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The main properties of deformed sodium clusters in momentum space have been analyzed in the framework of the selfconsistent Kohn-
Sham formalism using a spheroidal jellium configuration. Deformation effects in r space have been compared with those in k space for both
global and single-particle distributions. In momentum space, deformation has more effect in single-particle distributions and its behavior is a

signature of the admixture of various [-waves in each deformed orbital.

Keywords: Atomic clusters; electronic structure

Mediante el formalismo de Kohn-Sham autoconsistente y usando un

a configuracidn de jellium esferoidal se han analizado las principales

propiedades de los agregados de sodio deformados en el espacio de momentos. Los efectos de la deformacién en el espacio r se han
comparado con los correspondientes en el espacio k, tanto para la distribucion global como para la de particula simple. En el espacio de
momentos, la deformacion tiene un efecto mayor en las distribuciones de particula simple y su comportamiento es una indicacién de la

mezcla de varias ondas [ en cada orbital deformado.

Descriptores: Agregados atémicos; estructura electrénica

PACS: 71.24.4q; 61.46.4+w; 36.40.-c; 31.15.Ew

1. Introduction

There are clear experimental evidences that metal clusters
with partially filled electronic shells break spherical sym-
metry and become deformed [1, 2]. Deformation effects can
be seen in the behavior of electron affinities, ionization po-
tentials and in the double structure of the resonance peak
of the photoabsortion spectra [3-5]. The energy density

functional formalism has given reasonable predictions of

many experimental properties for deformed sodium clus-
ters in 1 space [6-9]. Predictions in % space have received
less attention, even though electronic momentum distribu-
tions have been recently measured in other systems [10], like
fullerenes [11] and noble gases [12], and provide valuable in-
formation for the correlation energy of the electron gas [13].

Recently, the global properties in momentum space
for spherical and deformed Na clusters have been ana-
Iyzed [14-16] and, in particular, the effect of the ionic
background deformation in the overall momentum distri-
bution [16] has been studied. Our previous work [15, 16]
was based on the selfconsistent Kohn-Sham formalism with
a spheroidal jellium configuration, a realistic manageable
method to treat these complex systems.

In principle, the momentum distributions of the valence
clectrons in each individual shell could be mapped out by co-
incidence electron knock-out experiments, in a way similar

to what is done in other microscopic systems [17]. It is there-
fore interesting to know how these individual momentum dis-
tributions may look like depending on the global shape of the
cluster. With this view in mind we examine here the momen-
tum distributions of the outermost shells in various sodium
clusters following the same approximation as in our previous
work.

2. Formalism

We assume that the main properties of the ground state of
sodium clusters can be understood from the selfconsistent
solution of the Kohn-Sham equations obtained from an en-
ergy density functional (Hartree atomic units have been used
throughout the text),
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In our results the exchange correlation potential
Vie(n(7)) is taken in the local density approximation, and
for simplicity we have used the Wigner approach for the cor-
relation part. The ionic background Ve (7) is modelled as in
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Refs. 8 and 16 using an axially-symmetric jellium with con-
stant volume. We have solved the Kohn-Sham equations in
cylindrical coordinates. The ground state density n () of Na
clusters is determined by requiring that the ionic background
deformation minimizes the total energy of the system. As
shown in Ref. 16, an equivalent way is to search for the con-
figuration that gives a null value of the quadrupole moment
in k space.

The solution of the Kohn-Sham equations provides us the
single-particle wave function for each j-orbital {p;(p,z2)},
and the corresponding eigenenergies. Hence, the single-
particle wave function in momentum space, @; (k,, k. ), is the
Fourier transform of ¢; (p, 2).

The [ angular momentum component for a single-particle
orbital is obtained by expanding ¢;(p, z) into eigenfunctions
of a spherical harmonic-oscillator (HO) potential

lpi(py2)e™?) =Y Culum(r)Yim(6,8)), ()

ni

where u,, () are the HO radial wave functions and C,; the
corresponding overlap coefficients,

Cu = (Tlnl(r)}fim (01 é)l‘p] (,0, :)eimd:). (3)

The angular momentum [ in (2) is restricted to even or odd
values according to the parity of the state.

The | component in & space for a single-particle orbital
(7) is then given by

nt (k) = Z Gt (Rt (k) (4)

nn'

where 11, (k) is the Fourier transform of the corresponding
wave function in r space, wuy(r), and the single-particle mo-
mentum distribution of the single-particle orbital is

nd(k) = S nf (k). (5)
I

The strength of the [-wave component in a given Kohn-Sham
orbital is

njm = Z |G- (6)

These [-wave strengths allow us to analyze the relation be-

tween global deformation and the admixture of different I-

waves for each orbital. Normalization of the single-particle
Fregars > (1) _

orbitals implies that }~, n,”’ = 1.

3. Results

We will concentrate on those clusters containing 22, 24, and
42 atoms, which are clearly deformed [6-8, 15, 16], and com-
pare with the predictions obtained for magic spherical clus-
ters Nasg and Nayg, with filled electronic shells.

With the aim to analyze the effect of deformation on
the single-particle distribution, we have compared the single-
particle results of Nayg (spherical) with those of Naj, and
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FIGURE 1. Single-particle density of the orbital 0% (1D) for Nazo,
Nazz, and Nag, in a) r and b) k space.

Nayy, as well as the results of Nayg (spherical) with those of
Nays, in 7 and in k spaces. The single-particle orbitals of the
spheroidal deformed mean field (Nass, Nasy, and Nayy) are
characterized by the z-component of the angular momentum,
m, and by the parity, w. Different states with the same m™
values are distinguished by their dominant spherical compo-
nent (nl).

We have analyzed the electronic distribution in ¢ and
- spaces for each single-particle orbital. Each specific
deformed orbital has its peculiarities, but for a given
level m™(nl) we observe the same qualitative behavior in
Nazp_22-24 as in Nayo—_42. As an example we show in
Figs. lacand 1b the spherically averaged results for the orbital
0 (1D) of Nasg_22_24 in 7 and k spaces. The main features
concerning the differences between spherical and deformed
clusters can be understood from the content of each I com-
ponent (6) in the orbital. As it is shown in Table I, increasing
deformation generates a depletion of the / dominant compo-
nent and an enlargement of the components with /" # [. In
particular the bump at the origin in Figs. la and b comes
from the contribution of the S-waves, whose importance in-
creases with deformation. The shift of the peak maximum
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TABLE . I-wave contribution to the single-particle momentum dis-
tribution of the orbital 0" (1D) for Nasg, Naga, and Nagy.
&= { =32 1=+
Nagg 0 1 0
Nagzz 0.121 0.866 0.009
Nagy 0.187 0.784 0.025
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FIGURE 2.1 = 2 component of the orbital 0" (1) for Naag, Nags,
and Nazy ina) r and b) k space .

shown in these figures (to the right in r space and to the left
in k space) is due to the difference of the | = 2 component
between the spherical cluster and the deformed one (see Figs.
2a and 2b). Notice that deformation decreases the maximum
value of the [ = 2 component in » space, whereas this maxi-
mum value increases in k space for the same component. For
this orbital 0% (1D) the increasing of the deformation tends
to increase n(k) at small k values and to reduce its tail at high
momentum, conversely to what happens in r space where
tails increase with deformation. This feature can be under-
stood heuristically from the Heisenberg uncertainty principle,

Vi i) ~ 1.

TABLE I1. l-wave contribution to the single-particle momentum
distribution of the orbital 0*(25) for Nago and Nays.

NEL:U | 0 0
Nayo 0.755 0.232 0.012
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FIGURE 3. Single-particle radial density of the orbital 07 (2.5) for
Nayo. and Nays in a) r and b) k space.

As another example of deformation effects on the single-
particle distributions, Figs. 3a and 3b and Table II show the
pertinent analysis for the 0% (25) orbital of Nayg_42 in 1 and
k space. In this case the different value at the origin comes
from the difference in the | = 0 projected component be-
tween the spherical (Nayg) and the deformed cluster (Nay»).
For this orbital, and contrary to what we have discussed about
the orbital 0T (1D), an increasing deformation gives larger
tails in momentum space and, consequently, reduces the ra-
dial density at large distances in r space. In Nays the admix-
ture between [ = 0 and [ = 2 projected components (Ta-
ble II) is greater than for Nass and Na,y (see Table I) accord-
ing to the larger value of the global deformation parameter in
7 space [16].
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FIGURE 4. Overall a) density in r space in the plane 2 = 0 and b)
momentum distribution in the plane k. = 0 for Naz2 normalized
to unity.

Thus, individual shells show important differences de-
pending on the deformation of the cluster both in r space
and in & space. This is in contrast with the behavior found for
overall momentum distributions

n(k) = na(k)Pr(f). (7)
)

The latter together with the overall density in 7 space are
shown for Nass in Figs. 4. n(r") is clearly deformed but n(i:"}
shows only a small deformation that mainly comes from the
contribution of the A = 4 polar component. Each A-polar
component 1y (k) allows to obtain a A-polar momentum as a
measure of deformation

\ 1 '27 L ' 42 “
Gi= i (m> / k15 ny (k) dk. (8)

Analogously, ny(r) and () are defined in r space. As it is
clearly shown in Figs. 5a and 5b, na(r) leads a strong peak
at the cluster surface that integrates to give a quite sizeable
quadrupole moment, while in % space n2 (k) has a small os-
cillation that integrates to zero. More details can be found in
Tables I and I1 of Ref. 15. The A = 4 polar component gives
the main contribution at the surface of r space and is respon-
sible for the small deformation in k space. Nevertheless, due
to its small value the main properties of the global momen-
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FIGURE 5. Monopole component of a) the electronic density in r
space and b) the global momentum distribution for Naso, Nazz,
and Nasa. a) n2 () 7' /N and ng (r)r®/N % 1072 vs. 7 and b)
(n2 (k) k*/N) and (n4 (k) k°/N) vs. k for Nayz are shown in the
inset.

tum distribution can be obtained from its monopole compo-
nent np(k), and can be understood on the basis of the Slater
approach used for spherical clusters [15]. As an example,
Figs. 5a and 5b also show the monopole components of the
electronic distributions in 7 and k spaces for Nasg, Nags, and
Nasy. In both figures, the three profiles are similar and one
verifies that shell effects diminish with deformation. Accord-
ing to the Slater approach [15] the increase of the surface
thickness in r space implies the increase of ng (k) at small k
values. Nevertheless this effect is compensated by the differ-
ent values of the number of particles N in the normalization
constant of Naog 22 24.

4. Conclusions

We have compared the main properties of spheroidal de-
formed clusters in r and A spaces using the Kohn-Sham for-
malism. In spite of the fact that the global electronic distri-
bution for clusters with unfilled electronic shells is clearly
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deformed in r space, in k space the global momentum distri-
bution is basically reproduced by its monopole component,
and its main features can be understood from the Slater ap-
proach as in the case of spherical clusters.

In k space deformation effects can be mostly seen in the
single-particle distributions. There is not a general rule to
characterize the deformation effects in single-particle orbitals
since they are specific to each orbital. The differences be-
tween spherical and deformed orbitals are signatures of the

admixtures of different [-components caused by the defor-
mation of the mean field, and are present both in r and in
k spaces. The qualitative behavior in r and k spaces can be
related using the Heisenberg uncertainty principle.
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