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The MIC-Kepler problem with positive energy and the 4D harmonic oscillator
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It is shown that the extended Kustaanheimo-Stfcfcl transformation, which relates the four-dimensional isotropic harmonic oscillator to the
Kepler problem with a magnetic monopole field and a centrifugal potential (MIC-Kepler problem), can be derived in an elementary way
noting that the Hamilton-Jacobi, or the Schridinger, equation for the oscillator in terms of polar coordinates is essentially that for the MIC-
Kepler problem in parabolic coordinates. Making use of this fact, the solution of the MIC-Kepler problem with positive energy is obtained. It
is also shown that the MIC-Kepler problem is obtained from the four-dimensional harmonic oscillator in classical mechanics by a dimensional
reduction analogous to the one employed in the Kaluza-Klein theory.
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Se muestra que la transformacion de Kustaanheimo-Stiefel extendida, la cual relaciona el oscilador arménico isétropo en cuatro dimensiones
y el problema de Kepler con el campo de un monopolo magnético y un potencial centrifugo (problema de MIC-Kepler), puede derivarse en
una forma elemental notando que la ecuacién de Hamilton-Jacobi, o de Schrédinger, para el oscilador en términos de coordenadas polares es
esencialmente la del problema de MIC-Kepler en coordenadas parabélicas. Usando este hecho, se obtiene la solucion del problema de MIC-
Kepler con energia positiva. Se muestra también que el problema de MIC-Kepler se obtiene del oscilador arménico en cuatro dimensiones

por una reduccién dimensional andloga a la empleada en la teoria de Kaluza-Klein.

Descriptores: Problema de MIC-Kepler; transformacién de Kustaanheimo-Stiefel; monopolo magnético; reduccién dimensional
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1. Introduction

The Kepler problem in n 4+ 1 dimensions can be related to
an isotropic harmonic oscillator in 2n dimensions, for n =
1.2, 4and 8 (see, e.g., Ref. 1 and the references cited therein).
In the most relevant case, corresponding to the Kepler prob-
lem in three dimensions, the transformation employed to
relate this problem with a four-dimensional (4D) isotropic
harmonic oscillator (the Kustaanheimo-Stiefel transforma-
tion [2]) can be extended in such a way that, in the same
manner, the 4D harmonic oscillator is related to the so-called
MIC-Kepler problem where, in addition to the 1/r potential
there is a magnetic monopole field and a centrifugal poten-
tial (see Ref. 3 and the references cited therein). As shown
in Ref. 4, if the magnetic charge and the strength of the cen-
trifugal potential are suitably related, the orbits are plane, but
the center of force is not contained in the plane of the orbit.
Since the orbits of the harmonic oscillator are bounded,
the Kustaanheimo-Stiefel (KS) transformation only repro-
duces the bounded motion of the MIC-Kepler problem, i.c.,
the motion with negative energy; however, if the 4D har-
monic oscillator has an imaginary frequency, it can be related
to the MIC-Kepler problem with positive energy [3]. (The
MIC-Kepler problem with zero energy is related in this way
with the 4D harmonic oscillator of zero frequency, i.e., a free
particle in four dimensions [3].) Moreover, since the energy

of a “harmonic oscillator” with imaginary frequency can be
any real number, this system can be related to the MIC-Kepler
where the 1/r potential is attractive, repulsive or absent. (By
contrast, if the frequency is real, the energy of the oscillator
cannot be negative and only an attractive 1/r potential can be
reproduced in this way.)

In this paper we show that the extended KS transfor-
mation mentioned above can be derived in an elementary
way using polar coordinates in the Hamilton-Jacobi (or
the Schrodinger) equation for the 4D harmonic oscillator,
which are identified with parabolic coordinates in the three-
dimensional space. Making use of this transformation we
obtain the solution of the MIC-Kepler problem in the case
where the energy is positive, which was not considered in
Ref. 3. We also show that the MIC-Kepler problem can be
obtained from the 4D harmonic oscillator in classical me-
chanics by means of a dimensional reduction analogous to
that employed in the Kaluza-Klein theory.

2. Derivation of the KS transformation in clas-
sical mechanics

We start by considering the Hamilton-Jacobi (HJ) equation
(for the Hamilton characteristic function) corresponding to
the 4D “harmonic oscillator” with imaginary frequency in
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cartesian coordinates

1 (eﬂ)+ G_W)+(6_W)+ ?yz)
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Qw (ui +us +ui+ul)=E, (1)
with w and E real. (By abuse of language, we call this sys-
tem “oscillator”, even though there is no oscillatory motion.)
Replacing the pairs of cartesian coordinates (u;,us) and
(u3,u4) by the corresponding polar coordinates (p, , 6, ) and
(p2,62), respectively (e.g., u; = p; cosfy, us = p; sinf,),
from Eq. (1) we have
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As will be shown below, it is convenient to make use of the
new variables

(KR +p3)=E. 2

w=46;, ¢=0-6. (3)

Then, dividing Eq. (2) by 4(p? + p2) one finds that
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Since w is an ignorable coordinate, we look for solutions
of Eq. (4) of the form

W(p1,pa, ¢, w) = W(py,pa, ¢) + Kw, (5)

where I\ is some constant. Substituting Eq. (5) into Eq. (4)
one obtains
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When the separation constant K is equal to zero, Eq. (6) re-
duces to
E Muw?
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provided that (py, p2, ¢) are parabolic coordinates in three-
dimensional space, related to the cartesian coordinates
(z,y,z) by means of

T =2p1pacosd, y=2ppasing, z=pi-pl (8)

In effect, from Eqgs. (8) it follows that
(dz)? + (dy)* + (d2)* =
4ot + P3)[(dp1)* + (dp2)*] + 4p3p3(d9)? (9)

and

Pzt +2= (P2 + p3)2. (10)
Equation (7) is the HJ equation for a particle with positive
energy

Muw?
£ =
8

with the potential —E/(4r), which may be attractive (if
E > 0) or repulsive (if E < 0). If E = 0, the particle is
free.

Similarly, when K is different from zero, Eq. (6) can be
written as

1 — g .\2 K? E MdJ?
e _A _——_— =
3 (TP -2A) tam e =T
which is the HJ equation for a particle with electric charge ¢

in the magnetic field corresponding to the vector potential A
given by

(11)

(12)

Kp3 K (vdy — ydx)
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A .dr = . (13)
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and the central potential

E Iz
Vir)=—-——+ —.
(r) 4y K 8Mr2
The magnetic ficld generated by the vector potential (13) is
that of a magnetic monopole of charge

Ke

2’

(14)

(15)

g’:

placed at the origin. Equation (12) is the HJ equation for the
MIC-Kepler problem with positive energy.
From Eqgs. (3) and (8) one obtains

T = 2pyps(cos by coshs + sinb; sinby)

= 2(uyuz + uauy), (16)
Yy = 2p1p2(cost, sinfy — sinf; cosés)

= 2(ujug — usug), (17
s=R-dedrdodoud  (®)
w = arctan(us /u,), (19)
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which are the transformation formulas employed in Ref. 3;
Egs. (16)-(18) correspond to the original KS transforma-
tion [2].

As in Ref. 3, the orbits of the MIC-Kepler problem
can be obtained from those of the 4D harmonic oscillator.
By suitably choosing the coordinate axes, we can assume
that the motion of the 4D harmonic oscillator is given by

u; = aj;coshwt, us = assinhwt, uz = passinhwi,
uy = pap coshwt, where ay, az and p are arbitrary con-
stants. Then,
2
Mw 2

B e

(1+ p®)(a3 — a}) (20)

2

and from Eq. (5) it follows that ' = dW /0w = p,, (the
momentum conjugate to w); hence, using Eqgs. (3),

c') 3u 6‘::,; 8u4
K *Pw~Pla =, 26 +P3a +IJ4%
= Uip2 — UzpP1 + UzpPy — u4P3
= Mw(1 — p?)a,az. 21)

Therefore, || = 1 corresponds to ' = 0 (in which case
the monopole field and the centrifugal potential are absent).
Making use now of Eqgs. (16)-(18) one obtains

T = 2uajas sinh(2wt),

y = p[(a? — a?) cosh(2wt) + a? + al),

1 . : : . ;
5(1 — u?)[(a? + a2) cosh(2wt) + a} — a3], (22)

which, if |p| # 1, are parametric equations of the hiperbola
given by the intersection of the cone
2
) £ (23)
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and the plane
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(Note that while ¢ represents the time for the harmonic oscil-
lator, it does not correspond to the time of the MIC-Kepler
problem which, however, can be related to ¢ [3].)

Equation (6) and, hence, Eq. (2), can be solved by sepa-
ration of variables. Assuming that W(pl, p2, @) = F(p) +
G(p2) + L.¢, where L, is some constant, one finds that the
functions F'(p;) and G(p2) must satisfy the equations

2 - 2
(42 + S5 < wp- s o
1

dG\* L? .
( C) + =% - ME - M?J%p} = =), (26)
dps 5

where A is another constant. Eliminating the terms propor-
tional to w? (which is related to the energy of the MIC-Kepler

problem [Eq. (11)]) from these equations one finds that
2 dG
TR +Pz [Pz(dm) _pl(dﬂ )

$ (K~ Ly - P2 4 MB(S - A en
I P

On the other hand, using Eqgs. (8), it follows that

dF_OW _ W dx  OW Dy  OW 0z
dp Ip1 dz Op dy Om dz Op
=mi+mi+m%1
1 P1
and, similarly,
gfi g;{/ Pa ; +1J'i Pz2p2,

thus the expression (27) for the constant of motion A amounts
o

A= —4z(p} + p}) + 4(xpx + ypy)p-

5 ME§ + (K2 - —

2K L,
gl ( T3
which is, apart from a factor (—4), the z-component of the
generalization of the Runge-Lenz vector given in Ref. 3.
Hence, the conservation of this vector is related to the sepa-
rability of the MIC-Kepler problem in parabolic coordinates.

3. The MIC-Kepler problem via dimensional
reduction a la Kaluza-Klein

According to Jacobi’s principle, the orbits in configuration
space of a particle with Hamiltonian

i
H = —g*°p, Vg™ 2
aard Paps + V(%) (28)
are the geodesics of the metric
(E = V)gapdg®dq”, (29)

where (gag) is the inverse of (¢®F), E is the value of H
corresponding to the initial conditions and there is sum over
repeated indices. Thus, the orbits in configuration space of
the 4D harmonic oscillator with imaginary frequency are the
gendesics of the metric

Mw ; :
[E+ . (ul + u3 +uj + ul) |{(dui + dul + du? + du?)

which, expressed in the coordinates (z,y,z,w) [see
Eqgs. (16)-(19)], takes the form

E  Muw? 5 5 3
(E ~f T) {rh +dy” +dz

+ 4r% |dw + oy — yéw i (30)
2r(r + 2) !

where 72 = 22 4+ 2% + 22
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The metric (30) is of the form
i [7Ij(iﬂf1(la“.j + B(dz® + aid:ri)z] = gagdz®dz®, (31)

where the functions f, 3, a; and v;; depend on 2!, 27, z*

only, 4,7;.:.=1,2,3: a, 8,... = 0,1, 2, 3 and there is sum
over repeated indices. Hence, Eq. (31) implies that
goo = fB, goi = fBai, gij = f(w; + Baiaj) (32)
and the inverse of (g,3) is given by
i e . yay A
gO=—+ =, ==, gi=1_ 33
fB & i f

where (v'/) denotes the inverse of (7;;). Using again Jaco-
bi’s principle, the geodesics of the metric (31) are the orbits
of the Hamiltonian

"M

[cf Egs. (28) and (29)], where E' is the value of the Hamilto-
nian H' given by the initial conditions. The orbits determined
by the Hamiltonian H' can be obtained by means of the HJ
equation

z Qaﬁpapﬁ

B g OWOW

oM’ 9ze9zP T
therefore, making use of Egs. (33), this equation becomes
1 (oW aw ow aw
— o g ) || =— —0
2M adzt Oz0 Oz Oz
1 oW’
AT ('5;") =0

Looking for a solution of the form W (z%,z") = Kz° +
W (z"), where K is some constant [cf. Eq. (5)], from Eq. (34)

one finds that W must satisfy

1 (oW aw
7 ( - K Cl.'i) (ﬁ = I(Oﬂj)

oM ozt
iy
— =i, 35
f+3535 =0 69
which is the HJ equation corresponding to the Hamiltonian
L (s~ Ka)(py - Kay) — f+ 2 =0, (36)
BM ) R TRy j oMB

This Hamiltonian can be regarded as that of a particle with
clectric charge ¢ in the magnetic field generated by the vec-
tor potential A defined by

gA .dr = Ka;dz' 37)
and the potential
i E*
V= =fh oors (38)
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Thus, as in the Kaluza-Klein theory, where the geodesics
of a five-dimensional space reproduce the motion of a parti-
cle subject to an electromagnetic field in the four-dimensional
space-time, the geodesic equations of the metric (31) are
equivalent to the equations of motion of a charged particle
in a magnetic field and a velocity-independent potential (see
also Ref. 6 and the references cited therein).

A comparison of Egs. (30) and (31) shows that in the
case of the 4D harmonic oscillator with imaginary frequency,
f = E/(4r) + Mw?/8, B = 4r?, aidx’ = (zdy —
ydx)/[2r(r + z)] and v;; = &;;; by substituting these ex-
pressions into Eq. (35) one obtains Eq. (12).

4. Derivation of the KS transformation in quan-
tum mechanics

The time-independent Schrédinger equation for the 4D “har-
monic oscillator” with imaginary frequency in cartesian co-
ordinates is

h* ( 0? o? 0* ? )

Muw?
2

(uj +us +ui +ul)¥ = E¥. (39)

Introducing again polar coordinates (py, ) and (p2,62) in
the u; us and uzuy planes, we obtain

_£Gi,i+ii i+ii+i3_2)
5M \p1 0p1 " Op1  p2 002" Bps | 02067 3 063
Mu?

(p"l2 + pi)‘l’ = Y (40)

2

or, using the variables w and ¢ [Eq. (3)] in place of #; and 6,

B L g8, 1 B2

2M |91 (02 + P2 O o1 | Apa(p2 + p2) Opa 2 Bps
Ll e 1 20 1 &
dpips 09> 2pi(pi+p3) d6 dw  4pi(p} + p3) Ow?

E Mw
e v,
4(pt + p3) 8

(41)

Equation (41) admits separable solutions of the form

U(py1, p2, ¢, w) = Y(p1, p2, p)e N /P (42)
where I is a constant [¢f. Eq. (5)] and v is a solution of
n’ 1 a a 1 o a

2M [4»0: (02 +03) 0p1 " Bp1 * dpa(p?t + p2) Opa " 12
1 ( o K p3 )' K*? p
dpips \0b  h pi+p3 3+ )"

£ .2
E Mw b, 3)

2
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which, by virtue of Egq. (9), is the time-independent
Schrodinger equation for the MIC-Kepler problem with pos-
itive energy in parabolic coordinates.

Equation (40) admits separable solutions of the form
(py,bh,p2,02) = F(p,)et™® G(p2)e™2%2, where m,
and m» are integers,

ME

i‘-lp iF (_Mzwzpz_ﬂiJr_jL)\) F=0
prdpy" " dpy R B )

2,2 2
1 d dG (ﬁ/f:) p§—7—n23+—ﬁ/[—;E—A)G’:0 (a4)
175 P3 h
and X is another separation constant (which is, apart from
a constant factor, the eigenvalue of the z-component of the
quantum-mechanical version of the generalized Runge-Lenz
vector). It can be verified that the solutions of Egs. (44) can
be expressed as

o2 dp" dpa

; _ .
_ |ma] iMwp? /(2R) 1 lma] iMwpy
F(p)=p" [Ale el )L(ib:-zlmm—z)m(——h—
; ]
—iMuwp? /(2h) J |ma] iMwpi
+ DB e pi/( )L(_,‘bpzimﬂ—z)/al( A 2 )], (45)

where by = (ME + M2) /(M hw), Lk are associated La-
guerre functions and A, B, are arbitrary constants. Simi-
larly,

G(pz)= p-'zmz' [Age’M‘“"’%/(”') rimel (— r——iwa%)

(iba—2|mz|—2)/4 h
= 9R
—iMwp/(2R) [ Imal iMwpy
+Bse pa/(2 )L(—sz—:zlmxt—z)/'i (T)] , (46)

where by = (M E — Ah?)/(Mhw), and A», B, are arbitrary
constants.

On the other hand, from Egs. (3) we have

ei(,-u|91+1r129;g) = et{m1+1112]w(,im2¢;

hence, from Eq. (42) it follows that

K =m; +ma (47)

and that

W(p1, p2,8) = F(p1)G(p2)e™? (48)

is a solution of Eq. (43).

5. Concluding remarks

Following the procedure that leads from Eq. (1) to Eq. (4) (or
from Eq. (39) to Eq. (41) in the quantum-mechanical case),
by means of an arbitrary coordinate transformation one can
transform any given problem into another (locally) equivalent
problem, in a possibly curved space; however, only some spe-
cial transformations relate two problems interesting in their
own. (Note that the extended KS transformation is two-to-
one [see Egs. (16)-(19)].)

In classical mechanics, the Jacobi principle allows us to
consider the motion of a conservative system with a velocity-
independent potential as a free motion by modifying the met-
ric of the configuration space. The existence of a continuous
symmetry of this metric then enables us to make a dimen-
sional reduction that amounts to the presence of a magnetic
interaction. However, in quantum mechanics, an obvious ana-
log of Jacobi’s principle only holds in a two-dimensional
space.
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