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We have obtained analytical formulas and their corresponding numerical results for the contributions to .[hc electron energy spectrum, due
to the bremsstrahlung of semileptonic decays of charged and neutral baryons, in the region of the Dalitz plgt that cove‘rs the four .body-
events. We show that the logarithmical singularity at the upper edge of the plot, contained in previous results disappears after performing an
analytical integration. The new formulas contain terms of the order a times the momentum transfer. They are applicable to any beta decay
pmcdess. and are suitable for a model-independent experimental analysis.
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Hemos obtenido férmulas analiticas y sus correspondientes valores numéricos para las contribuciones al espectro de energia del electrén,
debidas al bremmstrahlung en el proceso de decaimiento semilepténico de bariones cargados y neutros, en la regi6n de la grifica dc. Dalitz
que corresponde a la zona donde tiene lugar el decaimiento a cuatro cuerpos exclusivamente. Mostramos que la singularidad lpgaritmlca que
aparece en el borde superior de la grifica, contenida en resultados anteriores, desaparece después de integrar de manera analitica. Las nuevas
formulas contienen términos de orden o veces la transferencia de momento. Son aplicables a cualquier proceso de decaimiento beta y son

apropiadas para un andlisis experimental independiente de modelo.
Descriptores: Hiperones; decaimiento beta; correcciones radiativas

PACS: 13.40.Ks; 13.30.Ce; 14.20.Jn

1. Introduction

The condition of conservation of energy and momentum de-
termines the physical region where the hyperon semileptonic
decay (HSD) process takes place. If the products of the decay
are three bodies (TB), as in the HSD (without radiative cor-
rection), the physical region is delimited by a hyperon min-

imal and a maximal energy (E3"", EF'®) for each value of

the energy E of the emitted electron. When a real photon is
considered as an additional product of the decay, then there
are four products of the decay, and the physical four body re-
gion (FBR) in which this process is possible, contains the for-
mer TB region (TBR) and an additional portion with energies
below the E"(E) in such a way that M, < E; < EPin
form < E < E,., where M5 and m are the masses of the
produced hyperon and electron, respectively; and E, is the
energy of the electron for which the hyperon is at rest. The
upper boundary of £, for the region where the TB decay is
torbidden is evaluated with the condition & = 0, this means,
without the emission of a real photon, it is the case where
the neutrino balances the total momentum of the residual hy-
peron and electron, which are emitted in colinear directions,
and is characterized by cos# = +1 in the TBR.

The knowledge of the radiative corrections (RC) in the
four body region (FBR) of the Dalitz plot (DP) is required to
obtain formulas for the energy spectrum of the decay prod-
ucts (fermions) in the HSD. The precision of the formulas
is increased with the inclusion of all terms of the order a-
times the momentum transfer in the RC. The total decay rate

of the processes can be computed directly through analytical
formulas for the RC, if they do not contain any divergences.

In previous papers we have analyzed the TB decays
with radiative corrections (virtual and bremsstrahlung) in the
TBR, Refs. 1, 2, and 3. We have also obtained the energy dis-
tributions ( s, E) for events that take place with E; < Ein,
i.e. in the region where the decay takes place only with the
emission of a real photon, Refs. 4 and 5.

In this paper the contribution of the bremsstrahlung to
the energy spectrum of the electron is obtained, in the por-
tion of the FBR region which is not considered in the radia-
tive corrections of the TB decay in the TBR. As it is known,
the virtual radiative correction (at the TBR) contains an in-
frared divergence which is cancelled due the existence of
another divergence that arises in the process when the real
photon emission (bremsstrahlung) is considered (in the same
TBR), therefore the bidimensional distribution with the total
RC for events with £, = EJ" becomes finite for the pre-
cise TB decay [1-3]. The events that arise with the hyperon
energy ES'™ are very special events and are of particular in-
terest, because a logarithmical divergent contribution arises
in the bidimensional distribution of energies (E>,E) when
the bremsstrahlung alone is considered in the FBR. The di-
vergence is only present on the boundary between the TBR
and FBR, where cos# = +1. This is just the infrared diver-
gence of the TBR reached from the FBR side (see Appendix
of Ref. 2). The bremsstrahlung decay is connected continu-
ously and smoothly in going from the TBR to the FBR. As
the events with 5 = E?_,“i" should not be taken twice, the to-
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tal RC remains finite. On Ref. 6, the radiative corrections in
the TBR were evaluated by other means, and no divergences
are found in the electron energy spectrum.

In this paper we show how the logarithmic divergences,
that are contained in the model-independent results given in
Refs. 4 and 5, obtained in an analytical way for the RC to
baryon /3 decays in the FBR of the DP are cancelled after per-
forming the integration over the energy of the final hyperon
that emerges in the process. The important feature of the new
analytical forms of the RC is that they are written in a simple
form, as products of two factors, one of them is a model-
independent function and the other one does depend on the
(strong-interaction) model through the form factors, which
are determined through the experimental data. Such formulas
are suitable for a direct evaluation of the RC for any event
in the allowed physical region. The new results are valid for
photon bremsstrahlung calculations in any charged or neutral
hyperon decay and its knowledge is important to obtain the
precise description of the semileptonic weak decays, which
are relevant, in particular the neutron decay, in cosmology,
astrophysics, solar physics, the solar neutrino problem, as
well as in other areas of particle physics.

The structure of this paper is the following. In Sect. 2
we exhibit the kinematical region, in which only the four
body decays take place, and we display the bremsstrahlung
amplitudes for the charged and neutral hyperon semileptonic
decays with all the ag/n M, terms included. In Sect. 3 the
bidimensional observable energy distributions in the FBR of
the bremsstrahlung are described for both cases. We devote
Sect. 4 to give the energy spectrum of the charged lepton in
a non divergent form. In Sect. 5 we present our final results.
The purpose of the numerical evaluation is to perform a com-
parison between our results and other previously published
numerical values. Finally, we include six appendices which
contain definitions of the coefficients and model-independent
functions that appear in the analytical result, the procedure
we follow to integrate the divergent integrands, and other rel-
evant relations.

2. Kinematics and amplitudes

The theoretical framework of our calculations can be found
in Refs. 4 and 5. In this section we present the main features
and the notation to describe the four-body process we are in-
terested in

A%(pr) = B(p:) + e (0) + De(py) + 7 (k) , (1
with the emission of a real photon v. A® corresponds to the
neutral (s = n) or charged (s = ¢) decaying baryon, B the
produced baryon, e~ and 7, denote the lepton and its neutrino
counterpart, respectively and the + corresponds to the photon.
The four-momenta and masses of the particles involved in the
baryon semileptonic decay are denoted by

P2 = (E'lvp-’.‘Z)a {= (E~F)w

and k= (fifo.nt—\'.}. (2)

m = (Elaﬁl)«

Pv = (Ey,Du),

and by My, Ms,m,m,, and my, , respectively. We assume
throughout this paper that m, = 0, and m; = 0 as corre-
sponds to real photons.

The Four Body Region (FBR) for the process in Eq. (1),
in the rest frame of A%, is defined by

M3+ [M; - E — |{|)?
20M, - E—|¢)

(M) — M3)? + m?
2(M; — My)

M, < Ez< Eé‘ E; — E_lznin —_

m<E <E, E.=

(3)

The z-axis is chosen along the electron three-momentum and
the x-axis oriented so that the final baryon three-momentum
is in the first or fourth quadrants of the -z plane.

The emission of the real photon in Eq. (1) is described
as a radiative correction to the semileptonic decay of the
hyperon. The uncorrected matrix element M, (without the
emission of the real photon) for this decay is given by the
product of the matrix elements of the baryonic weak current
and of the leptonic current:

G
V2
where (7, = G7,V}; and GG, is the muon decay coupling con-

stant, V;; is the corresponding Cabibbo-Kobayashi-Maskawa
(CKM) matrix element. We have

My = T RTIRTITO PR TN 4)

T f2(a*) fa(a®)
W, = filg*)va + A, Ouuvu + M, (‘M
) 92(4*) 93(q*)
B il ———F ity ¥ ' 55 5
+ |91(q )71 + M, Tuvy M, Qe | Y (5)
and
Ou :’Y;a(l+75)- (6)

The ¢ = p1 — p» denotes the four-momentum transfer. Our
metric and y-matrix conventions are those of Ref. 2.

To obtain the decay rate one has first to obtain the ampli-
tude of these processes. It has been shown in Ref. 7 that the
order o bremsstrahlung amplitude can be obtained in a model
independent fashion by using the Low-theorem [8,9].

We reproduce here the model independent amplitudes, in
terms of the Dirac form factors, given in Egs. (18)—~(20) of
Ref. 2, and Eq. (23) of Ref. 3.

The total transition amplitudes can be written as

M = MF + M3 + M3,

s = ¢(charged), or n(neutral) (7)
with
. € f € Py
Mf=eMy|— — , 8
1 ¢ 0({r_'t‘: P]]\) ()
. Gy o Ya
M§ = 75(‘““"” ’\u"urr’ ‘kkOM’.n (9)
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i = Gy _ - {eW)\Iﬁ'yu o )\Zj1+ M,
TV2 g 2py - k 2p -
" (%Ek_}: _ gm) (faﬂ;lfz + s ﬂsl’;{lg'z

and

M = eMp (;—i - ; p;) , (11)

M3 = %e#ﬁBWAuAﬁg%—kO,\vy, (12)
M= C\}%" .Ue#ﬁg{—%?{%—mw %—z—ﬂ/%a,wk

+f;ga,,_,,ku%—_ﬂ%w,\ +e (% - 9uﬂ>

#, and - are the anomalous magnetic moments of A* and B
given in Egs. (21) and (22) in Ref. 2. ¢, is the photon polar-
ization four-vector.

3. Bidimensional distribution

After performing the standard trace calculation and the phase
space integration according to the kinematical limits given
in Egs. (3), as in Refs. 4 and 5, a high precision model in-
dependent and useful result is obtained for processes where
the momentum transfer is not small and therefore cannot be
neglected. In this result, valid for both types of unpolarized
decays, terms of order aq®/mM? and higher are neglected.
The result, for the differential bremsstrahlung decay rate of
the decay in Eq. (1), which is given in terms of the observable
independent variables Es and E, the energies of the emitted
baryon and the electron, respectively, is relevant for the eval-
uation of the energy spectrum of the emitted electron.

The differential bremsstrahlung decay rate up to order
aqg/mM; for HSD is compactly given by

17
drs (A° — Bevy) = %dﬂZH{‘" T 4
3220
G2 1
dili= —2— —MldE'ng (15)
where the coefficients H;' (see Appendix I and II) are
H;If o Hu r Hf.' - H:,
H = +N£, Hie =i, (16)

and the model independent functions are presented in Ap-
pendix II1. #77'is given in Eq. (25) and
==, i

i U . (L)

E Cr“,,ky H h:'zanukl)

) de (pluku
P1 - k

ot Ms
2])2 -k

2+ 927
q“,,) (o0 + 0av) (iﬁTﬁz_ﬁ) } s,

The H!’s depend on the form factors through functions @,
i = 1.....4. The explicit form of the @Q;’s is given in
Eqs. {16)—(20) in Ref. 1. The H!’s and the 6] ’s with i =
0,...,16 are shown in Ref. 4 in qu (37) and in Eqgs. (33),
respectwely In the Appendices IT and III we consider the
former coefficients and the model independent functions in
a simplified form in order to avoid singular B:T's at (B =
E,., E> = M), where |p3| = 0. The simplified N; ’s, which
are shown in Appendix IV do also depend on the form factors
and are equivalent to the ones given in Ref. 5.

Wi

(10)

Equation (14) with s = ¢ (s = n) corresponds to the an-
alytical result for the bremsstrahlung part of the DP of the
HSD of charged (neutral) hyperons, at the FBR. With Eqgs.
(28) and [Eq. (33)], given in Refs. 10, the full analytic re-
sult for the RC at the whole region of the Dalitz plot for
semileptonic decay of unpolarized charged (neutral) hyper-
ons is completed.

In order to illustrate and analyze the result in Eq. (14),

let us consider the charged (HSD) (s = ¢) and the neutral
(HSD) (s = n) cases separately.

For the charged HSD case: Equation (14) becomes

16

dl'sy (A~ — B .y A—dQZHQG;r. (18)

The H; coefficient in the former equation depends on £; in
the following way:

2
H{ =) exE§, (19)
k=0
and the model-independent function 85T is explicitly
. 1
BT — iy =) T O ‘ (20)
yo — 1
where
2 .
L = garctanh B ¢ = (21)
/
and
2 =
. (E9)" — E*8 — ;3| 22)
2|pz| EB '
El=M —E;—E (23)

The £4’s in Eq. (19) are displayed in Appendix L.
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Similarly, for the neutral HSD case: Eq. (14) becomes

dl (A° - Bte~py) = %dﬂ [(Hy + N) 6T + HignT

16
+ > (HI+N) 6T + N.’Tﬂﬁ] . (24)

1=2

In this case and for further convenience, we split the 877 into
two parts as follows:

01" (B, Ez) = 670 + 67N, (25
where
6,70 (B, By) = ~2In |2t - l [26)
Yo — 1

the equations for the 7P (E, E,) and 67,
the Appendix III.

are included in

4. Energy spectrum

Pursuing the energy spectrum, the following integration has
to be performed

B2 dI'(A* - Bevy)
s (E) = s il
(E) _/Me =

As we have pointed out, the d[';(A* — Bev ) in Eq. (14)
depends on 1 through 85T in the following way

(27)

Yo + 1

8;T x In .
yo—1

Using the definition of vy, in Eq. (22) one finds that yo — 1
for collinear events, i.e. the cases when

m<E<E, FE;— Eé. (28)

In this special situation, one has to deal with a logarithmical
divergence and this divergence is an obstacle to make a direct
numerical integration. We solved this difficulty by consider-
ing an analytical integration. Our procedure is the following.
For simplicity, we consider a new variable z and the param-
eters ap and by such that

,Wil + MZ+m? - 2EM, FE - M,
= 2 by = 129
a IMLES y Ej @9
B E!
c=—, s=v22-1, =%, # =1 @0
M’ Vot T My T (30)
and
(yo+1) _ao+boz+ s 31

(yo —1) ag+bopz— s

For the charged HSD process we split I';; (E) into the diver-
gent [P and non-divergent /ENP part

. G2 1 :
[5(E) = 5t 5 M [IZP (E) + IENP(E)], (32)

where

o w2
IIP(E) :—Mgf ZJ’_M‘“ bplootbozt sl o0
™ "/ lag + boz — 3|
with
&5 = (I —2)ex, (34)
and
ITND (E & ‘E' 16 -
! =2 HYp -
1 ) 7"/}»12( 00+§H€)d£‘3. (35)

Following the same strategy for the neutral HSD process we
obtain:

. G? 1
TR(E) = S oMy [IRP (B) + IRVP(B)],  (36)
where
boz + s|
1 (g [ enME R In lao + bo "
o i Z lao + boz — s| oot bez— 5]~ O
with
ep =—=2e; (38)
and
TND a [P T f
I (B)= S [ [ (Hy+ N9 6 + Ay n67™P
Ms
16
+ ) (H{+ N[) 6 + N{;6{;|dEs. (39)
=2

We observe that in both cases, one has to integrate the same

function
B
=
:/ z" ln
. -B

leo + boz + 3|

1z. 40
lag + bgz — s| ‘ (40

After performing a very subtle analysis (see Appendix V) or

Ref. 11, we obtain the following non-divergent analytical re-
sult:
. 1 : k41
R = o [t - )] 7
i a 1
r B B\T ‘ k—r G2
- — &2, — Sy (2 - — », (41
k+l{§][s” "r(r)]I/::I .5'} (41)
where
M, (E,, — E)
=
o =M\ T EEAM, |
M2 - M2 +m?
E,” — miind’ W I il 42
2M, (2]
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and ‘

Lo L[Mi-EQ-8) M, ]

Sl f | M> M, - E(1-5)

B_1[M —E(1+p) M, ]

=3 M, M —E(1+4)]’
1[M,-E(1-8) M, }

=321 M, Mi—E(1-p5))"

g_Ll[Mi—-E(1+8) M, } 3)

=3 M, M, —E(1+B)

5. Final results and conclusions

Gathering and refining previous results, we obtain the whole
spectrum of events in the FBR.

For the charged HSD process by 3.7 (p1) — n(ps) +
e(l) + e (p,) + v (k),

G2 1
T§(E) = 555 M [I12° (B) + IZV° (B)), (44
where
2
IEP (B) = =5 Mf+ecRTB,
4 k=0

and

i Eé 16

i ‘f (HEoT + > Hi6T)dE,.
™ S M, o

1=2

For the neutral HSD process as the Alpr) = plp2) +
((f) + 'Dt‘(pr/) +7 (A),

2
e ol

5 5,3 M [IN° (BE) + NP (B)] (45

IR(E) =

with
a 2
TD oy _ & Z k+1_n pTB
‘{N (b) == '7; A'-{z Cle
k=0
and

ES

o % N N

ITNP (B) = = / [(H5 + Ng) 6 + A @pTND
o .‘"l’g

16
+ 3" (H!+ N OT + Ni+0%: | dE.

i=2

The formula for the lepton energy spectrum becomes in gen-
eral:

drs, (E) =

aG? 1 =
bt MIMZ[ > et MERTE

m—
T 2 273
k=0

2B 17 )
+ /1 (Hg'ag y ; HY'60T + A! N&{‘TNDég‘)dzJ. (46)

TABLE |
7 (p1) = n(p2) + e (€) + Ze(pu) + v (k)
v =E/En 01 02 03 04 05
% in Ref. 12 7.8 15 05 01 002

% from Eq. (46) 7.78 1.53 0.46 0.14 0.02

TABLEI1
Alp1) = p*(p2) + €7 (6) + Be(pu) + v (k)
z = E/E,; 0.1 02 0.3 0.4 0.5
% in Ref. 12 s 2.3 0.8 0.25 0.02

% from Eq. (46) 9.28 2.20 0.77 0.24 0.02

where 4 indicates that the last term appears only in the neu-
tral HSD case (s = n). ef = (I, — 2) &y, and ER = —2¢y,
where the ¢y s are displayed in the Appendices.

In brief, Eq. (46) is a precise formula suitable to be
evaluated numerically, without any ambiguity, at any en-
ergy in which the charged lepton is emitted, it contains the
bremsstrahlung in the four body decay region where the three
body decay does not take place and it includes events in
which the electron is collinear to the produced hadron (at the
edge of the DP). Other authors [12] have published numerical
data for the percent contributions due to the radiative correc-
fions to the HSD decay for the events at the FBR.

In order to compare with these results, we consider the
numerical values obtained with the formula in Eq. (46). In
Tables I and II we compare the data given in Ref. 12 for the
relative RC in %, caused by bremsstrahlung events, which
fall outside the TBR Dalitz plot, with the numerical values
obtained by means of Eq. (46). As one can see, the results are
in a very good agreement, except for the low energy region
in Table II.

In summary, the analytical result is useful to obtain in-
formation, from the experimental data, about the underlay-
ing interactions in the decay processes, the basic symmetries,
and the internal structure of hadrons, through the derivation
of precise values of the form factors involved in the effective
interaction.

The knowledge of the energy spectrum of the electron is
fundamental for the determination of the decay rate in these
processes. For the complete determination of the decay rate
itis necessary to add the contributions of the events in the so
called three body and in the four body regions. In Ref. 10
we consider the values given in Ref. 12, since the analytical
results for the FBR were not available then.

Let us mention that RC were also computed by a Monte
Carlo method for photon bremsstrahlung calculations in
semileptonic decays Ref. 13. At last, though the evaluation
of the radiative corrections for the HSD is a complex and an
old problem (see list of references in Ref. 13), the result in
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Eq. (46) is new, it is worth by itself and it is the culmination Appendix 1
of a systematical approach to the problem in the FBR.

The coefficients Q;’s (i = 1,... ,5) which are form factors
Acknowledgments functions, are given in Ref. |.
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| where the £, are explicitly given by

5 5 5 Bf = (7% ! E E M, o . E\ MyFE
{].:(FIH—GT+F1F2+G1G2+Z—22) [—M + 2 (1——)];*2(1?{—(;‘12) (l——)

M2 2 i M. )| M, M. M3
+ [(Fl +G1)} + R ~Gle] {—%M"' + % [2 (1 - Mil) + %}} F]Cl = [*;M’*’Jr (ﬁzz + 1‘5 )]

+ (P Fs + FoF3 + G1G3 — GaGa) (1 — -ME—I") 77?;;};[2 + (F1F3 — G1G3) (1 = 5" :TFI%,

% _ (F1F2 GG+ Ff;G%) (1 _ j_fl_) }:;;’ + (FF-G3) l:‘jl + (FaFs + G2 G3) ( if) %Lj
+ (F2 +G2) (1— Mﬁl) o+ [(Fi 4+ G + R - 616 [sz ( —2%)}
4 (Flp‘.l -GG+ Fﬂ—;“Gé) %M‘ — (FiF3 + FaF3 + G1G3 — GaGs) mﬂ—f?i
+ [F2F3 4+ G2G3 + 2(G1G3 — FiF3)) 2]‘;2,
5 (@) (1- i—i) (B +GC )V - (B +856%) ,1;2
where terms of O(q?/M?) were neglected and
T m? — Té— M2 anll M = m? + i’jg_§+ Mi

Appendix 11

For completeness, we explicitly show the new simplified expressions for the form factor dependent coefficients H; s
' = B85 { & EY) - oo [+ 00 +4fa + 20 S5 — 1)) |
H{ = EB|pa| E(Qa—Qo. ol = o, (1t 201 2)| 1

H) = 4y = E[ESQ - Q2 |l’ - QaBE + BIsl vo (E2Qu - Qs ~ EQs)|

1= T [ (@u+ Q) B + (@ + Qu E Il By + Qu (B4 ES) + Q]

Hy = ﬁ: {2E)—E(1+8°)] (Q1 + Q3) + 28|52 o (E2Q4 — Q3 — EQ:) — 2|p2| *Q2
+(E2+E) [E(1+8%) (Q2+3Q4) —2(Qs +2EQ4)] }

EO° (2E + ED)
+m” ﬁ{ (E2+2E) + [fi*+ 91> +2(fifs — Qlflz)}m—gl (f1+fz+gz)“ﬂfl ,
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1 2 42 - = (0 0
=22 {%E (@1~ E2Q2 — B (Qa + Qu) +3(Qs — ESQu)] + 5 [~E*3°Q2 + 17I° Qu + ES (2Qs — 3ESQu)|
0 , . . 'y 2E ; 2
_E;f" [(fl — gl)‘2 4 2f1f3] + % [fl2 —gi +2(g192 + fu f:;)] |p2| BEyo + ﬁylgi [252 +E(4-38 )]
M, 1 ]
. 2h~ 5 ht
+%?91 2E (fi + f2— g2) + 2 (E) + B°E)] + ——B°E* - 2B [E) + 2E (1 - 3%)] — & }
z‘ l
9 32 ht g™
r - 54’3 {Ql — (E+E}) Q+3Q3 = (3E +TE)) Q1 — 4 (2E + E})) — —8E)—
+Mi (ED (ff +2f1f3) + (2E — E)) (fr + f2) 91 + (2E + 3EY) .fnff-z]} ,
1
Hf = 11 52| (1 — B%) EB (@1 + Qs — (@2 + Qu) (EL + E)],
I _ EO 72 ) = h
o= ~EE {(QEEE“) @ +@)+ 2 (0, @y +2(8 - 1) EQu+ |m|,uyn(  + 3G, —2—)
0 2 i 22 a0 E a2 2 2 ‘ 3
(B +BF) .- (8% -3) E-2E]] Q@ + o (L=7%) [fi+9i — 91 2fi +3f2 + g2)]
1
ﬂ/[-_ 2F, — M ;;'l‘l'-‘_) _.TT.'
+g1 (f2 — g2) ( E>) (‘{Ms——l = W1) EM, (f1f3 = g192) }
95~ — Bt ; E - 2E°
Hi= &g Lpz| {Q1+Qs - (2E+ E2) Qa2 + (E - E) Q4 + 2E? ((—L) + [(fl —yl)"‘i'?flfa] (T)
- [h+ o) (B -2F) + il ),
, 2| 3
1y =22 [ Q1+ Qo)+ (@2 + Qo) (B4 £
. (EB)® 3h~ + 2ht 2
Hy, = ( 4” {—(Qz +5Q4) — 4 (—e—) +E[3f1 (i +2f3) + g1 (g1 —4f1 — 65 +892)]} .
H, =0,
; ht 1 5. : .
Hy, = )? || {_ - %i +2M [(fi + 1) + 291 (3f2 — 2g2) + 2f1f3] }
. (EB) Kt .
iy = Lﬁ“—*‘ (@2 4Rt -0+t - 122 201,
. EB)? | 3
Hiy, = (ED) I72] [(f] —01)" —4faqr +2(fifs — g192) — M1Qs),
4M,
! Ed -".7 h
Hyy = —§|}3—| { (Q2 4 Q4) — 4— +i [(fl -9 = 2faq + 2f1f:;]},
i 2| h
Hyg = iﬁj,llb' [_AJI? + g1 (92 — fz)} :
where we have used that
Bt —9? (k1 + K2) + frg) (K2 — K1) .
Appendix II1
Simplified analytical results obtained for the 6:™s.
The 65T and F)"T (E, E,) are given in Egs. (20) and (25) respectively,
o =2(h-2), Y = —~ B zo—ti‘ and T =67 = 9T, for §=0,2,...17.
o —
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The 67D in Egs. (25) is the following

1 1, . !
TND _ B
9? 5 (ln ‘Umax lll $m)_§ (lnz Viin ]n Umax) e % [Iiﬂ _ Izn & I;l _ I:]
1 (1+ﬁ t_p*:t),t“ B (1 ﬁ ) —
+ o [nut i | =000 Ty | Tk i) |
ﬁN [ + - (I(l = .BN) l,+="“+‘m iy lll v - ﬂ(l == .HN) —_— (47)

The 6F fori =2,...,17 are:

93‘ - fli [1 :{3&“ a 1+12;a+ +n£1§ (I;- &g+ fin % )] + E{l+/3ngf)l(l + Bat)’

b = Ll % +%{L [%] —L[li—_ﬁ%J J’L[ll:ﬁf*J _L[lr;f"”’

6F = atl} —a”I; +In % ; g = % {[1 - (n.+_)2] IF-1- ((:._)2} Iy =+ 4‘5’3 } y

o “2((11}1;—;_))2(1”— + A1) ﬁ2(~(13"’;;—::))2(1++/31,) +2 [2+;J(1+ﬁ‘:; - ;"fﬁ‘;ﬁ)] I,

i =2 [911 % im;ﬁ(:; (BL + 1) —'11;0++;1: (BL + ISL)] , 0 =24+ (wo—a) Iy - (vo+a*)Lf],

: : ; T, AT w0ty @otat)’rf
0y =24E+2[6(E)-E)+8(GT-+G™)|L+2(G 12+G+I._,+)+2|pg|[ e 1rmE |

9;1;:1{2[(0)2—((#)2](a‘)%‘z @rY -+ f;i

1
]; 9?11:2(14—10?;’

B = lag, 6L, =0, 6L =2[(2-a"I7) (w—a")-(2-a" L) (yo+aT)],

B 2
0'{5 = 24F° 4+ 48E [ﬂ,’ (yo—a™) Iy — at (yo+at) IF] +2|p| {(yu —a )) I — (yo+a™) L;"] .

2 2 42 _ Jo=a)? - (yo + a*)’ -
0T, = 24F* (I, — 2) + 8 (ED 2 — 2E°%) I, + 4EB || [W (3L + 1;) - (BL + 1)
gL — 91 ssadl + ES + || The I™'s, in Eq. (47) are defined in terms of the Heaviside
. e “ T 7Eg function
I, I, I, Iy, and G are given by @ y ¥ G50
r) =
I, = —arctanhf3, I —=ln 31l
" Then fori=1,... 4
e Iy = ——2
P T a1 I M = LiaB[rad) + Lin®red 0 () + LicB (),
6T = =8 [QEai (yo £a*) |pa| (wo £ ai)g} where
~—— i I 3 . 7 :
(1 4807} (1+ Ba*) IlA‘-z.a;‘—‘L[a(lfm\)] _L[(‘(lfﬁN)]
= yih v,
'”rjr:lax =2 (E.z + Iﬁ-!l) (E o |£|) ) Uinin 1 max
7 + =l ',"f,ax — 1 UT-H ;
”“uimng{EE'z—lﬁﬂ (?]i|E2|€|—|I3'2|E|}- 2(1] ¥ i)
. = 4 + fn)
e A2 z 2 2 __ o 2 . = ™ o U[ngn —L a(]‘ N ]
a=M;y -H"-q", H =(pm—4), Iigz2n 3 L[(I(liﬁi\:)] [ o
4??12M§)1/2 2 _ 2 1, aa(l£py) 1 " "
Bn = (1 i » ¢=(n—p). + 5l — 5 (111 vt —In® ut
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+
T Umax =T Vmin ]
Licpc _L[a(liﬁN)] [a(l:i:ﬁN)
+
+Infa(1£8n)|In | max .
III].I\
alLa B a(l+pN)
ng,dAzL[(ﬁ )]_L[ =
Ymin Ton
% (In®v;, — In®vo)
2 -~ [a(l & ﬁN)]
. = —/— = L
Iag an 3 +L l:a (1+£B8n) N Ui

N élllz a(l :bﬁN)

1
3 (1“ ”max lll Umm) 4

Umax

U;;ax _ Un_xin
13(:.4(‘_1’[0(1:’:’3;\,)] L[a(l:i:,{J'N)l

max

+Inja(l £ Gn)|In

Ll

min

and the arguments of the Heaviside function are given by the
expressions

Taraz2 = —Tpi,p2 = Uuun a(l+ Bn),
r:sl.n-z = =il o = T’,_:;ax —a(l+ 8n),
Tas.at = —Tss, s = Umayx — a(1 £ On),
"Jf.-z_uq = =Tes.cas — Un_\in —a(l + ,BN),

The left (right) subindex in the left hand side (LHS) in the
former equations corresponds to the upper (lower) sign in
the right hand side (RHS) in the same equations. L () is the
Spence function. '

Appendix IV
The simplified coefficients N;’s are

EpB
2M,

Ny = —|ps| 2(E-E)RT

+(E+2E%) B+ (1-1y0) I”fjlﬁ

Nj=Nj=Ny= Ny = Njs =0,

. EfBm?
Ni=—"-/ Rt
3 jL{] R ?
- Ep
Ny = )Af [‘)E A EB (Eﬁ +4 |])>[J0 ] g
1

_(EB)’

Wl

N, = [ERT + 2E)R™],
' = | <2 [2m? + EE° (1 — Bzo)] RY
Ni = |p3] YA [2m® + EE) (1 — Bxo) 3

Efg

= — | 2FE + EY) Rt
Ng = = P2l 53~ (2B + E,)
v $(BB) .
Mo=-"3r R
32
Ni, = |ph] il (2E — E}) RT,
- ﬂJ[
EgB
Ni3 = — @[ ( ) (2RT -R7),
2
Nf:; = —| ’| R,
v /3
Mo 24,
P Ef
Ni; = |p2| =+ [ E + (1 —yo) |P2|ﬁ]
4M,
and
=1f £|a*.
Appendix V

The procedure to integrate Eq. (40) is the following:

B
z

B = RE(,:P)—R}}(U:/H zFIn
ZE=1

ag + bgz + s

dz.
ag + boz — s

Integrating by parts

.,k+l

ln Ia(} + boz + Sl

bovzg—l:tz y
az,
((l(} =+ bg:} o 2 V:2 -1

/ *In|ap + boz £ s|dz =

1 Yopht
_JL'Jr]./ V22 —

then
k1
By .. F ag + bz + s o _
R (&) = Friln Sy + I (z) — I (2),
where
I:E: (,) o i ;’]‘4*1 ,f 142 I
kA= k+1) 221 (Go+bo~ :t\/

1 /?*Hb W g o
k+1) " | (ao+boz)?—(2-1)|

1 / : [ 2(ag + boz)
k+1/) /2221 [(ao + boz)? — (z

Lo

] =
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To simplify
|
L= /
’ A +1/) /22 ( az? + bz + c) d=
1 2k+2 2(&0 + bgz) d-
k1) TP lat e
where
(ag + by2)* — (2% - 1)2 =az® + bz +g,
and
= (1;;-;—1), b = 2agpbg, C=a3+1.
Then
pl — gt
Ik (3} = wl [ B) - ﬁ
k+1) az?+bz+c s
2a0 / Zk+2 dz
k+1) az2+bz+c s’
where

-aP).

The z; and 2} are given in Egs. (43). Now we find that

azt +bz+c=a(z—z)(z

S.R.JUAREZ W. AND F. GUZMAN A.

and
2 1 b Q 1 d
1 = - —_— 0 o I
£ (2) k+lA:/[(u a%)zﬁg,]" 5
¥ ii/ By oo p) 1T et
k+1A, a at z—2P]" 8
To simplify we use
b
A. = (- 2P), (_° " _) —deis,,
a a
and
b[] p 1
(; ;Zzﬁ) = 55?1&2,
then
1 5 sB dz
T (= . t ht1 92
k(2) 1-:+1[(3,—: :P‘z)i' s
1 (g-)([..
I (z) = —— il
k ( ) ’,|A+1 B =
where
B
(k) k41 St St
D &) Sl — :
B (2) [(3,3) zP—z]

After performing several algebraic operations in order to get
simple integrals, we obtain that

iy T — [b" ! ]z*“i'f
k(2] k+1, a (:—zl)(z—ztB) S (%) Salfﬂ sB (zP)kH
U )= [——= e
+ 2 / g z :l k+l£ < T o< p T A
E+1. a (z—z)(z—2P) s k e
| _Z[*“!zt"st (z,)]z '
=0
Therefore
k41 :
RB (2) g ap + boz + v22 — 1 1 /[“t 2t SP (=) ’ ]dz L [i[s r-5P B)T] zk,rdz
C(z) = 1 == t2g 2 =
i k41 ”»0+b(1~4\f‘22—1 k+1 Zpe= zP—z 8 k+1 — . Z . s
Now
=/} _B
RTB = RB (2F ) RB (1) = gt ap +boz +vz? -1 " 1 5 :Hl/ 1 d:
k k / }.,-f-l (I0+b[)2:~ :2_1 . II 3218:‘4-,
2B k 3
1 g Bk+l/" 1 dz [ . B ]f‘ _rdz
= S i - — z —h Z 2 — g
Recalling that
dz 1 22 2
f_)(~)i/ - e In :
(2t — z)Vz2 =1 zi — -z
and
1 ZtZ —I:FS,J St
IaP) — 1) =5 In : ;
b(aP) = (1) = F s —
then
L Sk
3 {3B) zizg — 1F 508
REB=,:T(]“]“U+!7031 +S!|—1n|&‘0+hov, ‘ ,l.+1 r:f_ZtB
I %] d i b o d
o B/ _Bykt+1 t L az B [ B/.B ?.] / t :k—r'_z
k-l-l[st (zt) ,/z:lsz{’—z] k+1{§ gy —8¢ (zt) E s [’
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where

22 r
_;=]112B+SB,
[1 V-1 o+ o

= z dz B

— =5,

2
- (. z
Jzp=1 i

= 2dz  2BsP  In|zp +sp)
[1 VZZ-1 2 2
To consider carefully the divergences, we split terms in the
following way

i 1 k+1
TB 7B 4 T (z8)" " In|ao + bozf + sp|

A1 (P 17 P,
n
T i1 z— 2P
1 k i :‘E .
, B (.B k—r 2
- [ ) [T
r=0
where
1 k41 B B
TB =gl (ZP) [(ln |a0 +bozy — 54 l

B
e |

1 d
+s}3/ 5 :
3% 5 zt - Z

contains the divergent terms. After performing a subtle anal-
ysis for T (see next appendix) we obtain the following finite
result

1 k+1 2M, (E — E)
f zP In | —————~4B
& k+1 (=) ‘ EBM, "
As
ag + bqZ? + .s'? = 2.9?, i€ B < B,
then
RIB w01 T = )
A k+1%Y" EBM,
% zft+l g #aP —1 Fab
k+1 zp — 2P

k B
1 ~[e.r_BBy] [ k-rdz
—k+l{zo[5f~g_51 (Zt.)]/::I*- :‘}

We use now the following relation to simplify
zizp — 1+ 58P _(Em—E)M,
2 — 28 M:Ej3

Finally

: 1 : k+1
TB :
R = i [zti“ - (ZtB) ]TOB

1 - B /. B\T #t k dz
“mr |l e] [T

where
Ml (Em i E)
B a8 o I
Ty = EBM, -
£ = M2 - M3 +m?
S S 2M, '

The explicit values for R 2, in Eq. (41) for k = 0, 1,2 are:

R3S = A TF — 4 i |z}:j %+ G,B| g
: 2 1
[ - ()] 78 - 8, o7

TB _
R ° =

[N ]

(seze — sB28) In |28 + P,

- % (s,zf = 3? (ch)?' g %) ln|z£3 +s?|,

where T2 and E,,,, are given in Egs. (42), and s, z, 5P, zP,
are given in Egs. (43), and

8_  2M;(Em—-E)EB

Az:Z!_ﬂ—A{‘Jz(l_zE m2 3
M7 (1- 3 + )
2
Ae=si-sf=22 114 =
M My (1_ i_f"'r\r_}i")
Appendix VI
1 k41
Boe  ° faB : -
Tp = E+1 (=) :h_f?[a In|ag + boz — s
: e zpz—1F sps
+ - — (5 li g i s S
et (60 i (m[25525)),
due to
dz
I’) z :/
b (2 —2#r—1
. P17y (P) -1V -1
+ = In -
(28] -1 zy —Z
Then
1 EEL 4 ag +bpz — s
TB‘:-—_ :B 0
D By 1 (2¢) :1_1’nle In .
1

- — (g?)k+l :njgl’ (]n |z§3z -1 +SP‘:1) ;
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and
1 k ) boz —
TB:——(zP) +l Il 1 .ao—-'-o.g
k=1 z—zP ZP -z
1 k+1 2
B B
_m(zt) ln’2(5t)"
Here we apply L'Hospital rule
s boz—5| _|bo—zP/sB| |2P — bosP
z— :} ‘tB =g - -1 - S? ’

and substitute

28 — bys? = &M
E(3M,

to obtain the following result

; 1 k+1. |2M; (B — E)
TB e ZB 1 m B
p=—gyyl&) I EBM, t
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