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Using the replica Ornstein-Zernike (ROZ) integral equations, the effective interaction between hard sphere colloidal particles in the presence
of a hard sphere solvent, both dispersed either in a disordered quenched matrix of hard spheres is analyzed in this work. The ROZ equations
are complemented by the Percus-Yevick (PY) closure. The presence of a disordered matrix is manifested in the attractive minima of the
colloid-colloid potential of mean force (PMF), in addition to a set of minima due to the presence of solvent species. The effects of matrix
porosity and solvent density on the PMF are investigated.
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En este trabajo analizamos la interaccién efectiva entre particulas coloidales de esfera dura en presencia de solvente de esferas duras, dis-
persadas en una matriz desordenada de esferas duras fijas. Para ello usamos las ecuaciones integrales de réplica de Ornstein-Zernike (ROZ).
Para resolver las ecuaciones de ROZ usamos la cerradura de Percus-Yevick. La presencia de la matriz desordenada se pone de manifiesto con
un minimo atractivo en el potencial de fuerza promedio (PFP) entre los coloides, ademds de un conjunto de minimos adicionales debidos al

solvente. Investigamos los efectos en el PFP debidos a cambios en la porosidad de la matriz y la densidad del solvente.

Descriptores: Potencial de fuerza promedio; ecuaciones de réplica de Ornstein-Zernike; medios porosos

PACS: 05.90.4m

1. Introduction

The study of adsorption of fluids in disordered porous me-
dia is very interesting from theoretical and practical point of
view. The statistical mechanical theory of quenched-annealed
(partly quenched) systems that consist of a microporous
medium prepared, for example, by thermal quench, and of
annealed fluid or a mixture, i.e. of the one that reaches
thermal equilibrium in the presence of rigidly fixed disor-
dered adsorbent (matrix) has been initiated by Madden and
Glandt [1, 2]. Subsequent theoretical development of Given
and Stell [3-5] have provided the exact replica Ornstein-
Zernike (ROZ) equations to study partly quenched systems.
A model for one-component hard spheres adsorbed in a disor-
dered (hard spheres) and random (freely overlapping spheres)
matrices has been the focus of several recent studies using the
ROZ equations and computer simulation [6-9]. However, the
adsorption of even simple mixtures has been much less inves-
tigated [10-12]. Moreover, simpler theoretical tools than the
ROZ equations, have been employed to study the adsorption
of mixtures [10, 11].

Our principal objective in the present work is to begin a
systematic investigation of the adsorption of mixtures in dis-
ordered microporous environment in the framework of inte-
gral equation method for partly quenched systems. Namely,
we are interested in the adsorption of model mixtures that

include large and small hard spheres mimicking, in a simpli-
fied manner, a colloidal dispersion. It is of much interest to
describe the effective pair interaction between colloidal par-
ticles in the adsorbed mixtures, because the structural, ther-
modynamic and dynamic properties of colloidal dispersions
are mostly determined by these interactions.

There have been much investigation previously in the in-
tercolloidal effective forces and related phenomena in col-
loidal dispersions in the framework of the model of hard
spheres and of Ornstein-Zernike integral equation for mix-
tures [13-15]. It was found that there is an attractive well in
the effective interaction between colloids due to the depletion
cffect. The depths of the atractive wells depends on the sol-
vent concentration. When the concentration is high enough
the effective interaction becomes oscillatory indicating the
layering phenomenon of the solvent species between to large
colloidal particles. This theoretical predictions are in qual-
itative agreement with the experimental observations for the
force acting between colloids in dispersions. In particular, the
mean force potential acting between colloids in the presence
of dilute rigidly fixed subsystem of obstacles has been stud-
ied experimentally for quasi two-dimensional model in works
from the group of M. Medina Noyola from the Institute of
Physics at San Luis Potosi University [13, 14].

As a natural extension of previous efforts in the theory of
colloidal dispersions, in this study we apply the ROZ equa-
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tions for adsorbed colloidal solutions. The present work rep-
resents only the first step of a larger project; we discuss ex-
tensions of the model and of the theory for further research
in the conclusions of this study.

2. Theoretical model

Let us first investigate a two-component fluid mixture ad-
sorbed in a disordered quenched matrix (M). The matrix
(a set of obstacles) is assumed to correspond to an equi-
librium configuration of hard spheres at packing fraction
N = Tpa0s, /6, where p,, is the matrix density, oy, is the
diameter of matrix particles. A disordered hard sphere matrix
also can be characterized by the value of microporosity, p,
p = 1 — 1y, i.e. by the fraction of volume available to ac-
commodate fluid particles. The fluid is a mixture consisting
of a hard sphere solvent species of diameter o, considered
at a dimensionless density pt = psas (ps is the solvent den-
sity) and hard spheres of a larger diameter o, mimicking col-
loidal particles. In what follows, without loss of generality,
we assume o, = 1. The colloids are considered at density
pt = peo’l. Our consideration is restricted to a region of a
low concentration of colloidal particles in a solution, such
that pX < pj.

At this initial stage of investigation of adsorbed colloidal
solutions we assume a simple model for interparticle interac-
tions between species,

Hiale) = {oo, r < 03 = 0.5(0i + 0;) 1 ()
0, T > 05
where i, j take values s, ¢, M.

Let us proceed now with the equations necessary (0
solve the problem for quenched-annealed mixture in which,
most importantly, fluid species do not have influence on the
quenched matrix structure. According to the assumption of
an equilibrium distribution of hard sphere species mimicking
a disordered matrix we describe its structure in terms of the
pair correlation function (pcf) Roarae(r). The pef by (7) is
obtained by using customary Ornstein-Zernike integral equa-
tion

Bpgre — Cune = Cum ® thM'Ms (2)

with the Percus-Yevick closure
Carne (’) = {Fxp[ﬁ"jUMM (7)] = 1}{1 +huy M{T) —Cmm (""j}a (3)

where U, (r) is a hard sphere interaction between matrix
species. In Eq. (2), and in what follows, the symbol @ denotes
convolution and r-dependencies are omitted for the sake of
brevity.

Let us now proceed with the ROZ equations for the de-
scription of fluid-matrix and matrix-matrix correlations. In
the framework of the ROZ formalism, both the fluid-fluid pair
correlation functions, hyj(r), and the direct correlation func-
tions, ¢;;(r) (with 4, j taking values c, s) consist of the con-

nected and blocking parts, i.e. hij(r) = h{"(r) + hPj(r),

cij(r) = e9"(r) + ¢}(r). The blocking parts describe a
set of correlations between fluid particles via matrix subsys-
tem [3-5]. The blocking contribution into the direct corre-
lation functions ¢;;(r) (i, = ¢,8) is neglected within the
Madden-Glandt approximation (MGOZ), i.e. if one works,
for example, in the framework of the Percus-Yevick clo-
sure [1-5].

The ROZ equations, written in the MGOZ form, are the
following:

hipg = Cing = Cim @ Pagharns + Z cij @ pihim, (4)

j=ec,8

for the fluid-matrix correlations, and

hij — ¢ij = cim @ pahim + z ca @ prhyj,  (5)

I=cis

for a set of fluid-fluid correlations. The function hya(r)
serves as an input into Eq. (4) that must be solved in con-
junction with Egs. (5).

In this work we solve the ROZ equations supplementing
them by the PY approximation. The PY approximation has
been used previously for hard sphere type models for col-
loidal mixtures [15-18] and for quenched-annealed systems
as well.

The PY closure for the problem in question reads

cim(r) = {exp[—BUin (1)] — 1H1 + hin(r) — cine() },
cij(r) = {exp[~BUi; (r)] — 1H{1+ hsj(r) — iz (r)}, (6)

where the subscripts i, j take values s and ¢, and the interac-
tions are given by Eq. (1). The system of equations (4)-(6)
has been solved numerically by direct iterations.

We would like to comment briefly one important issue
relevant to the presented study. It seems natural to require
that the theory must be tested versus computer simulation of
the model. However, the model in question is difficult to sim-
ulate for several reasons. First, it requires grand canonical
ensemble simulation of a mixture consisting of particles with
large difference of diameters. This is a difficult problem in
any ensemble. A smart displacement algorithm is necessary
to employ [19]. The attempts to create large colloidal spheres
in a matrix in grand canonical simulation, are hardly expected
successful. Common regime of colloidal suspensions is char-
acterized by a very low number of colloidal particles com-
pared to the number of solvents. That makes statistics of pair-
wise properties of colloidal species poor. For example, in the
canonical ensemble simulations of Biben et al. [19] only ten
large spheres has been used to mimic colloidal subsystem.
Moreover, to describe the adsorption of a mixture in disor-
dered porous medium requires the results from a set of sim-
ulation experiments (each experiment must be performed at
a given, but different, statistically independent, matrix con-
figuration). Next, the results must be averaged over differ-
ent matrix configurations. To summarize this discussion, the
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simulation of colloidal dispersions in disordered porous me-
dia represents a scientific problem on its own. Having these
difficulties in mind, we restrict ourselves, for the moment, to
theoretical developments. Nevertheless, previous experience
accumulated in the investigation of colloidal suspensions in
the absence of matrix species via integral equation method,
makes us confident that our results are at least qualitatively
correct.

We postpone a detailed description of thermodynamic
properties of adsorbed colloid-solvent mixtures, in the frame-
work of the model in question and more sophisticated mod-
els, to our future work, which is now in progress. There we
will discuss, in particular, the adsorption isotherms and the
compressibility of adsorbed mixture. Our focus in the present
study is in the structural properties, in the potential of the
mean force between colloidal species and forces acting be-
tween them.

3. Results

The structural properties of adsorbed colloidal mixtures in
terms of the distribution functions, g;; () = 1+h;;(r), where
i, stand for s, ¢ and M, are of some interest. However, in
the case of colloidal mixtures a more common interpretation
of the results is given in terms of the PMFE, — W .. (r):

—BWee(r) = In[1 + hee(r)]; (7)

besides the pair distribution functions g (), gsa (1), ges(7)
and g, (7). We are looking how the shape of PMF depends on
the matrix microporosity and on the density of the supporting
solvent. The fluid-matrix correlations play an important role
in the microscopic description of partly quenched systems,
besides the fluid-fluid correlations. Therefore, in addition to
the PMF defined by Eq. (7), we also interpret the fluid-matrix
correlations in terms of the corresponding PME. It is defined
similar to Eq. (7),

—BWen (r) = In[1 + hepe(r)]. (8)

On the other hand, the derivative of the PMF’s yields the
force acting between colloids, i.e., the so called solvation
force and the force acting on a colloids with respect to the
fixed matrix particle. Namely,

, dpWi;(r
BF;j(r) = —IT;,"’()- )

The parameters of the model in this study are the follow-
ing. Throughout our study, we choose the diameter of ma-
trix particles seven times larger than of the solvent species,
a, = 7,0, = 1. One of the reasons of this choice is that in a
successful model for adsorption of methane in a model silica
xerogel of Kaminsky and Monson [20] the size ratio is like
that. On the other hand, in previous studies of hard sphere
colloid-solvent mixtures [13-15], it has been assumed that
the size ratio of colloids and solvent particles is of the order
10:1.In this work we have chosen this diameter ratio.
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FIGURE 1. Colloid-Colloid PMF with diameter o. = 10 at the
low packing fraction, 1. = npror,'?/ﬁ = 52 % 1073, The pack-
ing fraction corresponding to the matrix particles is 7., = 0.209.
The solvent density is considered in the intermediate range, p; =
psai = 0.25 (dot line) and p; = 0.36 (solid line).

Let us discuss now the most interesting results, obtained
by using the PY approximation. We begin with the presen-
tation of the PMF for the case of a matrix at microporosity,
p = 0.791 (n,, = 0.209) (Fig. 1). The large particles mim-
icking colloids with the diameter 0. = 10 are considered at
fixed, low packing fraction, 7. = mp.03/6 = 5.2 x 1072,
The solvent density is considered in the intermediate range,
pr = psod = 0.25 and p; = 0.36. We observe that the
magnitude and range of the oscillations of the PMF increase
with increasing solvent density. The contact attraction be-
tween large spheres also increases with augmenting solvent
density. At a higher solvent density we observe that the re-
pulsive maxima correspond to one or two or three layers of
solvent particles between two colloidal spheres. In addition,
we observe a small cusp of attraction at distances correspond-
ing to matrix-separated colloidal spheres. However, the mag-
nitude of effects due to the presence of rigidly fixed matrix
species is small, in comparison with the effects of solvent
species.

In Fig. 2 we present the solvation force acting between
colloidal particles. This is the measurable quantity in exper-
iments, and, therefore, is of particular interest. There is a
cusp in the repulsive region at o, + 1 for a hard sphere sol-
vent. At larger distances, repulsive force changes smoothly.
The amplitude of the oscillations of the solvation force es-
sentially increases with increasing solvent density. The ef-
fect of matrix species in the attractive force is very small.
In Figs. 3 and 4, we shown the PMF corresponding to the
colloid-matrix correlations and the corresponding force, re-
spectively. The colloid-matrix PMF is of smaller magnitude
comparing to the colloid-colloid one. The reason is that the
matrix particles are rigidly fixed in a disordered configura-
tion. However, the effect of layering of solvent species in be-
tween the matrix and colloidal particles is well pronounced
(Fig. 3). Trends for layering augment with increasing solvent
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BF (IR,

FIGURE 2. Solvation force acting between colloidal particles with
Ne = wpeos /6 = 5.2 x 107° and ya = 0.209. The dot line cor-
responds to a solvent density p; = 0.25, and the solid line is for
g5 = 0:36. Here Rs= g:/2:
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FIGURE 3. The same as in Fig. 1 but now for Colloid-Matrix inter-
action with Rem = (0c + om ) /2.

density. We do not observe any cusp, but a continuous change
of shape at large colloid-matrix separations (corresponding
to matrix-matrix-colloid configuration) in this PMF even at a
quite high density, p; = 0.36. This behavior serves as man-
ifestation that the configurations like colloid-matrix-matrix
can occur in the system, but with a low probability. The solva-
tion, fluid-matrix, force reflects trends of behavior of the cor-
responding PMF. The amplitude of the this solvation force is
much less than for colloid-colloid force, as expected, Fig. 4.
The matrix particles are unmovable and the force originates
from the pressure that exhibit solvent species on a colloid,
trying to put a colloid closer to the matrix particle. The ap-
plicability of the PY approximation is commonly restricted
by the maximal density at which the PY yields an entirely
positive pair distribution function between large species (col-
loids). For higher densities of the solvent, one needs to apply
a more sophisticated closure, probably the hypernetted chain
(HNC) one, or a combined PY-HNC closure, as has been used
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FIGURE 4. The same as in Fig. 2 but now for Colloid-Matrix inter-
action.

previously in the studies of unconfined colloidal dispersions
in the framework of a hard sphere model. The density p} =
0.36 is exactly the highest solvent density at which the col-
loidal pair distribution function is entirely positive for the
model in question.

After discussing the effect of solvent density, we would
like to elucidate the effect of matrix microporosity. Now, let
us proceed to the matrix with a higher packing fraction, i.e.
with a lower microporosity, p = 0.614 (1, = 0.386). The
value of microporosity corresponds to the nominal value of
porosity of the silica xerogel in the model of Kaminsky and
Monson [20]. The large particles mimicking colloids with the
diameter o, = 10 are considered at 7, = 5.2 x 107%, as in
the previous case. The solvent density range is smaller now,
the densities in question are p? = 0.15, 0.2 and 0.23. This
latter value is the highest solvent density at which we have
obtained entirely positive pair distribution function between
colloidal species, g..(r). At a higher value of solvent density,
to use the PY approximation does not make sense.,

The colloid-colloid PME, shown in Fig. 5, exhibits similar
trends to those discussed in the case of a more microporous
matrix (Fig. 1). However, the effect of the presence of the
matrix of obstacles becomes much more pronounced. The ef-
fective attraction between matrix-separated colloids becomes
of the order of the secondary attractive minimum due to sol-
vent species. Moreover, the oscillatory behavior of the PMF
at large distances reflects attraction between matrix-separated
colloids in which either of species (matrix or colloids) are
covered by a layer of solvent species. The matrix particles
also contribute into the formation of the effective repulsion
between colloids at distances less than the matrix species di-
ameter. This repulsion plays role of important background
effect that can be modulated by the solvent density, however,
the effective interaction remains repulsive at these distances.
The effect of stronger confinement, i.e., of higher matrix den-
sity also can be seen in the solvation force (Fig. 6). The solva-
tion force between colloids has similar shape to the one given
in Fig. 2. However, the amplitude of all the effects is approx-
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FiGure: 5. Colloid-Colloid PMF at the packing fraction 5. =
mpea /6 = 5.2 x 107" and na = 0.386 with 0. = 10. The
solvent density stands for p; = 0.15 (dot line), p; = 0.2 (dash
linc) and p; = 0.23 (solid line).
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FlGUuRE 6. Solvation force acting between colloidal particles for
the data of Fig. 5, with R, = o./2.

imately twice larger (note different scales in Figs. 2 and 6).
Nevertheless, we would like to emphasize that the solvent
subsystem plays an overwhelmingly important role in the
formation of the solvation force, such that the matrix con-
finement is manifested mostly in the magnitude of the effects
rather than introducing peculiarities of the shape of the force.
On the other hand, the influence of the matrix confinement is
quite strongly pronounced in the colloid-matrix correlations.
We observe a strongly modulated shape of the colloid-matrix
PMF (Fig. 7), such that the modulating influence due to ma-
trix specics is of similar importance to the one due to solvent
particles. Probable colloid-matrix configurations are contact
pairs as well as such that there is one solvent layer between
them. Next, at low matrix microporosity the configurations of
the type matrix-matrix-colloid can be found also. The solva-
tion force, following from this PMF is shown in Fig. 8. Most
importantly, is that there appears a repulsive shoulder of the
range of matrix species diameter, in the colloid-matrix solva-
tion force. The oscillatory behavior of this force extends to
larger separations.
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FIGURE 7. The same as in Fig. 5 but now tor Colloid-Matrix inter-
action. again Rem = (00 + 0m ) /2.
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FIGURE 8. The same as in Fig. 6 but now for Colloid-Matrix inter-
action.

In addition to the trends discussed above, we observe that
the solvent effects are well pronounced even at a low nominal
solvent density. This is a clear manifestation of the influence
of the matrix confinement corresponding to low microporos-
iy.

To conclude, in the present work we have considered the
problem of the description of the potential of mean force act-
ing between colloidal particles in dispersions adsorbed in mi-
croporous disordered media. Our theoretical analysis is based
methodologically on the replica Ornstein-Zernike equations.
The model, that has been studied, is the simplest one. How-
ever, it permits several extensions to make it closer with ex-
perimentally relevant systems. In particular, it is of interest
to consider a model with long-range repulsive interaction be-
tween colloids. It would be also necessary to involve more
sophisticated approximations, rather than the most popular
Percus-Yevick closure used in this work. This issue would
be particularly important to study segregation phenomena in
adsorbed colloidal dispersions. Moreover, the calculations of
the adsorption isotherms would be of primary importance in
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a future work, to perform comparisons of the structure of dis-
persions in different matrices and in the bulk colloidal solu-
tions.

Our major findings are nevertheless the following. The
ROZ integral equations provide an adequate tool for the prob-
lem of description of the structure of adsorbed colloidal dis-
persions in microporous media. We have observed that, in
addition to the effect of modulation of the PMF due to sol-
vent species, there arises the effect of modulation of the
mean force potential due to rigidly fixed disordered confin-
ing medium. An attractive minimum on the PMF at distances
between colloids, slightly larger than the matrix particle di-
ameler, can be observed for different values of adsorbent mi-
croporosity. This attraction can be attributed to the confine-
ment effects of the matrix species. The effects of disordered
matrix media also influence the value of the repulsive bar-
rier between colloids separated by a single layer of solvent

particles. We have observed that changes of the matrix mi-
croporosity have substantial influence on the colloid-matrix
correlations. The solvent effects even at low nominal density
are very well pronounced in matrices at low microporosity.
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