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A Closed-form analytical solution for the creeping flow equations in bipolar cylindrical coordinates is presented and used to study the
flow generated by a corotating symmetric two-roll mill. The flow field has a stagnation point where elongational flow conditions exist. The
geometric characteristics of the mill define the ratio of vorticity to rate of deformation that exists at the stagnation point. The solution is
based upon Jeffery’s solution of the biharmonic equation obtained for the stresses on a plate [Proc. Roy. Soc. London A 101 (1922) 169].
The streamlines, the velocity field, the magnitude of the velocity gradient and other properties of the flow are obtained for the complete flow
domain. For the region around the stagnation point, the calculated results show good agreement with the numerical predictions of Singh and
Leal [J. Rheology 38 (1994) 485] and the experimental measurements of Wang et al. [Phys. Fluids 6 (1994) 3519]. This solution should
be useful for investigations of the dynamics of drops, elastic capsules, or studies of chaotic advection, where exact solutions are necessary

benchmarks.

Keywords: Elongational flows; two-roll mills; stokes flow

Se presenta una solucién analitica cerrada para el flujo de Stokes generado por un molino de dos rodillos. El flujo generado tiene un punto
de estancamiento en el centro del molino en donde existen condiciones de flujo elongacional. Las caracteristicas geométricas del molino

determinan la razén de vorticidad entre la rapidez de deformacion que e

xiste en el punto de estancamiento. La solucién se basa en la solucién

de Jeffery de la ecuacién biharménica obtenida para los esfuerzos sobre una placa [Proc. Roy. Soc. London A 101 (1922) 169]. Las lineas de
corriente, el campo de velocidades, la magnitud del gradiente de velocidades y otras propiedades del dominio completo del flujo también se
dan. Para la region alrededor del punto de estancamiento, los resultados calculados tienen buena concordancia con las predicciones numéricas
del Singh & Leal [J. Rheology 38 (1994) 485] y los resultados experimentales de Wang et al. [Phys. Fluids 6 (1994) 3519]. La solucién serd
de utilidad para investigaciones en la dindmica de gotas, cépsulas eldsticas o para estudios de adveccion caética, en donde las soluciones

exactas son patrones de referencia indispensables.

Descriptores: Flujo elongacional, molino de dos rodillos; flujo de stokes

PACS: 47.55.Dz; 47.80.+v; 83.50.-v

1. Introduction

The two-roll mill consists of two cylinders of equal radii, with
colinear axes, and separated by a small distance. The analyt-
ical solution assumes a steady, two-dimensional flow as if
generated by rollers of infinite length and rotating with equal
angular velocities. Inertial terms are considered negligible.
For corotating two-roll mills, there exists a stagnation point
on the line between the cylinders’ axes, with local kinematic
conditions characteristic of elongational flow with some vor-
ticity. According to Chong et al. [1], the stagnation point cor-
responds to a two-dimensional critical point where all three
velocity components are zero, and the slope of the stream-
line is indeterminate. Unlike many other critical points, in
the case of the two-roll mill the kinematics is defined only by
the angular velocity of the rollers, and by their geometric as-
pect, i.e., the cylinders’ diameter and the separation between
them. When identical cylinders rotate at the same speed, the
stagnation point is located at equal distances from the cen-
ters of rotation. In this case, the gap between the rollers and
their radii also determine the ratio of the rate of deformation
to vorticity that exists in the neighborhood around the stagna-

tion point. Hence, one of the interesting features of the elon-
gational flow field generated by these mills is the fact that the
solution takes into account, firstly, the presence of the rollers
at a finite distance, and secondly, that the flow parameters are
defined only by the mill’s geometry.

Given that bipolar cylindrical coordinates are the natu-
ral reference frame for systems composed of two cylinders,
an important set of flow devices have already been theoret-
ically and experimentally studied. In 1922, G.B. Jeffery [2]
presented a solution for the Stokes flow generated inside the
annular region of eccentric cylinders. The solution prescribes
the boundary of the cylinders by constant values of one of the
bipolar coordinates [3, 4] for a stream-function that satisfies
the biharmonic equation. Jeffery [2] gave also a solution for
a counter-rotating two-roll mill in an unbounded fluid. For
this flow, fluid is drawn in in one direction and driven out in
the opposite direction. In 1925, R.A. Frazer [6] used Stokes’
“principle of successive reflections™ [4, 7] to study flows gen-
erated by two rotating cylinders in a viscous fluid. In particu-
lar, a solution is given for (a) the induced flow in a quiescent
fluid and valid only for specific ratios of the rates of rotation
of the cylinders, and (b) the steady motion with the fluid qui-
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escent at infinity when the two-roll mill revolves like a plan-
etary system about a particular focus situated on their line
of centers. To the authors knowledge, no new solutions have
been published ever since analyzing the problem of Stokes
flow for a corotating two-roll mill. Here, a general solution
is presented for the Stokes flow induced by two cylinders of
equal radii and corotating at the same angular speed in a qui-
escent fluid, and capable of fast, accurate predictions.

The lack of analytical solutions for some configuration of
mills has not hampered the use of these devices for exper-
imental studies. In particular, two- and four-roll mills have
been frequently used in the laboratory to study the effects
of two-dimensional elongational flow upon embedded ob-
jects. These flow geometries provide the means of generat-
ing a complete class of strong flows at the critical point lo-
cated between the cylinders, with a variety of possible rates
of deformation applicable to deformable bodies. Astarita 8],
and Olbricht et al. [9] have classified two-dimensional steady
flows as strong or weak flows. Strong flows are those that
have locally a larger rate of deformation than its vorticity,
with weak flows being those dominated by vorticity; simple
shear flows correspond to the upper limit of weak flows and
have a ratio of rate of deformation to vorticity equal to one.
Hence strong flow can cause large deformations to an em-
bedded deformable body in contrast with the small deforma-
tions achievable only with steady, weak flows. Furthermore,
the residence time for an embedded object at the stagnation
point can be extremely long, allowing studies of its dynamics
under a large set of known conditions.

These latter characteristics make the two- and four-roll
mills useful devices for many studies in low Reynolds num-
ber hydrodynamics. Indeed, these mills have been used to
study the dynamics of drops, capsule, emulsions, etc., and
more recently the dynamics of chaotic or mixing systems,
with significant responses observed when using these strong
flows as compared to simple shear or purely extensional
flows. In 1932, G.I. Taylor [10, 11] performed some of the
earliest experiments of a drop deformation due to a strong
flow field generated by a four-roll mill. More recently, Leal
and coworkers [12-15] have used a computer-controlled
four-roll mill to study the dynamics of drops suspended in
a viscous fluid. These studies have provided a clearer under-
standing of the effects of the viscosities of the fluids, surface
tension, surfactant additives, etc. Rallison [16] and Stone [17]
have recently summarized the theoretical, experimental and
numerical studies of the dynamics of drops and bubbles in
well-characterized flows with ratios of the rate of deforma-
tion to vorticity well in excess of the characteristic value
for simple shear flow. Finally, Chang and Olbricht [18] have
studied the dynamics of breakup of elastic capsules filled
with a liquid under purely elongational and simple shear flow
conditions. Ottino and coworkers [19] have recently studied
Stokes flows generated by a blinking two-roll mill contained
inside a third rotating cylinder. However and because of the
intrinsic noise of numerical simulations, Ottino and collab-

orators [19] emphasize the need for analytical solutions of

the flow field of complex Stokes flows: small changes in the
numerical calculated velocity field can produce very differ-
ent advection patterns. Finally, Leal and coworkers [20-22]
have used a two- and four-roll mill configuration to study the
flow field of non-Newtonian fluids subjected to elongational
flows with vorticity. Among those studies, special emphasis
has been given to studies of the dynamics of polymeric lig-
uids [23] its optical properties and the evaluation of consti-
tutive equations for fluids subjected to strong flows. Hence
the spectrum of applications of the analytical solution of the
Stokes flow of two-roll mills can provide useful insight for
a large number of problems in fluid mechanics. Also these
studies have relevance to a large number of industrial appli-
cations (e.g., see Stone [17]).

Given the usefulness of two- and four-roll mills, for the
study of a slow, strong flow, it is now important to empha-
size the different options that these two systems offer to the
experimentalist. For the four-roll mill, the rotational speed of
the cylinders sets the shear rate, and the ratio of the speeds
of next to each other rollers sets the ratio of vorticity to rate
of deformation that exist at the stagnation point. However, in
contrast with the two-roll mill, and on one hand, the four-roll
mill requires an experimental determination of the propor-
tionality constants that express the shear rate as a function of
the speed of the cylinders. Furthermore, there is no analytical
solution for the Stokes flow generated with a four-roll mill
when the position and size of the cylinders needs to be taken
into account. On the other hand, there is no need to vary the
geometrical form of the device in order to vary the ratio of
the rate of deformation to vorticity that exists at the stagna-
tion point as needed with the two-roll mill set-up, a condition
that has prompted an undue disregard for the two-roll mill
hydrodynamics. This apparent drawback of the experimental
studies reported until now is mainly due to the concomitant
perturbations to the two-dimensionality of the flow as a re-
sult of presence of boundaries along the axes of rotation of
the cylinders, which is dependent of the ratio of cylinders’
length to the gap between them. These have been important
limitations to experimental studies using strong flows with
large vorticity such as those generated by a two-roll mill, be-
cause comparisons of experimental data against theoretical or
numerical results are often difficult to correlate. However for
many studies, the application of similar techniques to those
used by Bentley and Leal [12] can reduce significantly the
adverse effects of boundaries in two-roll mills. Finally, the
four-roll mill only requires to change the relative speed of di-
agonally opposed rollers to modify the ratio of vorticity to
rate of deformation. It generates a well defined flow when
small vorticities are needed, but does not provide an adequate
flow field when the ratio of speeds of next to each other cylin-
ders is large; i.e., when ratios of rate of deformation to vortic-
ity have values close to one. Under these circumstances, the
two-roll mill is a better device to generate 2-D strong flows.

The contents of this paper are as follows. In Sect. 2 the
mathematical solution for the flow induced by a corotating
two-roll mill is presented in cylindrical bipolar coordinates.
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Jeffery’s solution for the biharmonic equation together with
the symmetry properties of the flow field are used to obtain
the Fourier series expansion of the stream function. The se-
ries allows the calculation of the flow properties in closed-
form to the required precision; the convergence of the trun-
cated series is analyzed with respect to the accuracy of the
prediction of flow parameters. Finally in Sect. 3, the flow
field in the neighborhood of the stagnation point is studied,
giving emphasis to the most relevant parameters for the study
of embedded bodies. For the flow about the stagnation point,
Stokes flow solution is compared with the solution of Dun-
lap [24] valid only locally. Furthermore, these analytical re-
sults are compared with numerical results [20] and experi-
mental measurements of the principal components of the ve-
locity gradient tensor [22].

2. The solution for creeping flows generated by
two-roll mills

2.1. Geometry, and governing equations in cylindrical
bipolar coordinates

The corotating two roll mill is best described using cylin-
drical bipolar coordinates. Figure 1 shows a two-roll mill
with parallel cylinders of equal radii R, and separated by a
gap ¢. In cylindrical bipolar coordinates a point on the plane
P(x,y) is represented by two vectors r, and rg, plus two
angles 6,, and @, respectively, drawn from two fixed points
A and B which are symmetrically located from the origin at
a distance d. In this manner the bipolar coordinates (v, /3, 2")
are

a=In (Hr_,,”) and #=60,—0z,
| rall

with the 3-dimensional space (r,y, =) described by

dsin 3 dsinh «

+ziz, (D)

1 i )
cosha — cos 3 cosh v — cos 3

where P is a point, and {i;} is the Cartesian base. This is
a conjugate cylindrical coordinate system, and hence it is
an orthogonal curvilinear coordinate system perpendicular to
the z-axis. The metric factor i can be expressed in terms of
the metric coefficients gx

1) o d sinh v sin 3 "
= ——=— 1
817 Da (cosh a—cos 3)? !

d(1 —cosh a cos ) b ()

o 12

(cosh ce—cos 3)

P d(coshacosf—1), dsinh v sin 3

= —— = - — iy, (3)
82= 58 (cosha—cos 3)? = (cosh a—cos [3)* 2,
o1 S
E3= 55—13; (4
a2

such that
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FIGURE |. The configuration of the two-roll mill in cylindrical
bipolar coordinates (v, 3, z"). For a = constant, a family of eccen-
tric circles above and below the z-axis is generated. For constant
values of /3 a second family of circles is generated with centers on
the r-axis. All circles (/7 = constant) intersect at the point d along
the y-axis. which also corresponds to the limit of circles when «
tends to oo. Two cylinders of radii R are shown as @ = ag. The
center of the xy coordinate system corresponds to (o = 0, 3 = ).

And the metric tensor is

d?
(cosh a — cos 3)? 0 0
(gu) = § e
(cosh a — cos 3)?
0 0 :
so that
0= g = hi, = B =R~ &

Furthermore, this coordinate system is characterized by the
following relations

22 +4% - d® = 2dzcot§ =0, (7)
and
(y — deotha)? + 2* = d*csch’a. (8)

Hence, for 3 = constant (with values between 0 < 3 < 2)
a family of circles is generated with their centers located on
the z-axis at (d cot 3, 0), and with radii equal to d csc . Each
circle passes through the points A and B. For a = constant, a
second set of circles is generated with their centers located on
the y-axis at (0, d coth ) and radii d csch a. In this manner,
atevery point P (., y) acircle of each family intersect orthog-
onally , allowing its representation with a unique set (c, ).
The point A corresponds to @« = +00 and B to o = —00.
3 = 0 corresponds to vertical lines above A and below B,
and 3 = 7 generates the segment (A, 13). The origin corre-
sponds to a = 0 and (3 = 7, and a point at infinity is defined
by a, 3 = 0. A more detailed description of the bipolar coor-
dinate system is given in Appendix A of Ref. 4.
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The two-roll mill is described by selecting constant val-
ues of @ = + a,, with « playing the role of the tangential co-
ordinate, and /3 being the normal coordinate to the cylinders.
The geometric aspects of the two-roll mill are defined by

% =coshar —1, and d = Rsinhay. (9)
Now, consider an isothermal, incompressible, Newtonian
fluid, under laminar flow conditions generated by a two-roll
mill. The fluid velocity u and the hydrodynamic pressure PP
are governed by the continuity and the Navier-Stokes equa-
tions
D 1 :
V.u=0, —u:——VP+quu,
Dt p
where p is the density, and v is the kinematic viscosity of the
fluid. Let . and U, be the characteristic length and veloc-
ity of the flow such that a characteristic Reynolds number is
Re = pl U,/ . Then, the dimensionless governing equations
for a quasi-steady, creeping flow are

Viu-Vp=0, (10)
w0 (1)

This equation is exactly valid for Reynolds number equal to
zero, and is also a good approximation for small values of
the Reynolds number. For a two-dimensional flow a simpler
equation prescribes the creeping flow in terms of the stream
function. That is, the velocity components u and v along the
2 and y directions can be expressed in terms of the stream
function as

u = 2 0= I
oy’ - oz’
and the vorticity w as
dv  du 5

With the above equations, the pressure can be eliminated
from Eq. (10) and

1 dw O ow OY Ow 2
“Ra| —mi e S ) = N4,
2 e(8t+8y8$ Bzcay) “
and the solution of the flow field must satisfy the biharmonic

equation

Vi = 0. (12)

2.2. Jeffery’s Stream Function of a two-roll mill in bipo-
lar coordinates

In 1920, Jeffery [5] presented a solution for the biharmonic
equation in bipolar coordinates used to study the stresses gen-
crated on a flat plate with round holes. In 1922, Jeffery used
this solution to study the internal flow field generated by two

eccentric circular cylinders. The stream function proposed is
given as a Fourier series expansion

-1;% = Ap cosha + Boa (cosha — cos 3) + Cp sinh

+ Dpasinh a + K (cosh @ — cos 3) In (cosh a — cos 3)
+ [A; cosh (2a) + B, + € sinh (2a)] cos B
+ [A] cosh (2a) + C sinh (2a)] sin 8

+ Y [¢n (@) cos (nfB) + ¢}, (a) sin (nf)], (13)

n=2
where the metric factor
d

= (cosha —cos B’ ke
and the coefficient of the Fourier series are
¢n (@) = Apcosh(n+1)a+ Bycosh(n — 1) a

+ Cpsinh(n+ 1)a+ Dysinh(n—1)a, (15)
and
¢, (a) = A, cosh(n+1)a + B;, cosh(n — 1) a

+ C} sinh(n+ 1)a+ D, sinh (n — 1) a. (16)

Given that the two-roll mill has equal cylinders rotating at
equal speeds, the flow field must be anti-symmetric with re-
spect to reflections upon the z- or y-axis as shown in Fig. 2.
In order to take advantage of the simplification due to the
symmetry properties, the velocity field in terms of the stream
function is needed. Hence,

he, he, e,

u—de;—i 4 o 4 —l@e—la—we
B TR | da 8_/3 9zl hdB "' hdba
0 0 P

The velocity component tangential to the surface of the cylin-
ders is

w10 B(O) (VLB (), G,
“Thap 0B \h h) haB \h)’
that is,
o = Bpasin 3 + K[ln(cosha — cos 3) + 1] sin 3
— (A3 cosh 2 + By + C sinh 2a) sin 3
+ (A] cosh 2a + C| sinh 2a) cos 3

+ Z{—n[ﬁl,1 cosh(n + 1)a + By, cosh(n — 1)

n=2

+ Cpsinh(n + 1)a + D, sinh(n — 1)a]sinng
+ n[A], cosh(n + 1)a + B, cosh(n — 1)a

+ C} sinh(n + 1)a + D), sinh(n — 1)a] cosn3}

Y sin 3

(18)

" hcosha — cos B8
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FIGURE 2. The velocity field and its velocity components U, and
ug in bipolar coordinates. The symmetry linesa = 0,and 8 = «
are shown. The symmetry properties of the stream function are ob-
tained using the symmetry properties of u,, and ug near the stag-
nation point where the components are parallel to the Cartesian co-
ordinates.

The velocity component normal to the cylinders
1
w2 SO o
and
ug = —Apsinha — By [(cosha — cos ) + asinh a]
— Cpcosha — Dy (acosh e + sinh @)
— K sinha [1+ In (cosh a — cos 3)]
— (24, sinh 2a + 2C), cosh 2a) cos B
— (2A] sinh 2 + 2C7 cosh 2a) sin 3

oo

= Z {[An(n + 1)sinh (n + Da

n=2
+ B,(n — 1)sinh(n — 1)a
+ Cn(n+ 1) cosh(n + 1)a
+D,(n — 1) cosh (n — 1)a] cosng
+ [AL(n + 1)sinh (n + 1)a
+B, (n —1)sinh(n — 1)a
+ C}(n+ 1) cosh (n + 1)a
+D},(n — 1) cosh (n — 1)a] sin n3}

1 sinh «
hcosha —cos 3’

In Fig. 2 the symmetry properties of the velocity field
are shown; in particular for the components of the veloc-
ity field u,, and uz, which allow an initial reduction of the

(20)

coefficients that must be determined. That is, at the center
(v = 0,4 = ) there is a stagnation point. This “stagnation
point” exists along an axis parallel to the cylinders axes, and
therefore should be strictly referred to as the stagnation line
of the flow field. For simplicity it is referred here as the stag-
nation point, although it may refer to a line running along
the flow and perpendicular to the curvilinear coordinate sys-
tem. On the xy-plane and above the stagnation point, for a
counter-clockwise rotation of cylinders, material points move
to the left, while below it, all material points move towards
the opposite direction with the same speeds as the one located
at the same distance above the center. This flow pattern im-
plies that for those points near the horizontal line (o ~ 0)
the velocity component u,, when « tends to 0 from above,
uq (07), must have the same value and direction as when a
tends to 0 from below u,, (07). Also, the velocity component
ug must have equal values but opposite sign when crossing
the horizontal line. That is,

VA - { Ug (@ = 07) = uy (@ = 01) }

ug(a = 07) = —ug (a = 0F)

A similar condition exists between the left and right side
of the flow field: material points on the right side are dis-
placed upwards on the right and downward on the left side.
In the neighborhood around the line joining the centers of the
cylinders (when /3 ~ ), the velocity component u,, when 3
tends to 7 from the right, u (71), must have the same value
and but opposite direction as when 3 tends to 7w from the left
g (7). Also, the velocity component parallel to the z-axis,
ug, must have the same value when (3 tends to 7 from the
right and left. Hence,

vo: { B@rr)=muwEor )

ug (= 77) = ug (8 — )
Imposing these symmetry conditions upon the velocities
implies that the coefficients By, Co, C1, Cy, C},, Dy, and D},
must all be equal to zero. Then, the stream function reduces to

% = Ay cosha + Dyasinh o
b

+ I (cosha — cos 8) In (cosh v — cos 3)

+ Z [A, cosh(n + 1)a + By, cosh(n — 1)a] cosnf. (21)

n=1

Using Eq. (A.7), the logarithmic term can be expressed
as a cosine series and the stream function is

}Tﬂ_ = Ap cosh v + Dgarsinh o
1

oo
+ IV (bo + by cos 3 + Z by, cos n,@)

n=2

+Z [Ay cosh(n+1)a + B, cosh(n—1)a]cosnB, (22)

n=1

with coefficients by + by and b, given by Eqgs. (A.8).
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2.3. Boundary conditions satisfied by the stream function

On the cylinder’s walls, the boundary condition prescribing
the impenetrability of the surface implies that the velocity
component normal to the roller is zero; that is

10y

- =), 23
h s 0 )

LT (O‘“) — ’

R

where a, is the cylinder radius given in bipolar coordinates.
The dynamic no-slip boundary condition is

10y

ug (ag) = — =
ar

with w being the angular velocity in radians, and K is the
cylinder radius, At infinity, the fluid must remain at rest and

V(a—=0,3—-0)=0 (25)

for the velocity to be u(a — 0,3 — 0) = 0. That is, the
stream function valued far from the cylinders implies that

Ao+ (An+ By) =0, (26)

n=1

The condition of no-flow through the cylinder’s walls is
set by a constant value for the stream function, say M, so that

L (m, ) = ((2ShE 08B o
h d

= Ap cosh ary

+ I [b{) + by cos B + i by C(anﬁ]

+ Doavy, sinh ag

oo
+ Z (A, cosh(n + 1)ag
n=1

+B,, cosh(n — Day]cosnf  (27)

Collecting those terms of same cos n/3 order the first system

M
ri + Ay cosh2a, + By + Kby =0, (29)
and forn > 2,

A, cosh(n + 1)ay + By, cosh(n — 1)as + Kb, = 0. (30)

The no-slip boundary condition on the cylinders surface,
ug () = wR, implies

wR = —Apsinhag

M
— Dp (ap coshay + sinhag) + id— sinh ag

oo
— Ksinhag (1 +ap + Z ay, COS nd)

n=1

= " [An(n + 1)sinh(n + 1)y
n=1

+B,(n — 1) sinh(n — 1)ag]cosnfB. (31)

And collecting terms of equal cos n/3 order, a second system
of n + 2 equations is obtained,

Agsinhag + Do (g coshay + sinh ag)
M
+ Ksinhay (1 4+ ag) — i sinhag, +wR =0, (32)

2A, sinh 2ap, + Kay sinhay =0, (33)
and forn > 2,

A, (n+ 1) sinh(n + 1)a,
+ B, (n - 1)sinh(n — l)ay + Ka,sinha, = 0. (34)

There are 2n + 4 unknowns: Ag, A1, A, By, By, Do,
K and M; but only 2n + 3 equations. Given that M corre-
sponds to the value of the stream function ¢» on the surface of
the cylinders, set arbitrarily by the computation, any constant
value can be used. Therefore, the solution consists of a sys-
tem of 2n + 3 equations and unknowns. Equations (30) and
(34) imply that

of n + 2 equations is obtained il (n+ 1) — e~ 282 _ pe—2ak (353)
5 " 35a
M K n(n+ 1) [nsinh2ag + sinh 2na,]
(A[) - r_l) coshay + Dygagsinhag + Kby =0, (28) B, (n— 1) + e~2nan _ pelan o
| K n(n—1)[nsinh2ag, + sinh 2nag]’
The remaining coefficients are
A 2Rwagsinh ay — 2K [bn (sinh oy + g coshag) — (1 4 ag) ag sinh? aﬂ] (362)
Ag = R a
. 2a, + sinh 204
Ka;secha |
a,sec
Hym s 8 (36b)
4
B, = —Kby + Ka,coth2a,, sinh ag (36¢) Dy = — Ag coshay + I\'bg' (36d)

2

apsinh ag
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The last coefficient I can be expressed using Egs. (27). (36),
and (37) as follows:

Aﬂ:—..z](fin'f'Bﬂ):_zllBI_Z_:I\ ( I_:’l) (37)

and

Ag+ A+ By = —Ki (%— - —'i—) =-KS, (38)

n=
where

oy ]

g —2n)e '”“R+( —112)9_2“”+(11+;'?2)62“ﬁ
Z n(—1)(n+1) (nsinh 2ag +sinh 2nag)

. {(39)

Consequem]y,

K = —4Rwa g sinh ag [25 (2a, + sinh 2ag)

+ 4o (ag + 1) sinh? oy, — 4bg (sinh vy + vy cosh ay)

— 2b; (2ap + sinh 2ay)

+ ay (anc.o‘(.h:?aﬂ sinh ap — agsechay

1 -1
— gsinh ag + B sinh 30,;)] . (40)

Finally, the explicit form of the stream function for Stokes
flow generated by the two-roll mill is given by Egs. (23),
(35), (36), and (40). Figure 3 shows the stream functions for
two different geometries of the two-roll mill. The geometri-
cal parameters for these mills corresponds to those given by
Geffroy and Leal [25] where the distance between the cylin-
der axes is maintained fixed and the cylinder’s radii changes.
That is, the value for the parameter d takes a different value
for every pair of rollers.

3. The Stokes flow about the stagnation point

The kinematic conditions at the stagnation point located be-
tween the cylinders is perhaps the region of the flow field
most frequently used until now for studies of the dynamics
of non-Newtonian fluids. For example, Dunlap [24] studied
the dynamics of various dilute polymeric solutions under the
flow conditions that exist in the neighborhood of the stagna-
tion point assuming kinematics similar to those prevalent for
Newtonian fluids. In particular, the correlation of polymer de-
formations induced by the flow and the rates of deformation
applied by the flow is a critical parameter for those experi-
ments. More recently, Wang et al. [22] have studied the flow
field of polymeric liquids using the homodyne light scatter-
ing technique [26] (a method capable of measuring directly
the most relevant flow parameters) in order to determine the
flow conditions that affect the deformation of the polymeric
structure. One of the most relevant aspect of these studies is
the fact that the flow-type parameter and the shear rate of the
flow at the stagnation point have been directly related to the
rate of rotation of the rollers and the geometry of the two-roll
mill.

FIGURE 3. The streamlines for two different geometries of the two-
roll mill. The distance from the center to the axes of the cylinders is
0.017 m for both devices. The cylinder’s radii are 0.01665 m and
0.01075 m, for the left and right configuration respectively, which
corresponds to rollers A and 1 of Table I.

3.1. Shear rate and value of the flow-type parameter at
the stagnation point

With the equation for the stream function it is possible to ob-
tain a simpler expression, valid in the neighborhood of the
stagnation point, by using a Taylor series expansion about
« = 0 and 3 = 7 and keeping only terms up to second or-
der. Thatis, ¥y = da/2 and z = d (7 — 3) /2, and Eq. (23)
becomes

2 — 222 + 297 i .
[-—fd—ujl 1 = Ag (1 + 2;112) +4y*Dy

l 2 9
= )+21112—2.1"{1+ln2)

1-—z°
B

- Z (=)™ (1- 2n*z?) {An [1 +2y3(n + 1)2]
n=1
+B,[1+ 2y%(n - 1)%]}. (41)

In this equality, the left term is proportional to (1 — % + ¢?).
Mulliplying both sides by (1 + x* — y?), then the left side is
(1-z24+9%) (1 +22 —p?) =1—2* + 2222 -yt = 1,
valid up to quartic order. Therefore, Eq. (41) becomes

2 : 21,1
-y )y =

2
d(l—t +9*) (1+a 'y

~ Ao +2KIn2+ Y i (A, + By)

n=1

+y° (,-1[, +4Dg + 2K

- iiz” {2 [An(n+1)* 4 By(n

n=1

+x {40 =K +Z 28

n=1

~1)*] = [4a + Bu]} )

An+ B)— 207 (An+Bn)] .

The stagnation point is characterized by a saddle point, which
implies that the coefficients for the z* and y? have opposite
signs. In this manner, the stream function can then be ex-
pressed as a 2-dimensional hyperbolic flow y* — Az? = ¢,
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with
_ Ao —2K + 30, i"[(An + Bn) — 20°(4n + Bn)] (@2
= T Ao +4D0 12K+ 25, 7 (2[An(n + 12 + Bu(n - 1)?] - (An + B}’ )
and
- _ - _ oo 2n
. (2/d)’l‘b A(} 2K1In2 Zn:l 1 (An + Bn) (43)

Furthermore, given the linear character of Stokes equations,
the velocity field at the stagnation point can be expressed by

uzvul . x, (44)
where
gl o0 |0 1] |2
1y =7 0 yl’
and
20uqy
0 Gop
vu{{n:(},ﬁ:n) - 28Uﬁ
d da

The expansion for u, and ug as a Taylor series up to
quadratic terms and about (a = 0,3 = 7) is

o0
= - 2n 3
o = d{ Ao +2K + Y i2(2n% — 1) (A + Bn)]},

n=1

and

iy = ‘(_[-"(AD +4Dg + 2K

B i iZ"{Q[A”(n +1)24+ Bn(n — 1)2] A Bn)}).

n=1

Since both the Cartesian and bipolar coordinate systems are
orthogonal, then at the stagnation point x',

Uy = uq (x'), andu, = —ug (x').

Therefore, based upon Eq. (44) the velocity components can

be recast as
ug | _ | Yy
uy| — |yAz)]’

where 5 is the magnitude of the velocity gradient or the shear
rate of the flow at the stagnation point and is given by

y 1 7 ¢ - :2n 2
Y= J('40+4D0+2[(+Zt {2[}1,—;(114‘1)

n=1
+ Bn(n — 1)'-’] - (An + By) }) (45)

and the flow-rype parameter or degree of extensional flow, A,
is given by Eq. (42). For the two-roll mill geometry, the flow-
Lype attains values larger than zero (but smaller than one); a
value of zero corresponds to the case of simple shear flow and

o Ao +4Do + 2K + E?:l 27{2[An(n + 1) + Ba(n — 1)?] - (An + By)} .

06 : 3

03 1.5
% .

.0]'—_#——*_% _15/,_—___\

o

/”f——‘\_“\_&
s |
-07-035 0 035 07 -4 -2 0 2 4
R =16.65mm R=1510mm

-6 =3 0 3 6
R = 14 00 mm

FIGURE 4. Streamlines in the vicinity of the stagnation point for
different geometries of the two-roll mill. (a) R = 16.65 mm;
(b) R = 15.10 mm; (¢) R = 14.00 mm; (d) R = 10.75 mm.
The angle sustained by the asymptotic streamlines at the stagnation
point corresponds to 26, and are the most probable orientation for
a highly deformed body embedded in the flow.

can only be reached when the gap between the cylinders is
infinitesimally small, ie., ay, — 0. Figure 4 presents the
streamlines in the vicinity of the stagnation point for two dif-
ferent geometries.

When analyzing the dynamics of polymeric liquids,
changes of the fluid microstructure are easily measured by
evaluating the flow-induced optical anisotropy. In these stud-
ies, the orientation of the polymer anisotropy occurs near the
outgoing axes of the hyperbolic flow. The angle sustained by
the asymptotic lines of the hyperbolic flow (when ¢ — 0) is
defined by

28_,r = arctan (2) = arctan (A%) i (46)
T

with #; being the angle of an asymptote and the x-axis. 6
corresponds to the orientation of the principal eigenvector of
the velocity gradient tensor Vu, and also corresponds to the
most probable orientation of an immersed, deformed body,
since the principal eigenvector of the rate of deformation ten-
sor D = (Vu+Vu’) is also aligned at this angle. Even for
the simplified solution about the stagnation point, the orienta-
tion angle and the flow-type parameter depend only upon the
geometrical characteristics of the two-roll mill. For a slightly
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deformed body or a fluid with microstructure, the alignment
with respect to the flow must have an angle ; < 6 < /4.
The upper limit corresponds to a two-dimensional pure ex-
tensional flow, and for flows close to simple shear the low-
est value is near zero. The experimentally observed values
for @, smaller than 8, as reported for polymeric liquids are
the result of a strong modification of the local kinematics of
the flow field due to the nonlinear effects introduced by non-
Newtonian constitutive equations (see, for example, Ref. 25).

Dunlap [24] obtained an expression for the stream func-
tion valid at the stagnation point:

WP = L (Ag cosha + Dgsinh ) , 47)
cosha — cos 3
where

«

Ap = = ;

R ap + sinh ay cosh ag

oth

Dy = coth ay (48)

p + sinh ag coshag

The flow-type parameter and the shear rate are, respectively,

waf
¥ = (4C0thaR B 1) ‘ 49
Qg
and
A()w
y = —— 50
Y (50)

This solution has several disadvantages, but as will be shown
subsequently, this simplified solution is remarkably accurate
about the stagnation point, and in particular for flow-type val-
ues close to those of simple shear flow. Among its drawbacks
are that it does not represent correctly the flow field far from
the stagnation point, and it does not have the centers for the
vorticity located at the axes of the cylinders. Instead they co-
incide with points A and B; that is, for & — 00. As a result,
the extent of the region about the stagnation point with kine-
matic conditions determined by the above values of 4, A, and
# is unknown in relation to the length-scales defined by the
geometry of the mill.

3.2. Flow parameters for experimental two-roll mill con-
figurations

Two-roll mill flow devices have been used in the past, espe-
cially to study the dynamics of polymeric fluids (see, for ex-
ample, Refs. 20, 22, 24, and 25). The advantage of the use of
the two-roll mill for these studies is the fact that the flow-type
parameter is larger than zero, but corresponds to a extensional
flow field with significant amounts of vorticity, in particular
when the values achieved are compared to values accessible
with a four-roll mill configuration. That is, when the confor-
mation of the fluid structure can be altered significantly by
the degree of extensional flow, then the use of two-roll mill
is superior since the response of the fluid can be more easily
differentiated due to the presence of vorticity causing a less
drastic deformation of the microstructure.

TABLE I. Dimensions for the two-roll mill with different sizes of di-
ameters for the cylinders. For all cases, the distance between roller-
s's axes is fixed at 17.0 mm. d corresponds to the distance from
the center of the flow cell (the stagnation point) to the position
along the y-axis where & — oo and allows the representation of
the rollers by aep

Roller Radii (mm) gap (mm) d (mm)
A 16.65 0.70 3.431836
B 16.35 1.30 4.655910
C 15.70 2.60 6.519969
D 15.10 3.80 7.809609
E 14.17 5.66 9.392076
F 14.00 6.00 9.643651
G 12.78 8.44 11.210334
H 11.69 10.62 12.342767
I 10.75 12.50 13.169567

3.2.1. Geometrical parameters

In studies reported by Geffroy and Leal [25], the two-roll mill
geometry is such that the centers of the cylinders is main-
tained fixed at 0.0170 m, while eight different sets of rollers
is used to vary the flow parameters. Table I lists the diame-
ters of the cylinders and the gap existing between them. The
calculated value for half the distance between points A and
B (d), and which allows the representation of the cylinders’
surface by a constant value of @ = «p, is also given and is
always larger that the separation between cylinders.

3.2.2. The flow type parameter

Given the geometric characteristics of the flow devices it
is now possible to compare the precision of the calculated
values of the flow parameters. Table II presents the val-
ues of the flow-type parameter using the approximated ex-
pression (Agpprox) by Dunlap [24], Stokes solution [given by
Eqgs. (23), (35), (36), and (40)], the numerical value reported
by Singh and Leal [20], and the experimental values by Wang
et al. [22]. This Table considers three possible precisions for
the summations implied by Eq. (39) and obtained by trun-
cating the sum after n = 5, 25, and 125 terms. The entries
without values in the numerical and experimental columns
imply that these are not available.

It is clear that the flow-type values predicted for the com-
plete range of flow devices is approximately the same when
more than 25 terms of the summation are considered. In
fact, the latter criteria is adequate for A values greater than
0.04. The number of terms required at low values of A in-
creases and, surprisingly, provides values equivalent to those
obtained with the simplified expression of Dunlap. Figure 5
presents the dependence of the calculated value of the flow-
type parameter on the number of terms of the sum [Eq. (39)].
The plot corresponds to the two-roll mill configuration with
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TABLE II. Calculated values of the flow type, A, as a function of the flow device geometry and evaluated at the stagnation point. Aapprox
corresponds to the predicted values using Dunlap’s expression, and A, are those evaluated using Eq. (42) with n the number of summands
considered. Anum and Aexp are the numerical and experimental results reported in Refs. 20, and 22, respectively.

Roller AApprox A(n=25) A(n = 25) A (1 =125) ), (- Assi
A 0.0104379 0.115312 0.0105409 0.0104379
0.0196209 0.0988742 0.0196247 0.0196209 5
& 0.0403169 0.0810291 0.040316 0.040316 0.047
D 0.060474 0.081976 0.060461 0.060461 0.067
E 0.093974 0.102122 0.094123 0.094123 0.096
F 0.100424 0.107371 0.100692 0.100692 - 0.114
G 0.150133 0.154612 0.152789 0.152789 0.153 0.160
H 0.200548 0.207745 0.207191 0.207191 0.196
I 0.297712 0.259299 0.259108 0.259108
0.02 ¢ | T |
0.0175 il ‘ | : : —— .
0018 i \ | TABLE I11. Magnitude of the principal eigenvalue of the velocity
00'125 [ ‘ | gradient tensor, normalized with respect to the angular speed of
ik 1 [ [ the cylinders. [¥p /w],,prox N [Y0/w] are the predicted values
E e [ 3 based upon Dunlap’s expression. [/w], . .. and [¥/w] are the
0.0075 [y ‘ 1 predicted values for the locally and globally valid Stokes solution,
0.005 i T ‘t respectively. [¥/w],,, are the reported results of Wang et al. [22].
0.0025 r: I ‘
20 40 60 80 100 120 140 D D g ¥ ¥
Number of terms Roller {:] = [;] @ I:;:|
approx approx exp

FIGURE 5. Convergence of calculated values for the flow-type pa-
rameter, A, as a function of the number of terms before truncation
of the analytic solution for the stream function.

the smallest gap (rollers A) since its computation presents the
weakest convergence behavior. For this mill, whenever more
that 40 terms in the summation are taken into account the
value for A hardly changes. For the results given here, the
sums are truncated after 125 terms.

3.2.3. The magnitude of the velocity gradient tensor

The magnitude of the velocity gradient at the stagnation point
is another important parameter for these flows. That is, given
a fixed maximum angular velocity of rotation of the cylinders
provided by a set of motors, the top shear rate that the mill
can produce is a function of its geometry via the tangential
speed and the gap between rollers. For the same two-roll mill
geometries, Table III presents the values of the normalized
shear rates (with respect to the angular speed of the cylin-
ders) as calculated by the expression of Dunlap (¥p /w), the
exact solution (considering 125 terms), and the experimen-
tal values obtained by Wang et al. ([/w],,). However, in
this table, the second and fourth left most columns are found
using the full solutions as given by Eqs. (47) and (48) for
Dunlap’s expression, and Stokes solution based on Egs. (23),
(35), (36), and (40). The first and third columns are obtained
using the expressions valid about the stagnation point.

A 47.237331 47.239904 47.237331 47.239904 ...
B 24819154 24.823931 24.819154 24.823931 24.1
C  11.741155 11.750694 11.741156 11.750694 11.7
D 7.610899  7.624803 7.610783 7.624681 7.84
E 4670160  4.690736  4.669733 4.690372 4.83
F 4329777 4351555 4.329427 4351319 4.44
G 2.692708 2722886 2.695945 2.727231 2.80
H 1.868669 1.905877 1.87967 1.919587 1.84
I 1.391422 1.434168 1.41084 1.457431

Figure 6 presents a comparison of A values calculated
with the exact solution and Dunlap’s expression. It is clear
that for large gaps (small cylinders radii), the expression valid
at the stagnation point overestimates the values of the flow-
type parameter; in fact, A can have unrealistic values larger
than one. The series solution attains the expected limiting val-
ues of A = 0 for the smallest gap, and A = 1 when the rollers
have a minimum diameter. As shown in Table II, both the
approximate expression and the complete solution have dis-
crepancies of less than one percent for A < 0.2. For values
0.2 < X < 0.4, the calculated values differ, but the two-
roll mill geometry has not been used for such large values
although it appears to be a useful geometry for A values as
high as 0.8. However, for such large values, the four-roll
mill may be a better alternative to generate elongational flows
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FIGURE 6. Calculated values for the flow-type parameter using the
approximate expression of Dunlap [24] (the dotted line) and the
series expansion given here (continuous line) with truncation af-
ter 125 terms. The separation between cylinders’ axes is 0.034 m.
Dunlap’s expression predicts unrealistic values whenever the radii
of the cylinders are less than 0.0043 m. The series solution predicts
the correct values for the largest (A = 0) and smallest radii (A = 1).

with small amounts of vorticity since according to Table 111
it is obvious that the magnitude of the accessible shear rates
can be extremely limited for two-roll mills with a large-A-
value configuration. The available range of shear rates with a
four-roll mill is not as severely limited as is the case of the
two-roll mill.

4. Discussion and conclusions

A solution valid for zero Reynolds number flows generated
by two-roll mills is given. This solution can be a useful
benchmark for a number of elongational creeping flows be-
cause its flow parameters evaluated at the stagnation point
can be accurately known. Also, this solution could be useful
as a first order approximation for studies of inertial effects
(nonzero Reynolds numbers) or non-Newtonian constitutive
equations, and to perform stability analyses of the full 3D-
flow field. Inertial effects may disrupt the symmetric proper-
ties of the flow field; in particular, the streamlines for fluid
parcels approaching the stagnation point will tend to curve
faster, while those departing from the stagnation point will
follow patterns close to the central line (z-axis). Furthermore,
this solution could be useful to study a new class of nonsteady
flows, or the Stokes paradox present far from the stagnation
point [4]. When studying non-Newtonian constitutive equa-
tions, this flow field may present smaller values for the shear
rates and flow type as a result of nonzero normal stresses. In
the case of hydrodynamic instabilities, the two-dimensional
character of the zero Reynolds number flow field could be
modified.

Even for nonzero Reynolds numbers, the present solu-
tion can be useful as a benchmark for a number of experi-
mental and numerical techniques used to study the flow field
near the central stagnation point. As shown in Tables II and
IIT, The available experimental values are slightly higher that
the numerical and theoretical predictions for the flow-type as

well as the shear rate, which may be a consequence of the
fact that different models for the flow field were used. That
is, the numerical simulation of Singh and Leal, and the ex-
perimental results of Wang er al., have used a two-roll mill
contained inside a third circular cylinder with flat ends that
conform the flow cell while the analytical results assumes
an unbounded fluid domain. Furthermore, the third cylinder
is stationary which represents a significant departure from
the kinematic conditions implied by the unbounded domain.
Consequently, for the numerical and experimental data, the
presence of boundaries on the a/3-plane at a finite distance
may affect the observed values for the flow parameters. How-
ever, for the flow field near the stagnation point the discrep-
ancy with the theoretical calculations appear clearly at odds
with the experimental values and less with the numerical re-
sult. This is true for the calculated values for the flow-type
and the shear rate as shown in Tables II and III, especially for
the set of rollers from C to G. It is not clear why this is the
case, but perhaps these theoretical and numerical results can
provide some insight into the accuracy of the experimental
technique or as a benchmark to “fine-tune” the precision of
the experimental measurements.

The significant drop of the measured value for A and 4 for
the largest set of rollers H may be a consequence of signif-
icant three-dimensionality effects present for that configura-
tion. That is, for these devices, the rollers are about 0.0254 m
long and the length-to-gap ratio is only about two to one. The
flow cell encloses the cylinders with non-slip boundary con-
ditions at the extreme of the cylinders, and perpendicular to
the axes. The flow field on the layers next the flat covers must
be similar to that of simple shear flow, which implies that the
observed value of A may be dependent upon the depth of the
flow cell. Furthermore, the velocity field may also be weaker
due to the proximity of the container walls and the shear rate
is consequently smaller. Hence, boundary effects normal to
the rollers axes and due to the existence of flat surfaces may
reduced the net value of the flow-type parameter especially
when the gap is relatively large and even when it is evalu-
ated at the central position of the “stagnation line’” as shown
in Table II; these conditions can also reduced the measured
shear rate as given in Table IIL. If this assertion is correct,
then two-roll mill flow cells need to consider a design with
a significantly larger value for the length to gap ratio for all
rollers, or the means to reduced the friction at the walls, in
order to determine a consistent flow-type parameter for ge-
ometries with large values of A.
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Appendix A

The solution of the stream function valid for the two-roll mill
requires an equivalent expression for the logarithmic term
that appears in Eq. (21). A simple Fourier series solution can
be found when the following relation is used [27]:

oo
In (1 —2‘ITC()S¢+.‘I'2) == —22@1” (A1)
n=1

Since
In ("c +v1+ 12) =sinh 'z
t2 <1 and zcos¢ #1,

Equation (52) can be cast as

e e
In (I ;—.r - cosqb) = —In(2z) — 22 @z"

T
n=1

From the above equation, the logarithmic term can be eas-
ily obtained with the change of variables ¢ = [, and
(1+ 2?) /2x = cosha = p, such that the following equal-

ity:
1-2z0+2°=0,

has solutions

) 402 —
e e

= cosha £+ Vcosh?> @ — 1 = cosh a + sinh &

(e +e )£ (e —e®)  (1x1)e*+(1F1)e®

B 2 a 2
Hence,

x = eto,
This last equation must have only one solution. For o > 0,
and x> < 1, only the negative root is valid. Therefore,
applying the change of variables on the tabulated equality
[Eq. (A.1)] with the relation for  imply that

oo
n) _ 22 Cosnﬁe—vm
n=1 »

In (cosha — cos 3) = —In (2e

oo e—na
:(r—an—QZ cosnf
n=1 "
o0
= ag + Z a, cosnf, (A.2)
n=1
where
6-—11(}
ag=a—In2 and a, = -2 - (A.3)

The left side of expression for the stream function is mul-
tiplied by the (cosh ev — cos 3) term. Hence, from Eqs. (A.2)

and (A.3) the right most term is the logarithmic summand is

cos (3 1n (cosh @ — COS ﬁ) = (ﬂ.o + Z ay, COS nﬁ) cos 3
n=1

o0
= ag COS ﬁ-l—z an cos [ cosnf.

n=1
Using the identity cosfjcosnfi = fcos(n+1)8 +
5 cos (n — 1) 3, the sum of the latter equation can be writ-
ten as

oo
Z a, cos Fcosnf =

n=1

i%ﬁ[cos(n+l)ﬁ+cos(n—1)ﬁ]

n=1

= %c032/3+ %1 + E;—')cosBﬁ+ %Ecosﬁ

Py

n=3
and with some further simplifications

o0

Z ay, cos fcosnf3 =

n=1

[cos(n+1) 3 +cos(n—1)4],

cos 3

ot T
2 2

Z (ﬂ)H-l

(J.n 1

) cosnf. (A.4)

In this manner,

cos FIn (cosha — cos 3) = % + (ao + %) cos 3

o0
ﬂn+1 Ap—1
+ (— =+ ) cosnf.
2, |G+ Jeuens
(A.5)
The remaining term becomes
cosh evIn (cosh v — cos 3) =
o0
ap cosha + Z a, cosh o cosnf3
n=1
= ag cosh o + ay cosh e cos 3
oo
+ Z a,, cosh a cos n3; (A.6)

Hence, the product (cosh & — cos 3) In (cosh o — cos [3) can
be obtained from Eqgs. (A.5) and (A.6) so that

(cosha — cos 3) In (cosh v — cos 3) =

coshaln (cosh v — cos ) — cos B 1n (cosh e — cos /3)

o0
= ag cosh v + a1 cosh v cos 3 + Z ap cosh ar cosnfi
n=2
¢ a = e a
'1 "2 n+1 n—1
— — — [« +—)msj— (—+ )Cosn A
5~ (0 + 5 ) cosn -3 (75 3 h

n=2
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or equivalently,
a @ .
(cosha — cos 3) In (cosha — cos 3) = (ao cosha — *23) + (al cosha — ag — ?‘2) cos (3
= a a
+ ( RN — 71Al)cosn.
Z (ly, COS 3 5 16
n=2
Finally,
o0
(cosha — cos 3) In (cosha — cos 3) = by + by cos 3 + z by, cosnj3, (A7)
n=2
with
ay
by = apcosha — EL (A.8a)
sy
by = by cosha — ag — 5 (A.8b)
a B
by, = a, cosha — —2tk . ncl (A.8c)
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