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The ecological efficiency of a thermal finite time engine
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Within the framework of the finite time thermodynamics, the efficiency of the Curzon and Ahlborn cycle with finite time adiabats is found
using the ecological function instead of the power as maximization criterion. It is shown that the ecological efficiency is given by a power
series expansion in the parameter A ~ 1/(ln Vinax — In Vinin), where Vinax and Vigin are the maximum and the minimum volumes spanned
by the cycle, respectively. Itis shown that when using instantaneous adiabats the obtained efficiency is the zero order term of the power series
in A and that it represents an upper bound on the possible value of the ecological efficiency.

Kevwords:

En el esquema de la termodindmica de tiempos finitos, se encuentra la eficiencia del ciclo de Curzon y Ahlborn con adiabatas no instantineas
usando la funcion ecolégica en vez de la potencia como criterio de maximizacion. Se muestra que la eficiencia ecoldgica se expresa como
una serie de potencias en el parimetro A ~ 1/(In Vinax — In Vinin ). en donde Vinax ¥ Vinin representan el volumen maximo y el volumen

minimo subtendido por el ciclo, respectivamente. Se muestra que cuando se caleula la eficiencia ecoldgica usando adiabatas instantdneas, ésta
constituye el término de orden cero de la serie en potencias de A y que constituye una cota superior para el valor de la eficiencia ecolégica.

Descriptores:

PACS: 44.6.+k; 44.90.4+c

1. Introduction

Endoreversible finite-time thermodynamics (EFTT) is an ex- o

tension of classical equilibrium thermodynamics for thermal r : T 2
engines that includes time dependence of the interaction pro-
cesses with the external sources while excluding irreversible
effects within the working substance [1,2]. The exclusion
ol intrinsec irreversible effects in the substance, or endore-
versible hypothesis, is considered for cases in which the in-
ternal relaxation times of the working substance are negligi- .
bly short compared to the total time of the cycle. The Curzon i 0,

and Alhborn (CA) engine [3] (see Fig. 1) is a Carnot-type T
cycle, in which there is no thermal equilibrium between the
working fluid and the reservoirs at the isothermal branches
of the cycle and in which the adiabatic branches arc taken as
instantaneuos. The CA cycle working at the maximum power
regime has been shown to have an efficiency given by

(1) lute temperature T plane. @1 represents absorbed heat at absolute
temperature T and Q2 rejected heat at absolute temperature Ts.

T FIGURE 1. Curzon and Ahlborn cycle in the entropy S and abso-
Nca = L= T_ B
1

where 15 and T are the absolute temperatures of the cold
and hot reservoirs respectively. In contrast, the efficiency of

the zero power output engine, the Carnot cycle, is given by where the 75 and 17 are the absolute temperatures of the
. working substance at the isothermal branches (T%; < T7).
Ne =1 - T; ) (2y  Naoltice that since by definition iy = 1 — Q»/Q;, the endore-

Iy versibility condition namely (), /T = (/T makes Eq. (2)



THE ECOLOGICAL EFFICIENCY OF A THERMAL FINITE TIME ENGINE 53

aplicable to any endoreversible cycle. Upon calling

=
zZ

T2
i 3
T: (3)

we have that
n=1-z; 4

this expression will be shown itself useful in what follows.
The Carnot efficiency is recovered from Eq. (4) because for
a Carnot cycle, To/Ty = T, /Ty The Curzon and Ahlborn
efficiency is recovered because in this case, z = v/T3/T1.
For endoreversible cycles with two isothermal branches, one
has z = z(T3/T1).

Since the publication of the Curzon and Ahlborn paper,
an extensive work has been done in the field of the EFTT. To
obtain Eq. (1) some authors use the formalism of differential
and variational calculus [4-6]. Others use the formalism of
the optimal control theory [7-11].

Angulo-Brown [12, 13] has advanced an optimization cri-
terion for the CA cycle that combines the power output of the
cycle P and the total entropy production o; it has been called
ecological function and is defined as follows:

E=P-"Ta. (5)

Upon operation of a CA cycle, entropy is produced which
depends on the temperature differences between the working
substance and the reservoirs at the isothermal branches [5].
The use of the power ouput as an optimization criterion ig-
nores the entropy production. On the other hand, it is only
for the Carnot cycle that the entropy production is zero, but
at the price of having zero power output. As an optimization
criterion the function F represents a compromise o obtain
the greatest possible power with the least entropy produc-
tion. While a number of different optimization criteria might
be proposed, the ecological function represents a first step
towards obtaining a criterion to evaluate the performance of
thermal plants wich will include ecological considerations,
i.e. considerations concerning the thermodynamic degrada-
tion of the environment.

It has been shown [12] that for instantaneous adiabats,
E = E(T;/Ty) is a convex function with a single maximum
that leads to the following efficiency in terms of 3 = T5 /17
14 28+ (3/2)v2(8 + p*)'/?

1+ 38+ 2V2(8 + 52)1/2

The looked for compromise has been achieved inasmuch as

the behavior of the 1. versus /3 is almost coincident with the
semisum [12],

(6)

e = Mlc

Ns = 5(Tc + Mea)- (7

Gutkowics-Krusin, Procaccia, and Ross [14] have shown, by
explicitely taking into consideration the time for all and each
one of the branches of the CA cycle in terms of thermody-
namic properties, that 7., has an upper bound in the limit
when V3/V} — oo. Itis the purpose of the present paper to
exhibit an analogous result for the ecological efficiency.

2. The Gutkowics-Krusin, Procaccia, and Ross
model

To make this paper self-contained we include in this section
a review of some results from Ref. 14 that we need for our
present purposes. In this model, the authors consider the ideal
and a van der Waals gas as a working substance in a cylinder
with a piston engine for which they assume the piston has
mass; this fact has no influence on the endoreversible charac-
ter of the CA cycle.

The power, defined by the quotient of the total work out-
put W and the total time 1, is found to be

. Vi 15
(Iy — T._,')(ln — +vln —

p= =2 L L ®
h f1w| B 1 1’1 Tl‘ L T.; .
"W T-1 I-T

Here, « denotes the thermal conductivity, v = 1/(y — 1)
where ~ denotes the quotient of specific heats of the work-
ing substance, ¥ = ¢,/cy; t.. is the cycle period and the
adiabatic branches are not instantaneous. In fact,

te =1 + 1o +1t3 + 1ty (9)

where the times for the isothermal branches have been found
to be,

Vo
t; = filn—= and
Vi

V.
ty = faln— (10)
Vi

and the times for the adiabatic branches have been assumed
to be

i I/r i
ts =5 11‘1—,3 and t4 :—fgln—,l, B
I’g I—';;
with
L R 17 R 17
_f] — 5 Tl ~ T; and f-_) = X?;;—:'—T; (12)

R is the general constant of gases. The heat flows, ; have
been assumed to be given by Newton’s law of heat transfer,
namely,

dQ;

dt =a(Ty - T7),

t = 1.2 (13)

The power output, Eq. (8) is rewritten in terms of the vari-
ables v = T /T, and = = T, /T); the ensuing function
P'= Pz z)ynamely;

Vi
ol (1—3)(![1ﬁ+1'1113)
- In% 1 z

1*J'+:;1:A;;3

(14)
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leads through the conditions for the maximum, namely
JdP/0x = 0and dP/0z = 0, to
z+ 0
2

I =

(8

and to
Ml=2z)—z(1+AIn2)])(z = B)(zz - B) =
2(1—x)(z=1)(1+ AXln2)3,

where A represents the external parameter,

v

A

J (15)

¥
23
In Vi

meaning that

Prax = Pmax (1'(3): ’:) .

That is, Pax is @ projection on the (z, P) plane. It is also
found that at the maximum power condition z is given by a
power series in A:

2= B+ 31— VB)*A
2

(1-8) [(i% = mﬁ} A2+ O(X%).
(16)

Upon substituing Eq. (16) in Eq. (4) and because the terms in
the series (16) are positive, an upper bound for the efficiency
1), is obtained when A = 0, i.e., when the machine size goes
to infinity, it is the following one:

+

W=

M = == ;(/\ = O) = MNca-

In the next section we construct the equation analogous to
(16) for the ecological function following the Gutkowics-
Krusin, Procaccia, and Ross model outlined here.

3. The ecological function

In the ecological function (5), we take P from Eq. (8) and
the entropy production term o as o = AS/t,., [5], where
AS represents the entropy change caused at the isothermal
branches because of the heat transfers Eq. (13):

1 Q2
= R WL 17
7 Lot (Tz Ty ) e

Here, {,., is given by Egs. (9)—(12). In terms of the variables
(2:, z,3) o becomes

B £(1+,\1nz)(z—ﬂ)
(TfaTz - - (18)

1—=

zox — 3

where thanks to the condition of endoreversibility, we
have used the thermostatic results V,/Vy = V5/Vy and

0.004

0.002

0065 0.7

0002

-0.004

FIGURE 2.. Pou.fer r'unctiurj jT,( =), entropy production ﬁi—(z) and
the ecological function f—fr—l(*) see Eqgs. (14), (18) and (19) respec-
tively. Here T) = 400K, 3 = 0.75and A = 0.

Vo = Va (T /T;)" and where ) is given by Eq. (15). With
Eqgs. (18) and (8) the expression for the ecological function
becomes

(14+ Alnz)(1+ 5 - 22)
1 = )

+
zx — 3

Figure 2 shows the behaviorof P/aTy, o/aT; and E/aT) in
the x constant plane, at A = 0 and /# a given constant value. It
is apparent that the maximum power output is achieved with
high production of entropy, it is also apparent that zero en-
tropy production is achieved with zero power output, while
the function E represents the maximum possible power out-
put with the minimum possible entropy production.

Upon maximizing the two variables function £ =
E(x,z) ( 3 defined positive and A defined semipositive, be-
ing external parameteres), we obtain for dFE/dz = 0 and
8E/dz =0,

E(z,2) = aTy (19)

1-=x

g e BEE (20)

-+

(]

and the following relation beween the variables z and x:

(2(1 + Anz)z — A1 + 8 — 22)] (z — B)(2x — B)
=(1+8-22)(1+Anz)(1-2)8z, (1)

respectively.

The substitution of z in Eq. (21) gives the equation that z
obeys at the maximum of the ecological function, henceforth
we shall denote it by the capital letter Z:

21+ AInZ)Z - A1+ 8-22)](Z-0)
=(1+8-22)1+AInZ)3. (22)
If we suppose that Z = Z() is given by a power expansion
Z =bo+bid + 02X + 03N + (23)

we find, upon taking the implicit succesive derivatives of Z
with respect to A in Eq.(22) and equating them with the
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b

TABLE 1. Comparison of various efficiencies for some plants. nc Carnot's, Eq. (2); 17ca Curzon and Ahlborn’s, Eq. (1); the semisum 7s,
Eq. (7); the ecological efficiency, ngi, Eq. (27) and the observed one 7obs.

Power Plant T:(K) Ti(K) nc Nca s Mgi Tobs

West Thurrock 1962 conventional coal fired steam plant 208 838 0.6444 0403367 05240 0.5090  0.3600
Lardarello (Italy) geothermal steam plant 353 523 03250  0.1784 0.2517 02482  0.1600
Central steam power stations UK, 19361940 298 698 0.5731  0.3466 0.4598  0.4481  0.2800
Steam power plant USA 1956 298 923 0.6771  0.4318 0.5545  0.5379  0.4000
Combined-cycle (steam and mercury) USA plant 1949 298 753 06194  0.3831 0.5012  0.4874  0.3400
Doel 4 Belgium 283 56 0.5000  0.2929 0.3964 03876  0.3500

coefficients b; in Eq. (23), that,

ZIN) = \/%(;i+,fi3){1+ [%(1 +36),/ﬁ - 1} b Y

[%(1+35}

g+ [3?

Furthermore, using (3), we can write the efficiency as a power
series in A,

Ny = 1= Z(}). (25)

In the particular case when A = 0 we find the value

SA0+5) 6)

and the corresponding value for the efficiency

Yavp, an

i =1-2(A=0)=1- VB3

which is the maximum possible one, since all the terms in
Eq. (24) are positive. From the expressions given here for
the different efficiencies, Eq. (3), with z = /T3/T\, for
Neas Eq. (7) for ns, and Eq. (27) for the maximum ecolog-
ical efficency 7)44, it is easy to prove that 1 > 1,; and that
Ngi > Nea. Table I shows a comparison between 11c, e, 7)s
and 1, for different heat engines taken from Ref. 12. It is
seen that ¢, < 17¢: < 75 as expected.

We must point out that the efficiencies n;; given in Eq. (6)
and n,; given in Eq. (27), both calculated at the maximum of
the ecological function E, are the same function of /3 as can
be seen upon substituting . = 1 — 3 in Eq. (6) and taking
out the common factor \/1/2(3 + 32) in the numerator of
the fraction. Thus we find that in the same way as it happens
with the efficiency at maximum power [14], the efficiency at
maximum ecological function, calculated with the assump-
tion of instantancous adiabats corresponds to the efficiency
at order A = 0, i.e., corresponds to an infinite machine size.

Notice that the previous calculations for an ideal gas,
can be made for a different equation of state; in particular,
for a van der Waals gas, the equations replacing (8), (18)

LI 2w e+m | |1+38-4/28+8) |22 +000)). @4
TV ErmE YTV 2 '

and (19) have the same form with V' replaced by V — b
and with the parameter A Eq. (15), replaced by A, =
v/In[(Vz — b)/(Vi — )], here b is the van der Waals con-
stant that corrects the volume and depends on the substance.
The relevant equations for the van der Waals gas are the fol-

lowing:
= — L2 n v In
Pe 5% x ! - Vi—0b T
e g Jam S ‘
n Vi—=10 T — T]* T; T
T] (1 + A'u'PV 1112')(2 - ‘H)
aT = q— :
Iy 1 z
l—x zaz-—f
Aow In z _
Elx,z) =l (1+Awlnz)(1+5 22)_
1 z
l—z zxr—-p

The time associated to the adiabatic branches is a character-
istic that depends on the particulars of the engine, thus if we
generalize the time of the cycle by taking t,,, = t; + kt2 +
t3 + kty, with k a real number, we allow the time of the adi-
abatic branches to be varied as we vary the value of k; with
this modification we find the same results (21) and (22) with
A = (1 — k)X instead of A and Eq. (24) modified in the
following manner:

Zi(A) =3B+ B2) [L+ k(DA +022% + )] . (28)

4. Conclusions

We have shown that the ecological efficiency 7,(A) given
in Eq. (25) with Eq. (24) or Eq. (28), which is obtained by
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considering a general finite time dependency of the adiabats
for ideal or van der Waals gases in a Curzon and Ahlborn
machine can be written as a power series in the parame-
ter A = v/(InVy — InV;), Eq. (15). This parameter repre-
sents the maximum distance in volume that the cycle spans.
We have found that and upper bound for the ecological ef-
ficiency occurs when A = 0, i.e.,, when V3/V; — oo, or
in words when the machine size is infinite. The maximum
value attainable by the ecological efficiency is the one found
when one assumes instantaneous adiabats. The ecological ef-
ficiency then satisfies the same mathematical properties that
the Curzon and Ahlborn efficiency 7.4, satisfies [14].

Although the 7)., compares better with observed data,
see Table I, the ecological efficiency could be considered as
a goal towards which new and future plants should operate,
since it takes into account a compromise between power out-
put and degradation of the environment.
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