sign spin. The latter is
associated with the sign of the energy and, mathematically,
it is identical to isospin. The advantage of the sign spin is
that it decouples from the spin, which in turn couples with
the angular momentum to yield the (conserved) total angular
momentum.

We focus on the relativistic Coulomb Hamiltonian be-
cause the exact spectrum is known, and we can thus com-
pare with the energy eigenvalues obtained from our varia-
tional analysis. As we shall show, the method is remarkably
powerful. This is due to the fortunate choice of a variational
basis, which is not quite naive. In a previous paper [3], a sim-
ilar computation with the orthogonal wave-functions of the
harmonic oscillator was performed; the results were off by
more than 10%. Now, we find agreement with the Dirac for-
mula to one part in a million for Z = 1, or better than one
percent for Z = 92.

2. The variational hamiltonian

In atomic units (¢ = I = m =1, ¢ & 1/137), the single-
particle Dirac equation with a Coulomb interaction for an en-
ergy eigenstate is
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where the wave-function /(") is a Dirac spinor depending
only on the relative radial co-ordinate 7.
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with A > 0 the variational parameter, we obtain the varia-
tional Hamiltonian
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We can write the Dirac matrices as direct products of 2 x 2
matrices [2]:
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where 5, = t; = o;/2, with o; the Pauli matrices. The s;
matrices act on the ordinary spin, whereas ¢; act on the sign

spin. This formalism is identical to Wigner’s supermultiplet
theory [4], where the £, are associated with isospin.
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Subtracting the rest energy ¢* from the Hamiltonian, we
find
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Before we plunge into solving the relativistic eigenvalue
equation variationally, let us point out that we have also car-
ried out these variational calculations for the non-relativistic
Coulomb problem. Because the variational test functions
yield the exact solutions to the problem, we obtain witha 1x 1
matrix the exact ground state energy at the minimum, with
A = 1. For A\ = 2/n the n-th Sturm-Coulomb wave-function
has a minimum and is in fact the exact solution. If we trun-
cate the infinite basis to the first n Sturm-Coulomb functions,
for any A > 0, we have n orthogonal states with different
energy eigenvalues. Applying the variational method to these
functions, we obtain the energy values of the first n excited
states [5].

The interest of our work is to extend the above proce-
dure to the relativistic (but not field-theoretical) case. An im-
portant ingredient is the astute choice of basis for the Dirac
matrices which splits clearly the spin in a two-dimensional
subspace: the group theory simplifies considerably and can
be managed with standard, though laborious, mathematical
methods. The non-orthogonal basis of wavefunctions chosen
for this particular problem is also a crucial ingredient in the
extraordinarily rapid convergence of the numerical computa-
tons.

3. The Sturm-Coulomb basis

The states on which the Hamiltonian acts are expected to be
of the form
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The part related with the sign spin is denoted by the ket | 17),
with the eigenvalue of t3 being 7 = :I:%.The numbers
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(€u, 3o | jm) are Clebsch-Gordan coefficients. The labels
7, m (resp. (, j1) indicate the total (resp. orbital) angular mo-
mentum and its projection; j, m are conserved. The Y¢,, (6, @)
are the usual spherical harmonics and Ry, ¢(r) are the Sturm-
Coulomb functions
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where L(”H)(v) are the associated Laguerre polynomi-
als [6].

The Sturm-Coulomb functions are orthogonal with re-
spect to the measure r dr:

[ Ry o(r) Ry (1) dr = 67, (8)
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but with respect to the volume element r? dr they are only
tri-diagonal [7]:
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Because of this non-orthogonality, the variational calcu-
lations call for the secular equation
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In order to solve this equation, we need the explicit

Clebsch-Gordan and Racah coefficients [8] in terms of 4-
functions, such as
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The explicit matrix elements with the above naive wave-
functions are
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The naive states above are formed by combining the non-
relativistic Sturm-Coulomb wave-functions

| n€) | €1) = Rue(r)Y2, (6, ¢), (14)

with the spin-1/2 states | x,) (0 = £1/2) to form eigen-
states of the total angular momentum. Whereas in the non-
relativistic case only V* appears, the Dirac equation is linear
in V. This implies, curiously, that the identification between
the second label of the radial wave-function R,,¢ and the or-
bital angular momentum is lost. In other words, the varia-
tional trial wave-functions (6) are not the most appropriate to
the problem. Keeping ¢ for the angular momentum variable
appearing in the spherical harmonics, and introducing L for
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the second label of the radial wave-functions, we are forced
to use, instead of the above, trial states of the form

| nL(€, £)jm;T) =

Rar(r) ) (tp, 0 | jm)Y2,(8, 6)vo | 47). (15)

o

The label L is still an integer but now, instead of being al-
ways equal to (, it is equal to the minimum value of 7 in the
collection of slam Given j, we know that ¢ = j + 1 and
thus L = 7 — : always, independently of ¢. )

Accordingly, the secular equation to be solved is not (13)
but rather
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4. Relativistic spectra of hydrogen-like atoms

To illustrate concretely the general discussion above, let us
concentrate on the states with lowest total angular momen-
tum, namely j = % In this case, L = 0 always, and of
course the spin o and the orbital angular momentum ¢ are
completely correlated. Furthermore, the states split in two
disjoint sets, meaning that the matrix elements of Hy — E
between them all vanish One set contains the states with pos-
itive sign spin 7 = % and angular momemum ¢ =0 and also
the states with negallve sign spin7 = —% and { = 1. The
other set contains the states with 7 = é f = 1 and those
with 7 = — L and ¢ = 0. In this simple case with j = §, the
parily-preser_ving form of the Hamiltonian enforces thus an
accidental but useful one-to-one correspondence between the
sign spin and the angular momentum. Each set of states con-
tains one of lowest energy, and they have opposite parity. We
will consider only the set of states containing the true ground
state, of even parity: ¢ = O and T = 3.

Exploiting the correlation between 7 and ¢, we may sim-
plify the notation for the set of trial states to be considered:

| n0(¢, $)3:7) = (17)

where ( = 0if 7 = 1, and ¢ = 1if 7 = —1, and the ground
stitency = € i= U)-ol even parity is 1nc1uded Explicitly,
to perform numerical computations, we order these states as
| 04), | 0=), | 14),] 1=),| 24), | 2-), ..., and truncate
the semi-infinite matrix
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to a finite one, withn,n’ < N. For each N, we must evaluate
the determinant of a 2N x 2N matrix, find its eigenvalues,
and then vary A to minimize those of the bound states. When
A = 0, there are N states with zero energy and NV states with
energy —2¢2. As )\ becomes positive, the degeneracy disap-
pears completely. The N negative energy states sink forever
into the Dirac sea with increasing A, but the /V states which
start at zero first decrease, then reach a minimum, and then
increase forever.

We begin with 2 x 2 matrix, (i.e. we take only the n = 0,
¢ = 0,1 states). For each A there are two energy eigenvalues:
one associated to the ground state, the other to a state in the
Dirac sea. The minimal value is Eq ~ —0.500067, close to
Dirac’s Ef’ ~ —0.500070. When we increase the dimension
of the basis the excited states appear and the minimal energy
eigenvalues improve tremendously.

In Table I, we compare Dirac’s values with the energy
minima of the bound states of hydrogen calculated using our
variational method in an 18 x 18 matrix. For this case, we
can compare with the series expansion in ¢, the fine structure
constant in our units. According to Dirac’s formula [9], the
bound state energies for j = % are

-3
I} o

Eu = ("2 {_1 + l:l +

where the principal quantum number is v = n+(+1. Ex-
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/
TasLE 1. The ditference between the variational minima and
Dirac’s formula for the first nine bound states of hydrogen 1s
shown with two significant digits. The last two entries for hydro-
gen, marked with an (*), are the coefficients of ¢” in the difference.
not ¢ the first seven states come out stupendously well, the last
(wo not so great. Also shown are the approximate values of the
variational parameter A at the minima.

Relativistic bound state energies for hydrogen

! 0.11 1.44
2 0.029 0.6

3 0.16 0.28
4 0.18 0.27
5 0.33 0.20
6 0.052 0.17
7 53 0.15
8 2.3% 0.13
9 76> 0.11

TABLE 11. Variational energies for the first nine bound states of the
uranium single-electron ion. We quote the difference in percent be-
tween the variational energy and Dirac’s relativistic value, as well
s the values of the variational parameter A for which a minimum
is attained. We used ¢ = 1/137.0359895.

Relativistic bound state energies for uranium

v FRias EY™ A Y diff

1 —4861.64 —4861.64 326 3.5 % 107°
2 —1257.54 —1254.43 326 0.25

3 —539.141 —538.225 66 0.17

4 ~295.279 —293.724 36 0.53

5 —185.496 —184.712 28.5 0.42

6 —1271 —125.939 19.5 092

7 —92.4448 —91.7230 16.5 0.79

3 —70.2282 —69.1485 12.5 1.6

9 —55.1453 —54.1900 10.5 1.8

panding in ¢ = 1/137, this is

E, = _ L ( L —3—) A

D2 213 8t

_ L 3 3 5 6 4 8 6
(Su'1 v {ut 4ud * lﬁr/G) Z°%"+ 0(2% 1s (F)

With our variational method, we pick up the non-relativistic
term, of course, and also, to an excellent approximation, the
relativistic corrections.

Table 1I shows the energy minima for the bound states
of single-electron uranium ion, for which Z = 92 and thus
the perturbative expansion of (18) converges very slowly.
Clearly, the variational method used with the Sturm-Coulomb
basis is very good.

FIGURE 1. Variational energy levels E,, for the first nine bound
states of the hydrogen atom, in units of ¢!, The flat curves increase
for higher A and have a unique minimum. There are also nine other
curves. not shown, with energies starting at —2¢%, which sink for-
ever.

FIGURE 2. Variationa! cnergy levels E, for the first nine bound
states of the uranium single-electron ion, in units of ¢*, as a func-
tion of the dimensionless variational parameter A

In Figs. | and 2 we show how the first nine bound states
of hydrogen change with the variational parameter, for Z = 1
(hydrogen)and Z = 92 (single-electron uranium ion).
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5. Conclusions

In the relativistic case we observe clearly a gap between the
curves of positive and negative energies. The energy minima
are very stable with respect to small variations of parame-
ter A,

The idea of sign spin [2], which simplifies considerably
the computations via standard group-theoretical tricks, is just
that the Dirac matrices & and /3 can be written, in some ba-
sis, as a @ b, where a acts only on the usual spin and b on

the “sign” spin. This is helpful because in the construction of
a variational basis the spin and the angular momentum com-
bine to yield the total angular momentum, which is a constant

of motion, whereas the sign spin decouples from the angular
momentum.

Our results are much better than the ones calculated with
harmonic oscillator basis [3], and show the fine structure
in the spectra of hydrogen-like atoms. Actually, the energy
eigenvalues that we obtain have an unexpectedly good agree-
ment with Dirac’s exact formula.
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